next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.00006268 seconds elapsed
 -- 0.000673518 seconds elapsed
 -- 0.000166214 seconds elapsed
 -- 0.000061841 seconds elapsed
 -- 0.000583416 seconds elapsed
 -- 0.000152101 seconds elapsed
 -- 0.000059789 seconds elapsed
 -- 0.000053995 seconds elapsed
 -- 0.000138097 seconds elapsed
 -- 0.000066495 seconds elapsed
 -- 0.000558325 seconds elapsed
 -- 0.000152716 seconds elapsed
 -- 0.000061513 seconds elapsed
 -- 0.000530622 seconds elapsed
 -- 0.000147748 seconds elapsed
 -- 0.000064275 seconds elapsed
 -- 0.000505687 seconds elapsed
 -- 0.000146595 seconds elapsed
 -- 0.000064112 seconds elapsed
 -- 0.000606976 seconds elapsed
 -- 0.00018676 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000073138 seconds elapsed
 -- 0.000708385 seconds elapsed
 -- 0.000180134 seconds elapsed
 -- 0.000064986 seconds elapsed
 -- 0.000705984 seconds elapsed
 -- 0.000171671 seconds elapsed
 -- 0.000062085 seconds elapsed
 -- 0.000541744 seconds elapsed
 -- 0.000146207 seconds elapsed
 -- 0.000066298 seconds elapsed
 -- 0.000533999 seconds elapsed
 -- 0.000154259 seconds elapsed
 -- 0.000062985 seconds elapsed
 -- 0.000542995 seconds elapsed
 -- 0.000167535 seconds elapsed
 -- 0.00005859 seconds elapsed
 -- 0.000547582 seconds elapsed
 -- 0.000147679 seconds elapsed
 -- 0.000063052 seconds elapsed
 -- 0.000633989 seconds elapsed
 -- 0.000152166 seconds elapsed
 -- 0.00006676 seconds elapsed
 -- 0.000570057 seconds elapsed
 -- 0.00015219 seconds elapsed
 -- 0.000059608 seconds elapsed
 -- 0.000535295 seconds elapsed
 -- 0.000146086 seconds elapsed
 -- 0.000070866 seconds elapsed
 -- 0.000528948 seconds elapsed
 -- 0.000151433 seconds elapsed
 -- 0.000098163 seconds elapsed
 -- 0.000567892 seconds elapsed
 -- 0.000171363 seconds elapsed
 -- 0.000059122 seconds elapsed
 -- 0.000551454 seconds elapsed
 -- 0.000151269 seconds elapsed
 -- 0.00006295 seconds elapsed
 -- 0.000790209 seconds elapsed
 -- 0.00024284 seconds elapsed
 -- 0.000058639 seconds elapsed
 -- 0.000832038 seconds elapsed
 -- 0.000285592 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.