GDAL

Contents

Chapter 1

GDAL - Geospatial Data Abstraction
Library

Select language: [English] [Russian] [Portuguese]

GDAL is a translator library for raster geospatial data formats that is released under an X/MIT style Open
Source license by the Open Source Geospatial Foundation. As a library, it presents a single
abstract data model (p. ??) to the calling application for all supported formats. It also comes with a variety
of useful commandline utilities (p. ??) for data translation and processing. The NEWS page describes
the November 2007 GDAL/OGR 1.4.4 release. The recent 1.4 . 3 release has been retracted to an ABI
incompatability.

The related OGR library (which lives within the GDAL source tree) provides a similar capability for simple
features vector data.

Master: http://www.gdal.org

Download: ftp at remotesensing.org,http at download.osgeo.org

1.1 User Oriented Documentation

e Wiki - Various user and developer contributed documentation and hints
* Downloads - Ready to use binaries (executables)

e Supported Formats

* GDAL Utility Programs

e GDAL FAQ

* GDAL Data Model

* GDAL/OGR Governance and Community Participation
* Sponsors, Acknowledgements and Credits

* Software Using GDAL

2 GDAL - Geospatial Data Abstraction Library

1.2 Developer Oriented Documentation

* Building GDAL From Source

* Downloads - source code

¢ APTI Reference Documentation

* GDAL API Tutorial

* GDAL Driver Implementation Tutorial
e GDAL Warp API Tutorial

* OGRSpatialReference Tutorial

e GDAL C API

¢ GDALDataset

* GDALRasterBand

e GDAL for Windows CE

1.3 Mailing List

A gdal-announce mailing list subscription is a low volume way of keeping track of major develop-
ments with the GDAL project.

The gdal-dev@lists.osgeo.org mailing list can be used for discussion of development
and user issues related to GDAL and related technologies. Subscriptions can be done, and
archives reviewed on the web. The mailing list is also available in read-only format
by NNTP at news://news.gmane.org/gmane.comp.gis.gdal.devel and by HTTP at
http://news.gmane.org/gmane.comp.gis.gdal.devel.

Some GDAL/OGR users and developers can also often be found in the gdal IRC channel on
irc.freenode.net.

1.4 Bug Reporting

GDAL bugs can be reported, and can be listed using Trac.

1.5 GDAL In Other Languages

The following bindings of GDAL in other languages are available:

* Perl
e Python
* VB6 Bindings (not using SWIG)

* GDAL Bindings into R by Timothy H. Keitt.

1.5 GDAL In Other Languages

* Ruby
e Java

e C# / .Net

GDAL - Geospatial Data Abstraction Library

Chapter 2

GDAL Virtual Format Tutorial

6 GDAL Virtual Format Tutorial

2.1 Introduction

The VRT driver is a format driver for GDAL that allows a virtual GDAL dataset to be composed from
other GDAL datasets with repositioning, and algorithms potentially applied as well as various kinds of
metadata altered or added. VRT descriptions of datasets can be saved in an XML format normally given
the extension .vrt.

An example of a simple .vrt file referring to a 512x512 dataset with one band loaded from utm.tif might
look like this:

<VRTDataset rasterXSize="512" raster¥Size="512">
<GeoTransform>440720.0, 60.0, 0.0, 3751320.0, 0.0, -60.0</GeoTransform>
<VRTRasterBand dataType="Byte" band="1">
<ColorInterp>Gray</ColorInterp>
<SimpleSource>
<SourceFilename relativeToVRT="1">utm.tif</SourceFilename>
<SourceBand>1</SourceBand>
<SrcRect xOff="0" yOff="0" xSize="512" ySize="512"/>
<DstRect xOff="0" yOff="0" xSize="512" ySize="512"/>
</SimpleSource>
</VRTRasterBand>
</VRTDataset>

VRT files can be produced by translating to VRT format. The resulting file can then be edited to modify
mappings, add metadata or other purposes. VRT files can also be produced programmatically by various
means.

This tutorial will cover the .vrt file format (suitable for users editing .vrt files), and how .vrt files may be
created and manipulated programmatically for developers.

2.2 .vrt Format
Virtual files stored on disk are kept in an XML format with the following elements.

¢ VRTDataset: This is the root element for the whole GDAL dataset. It must have the attributes
rasterXSize and rasterYSize describing the width and height of the dataset in pixels. It may have
SRS, GeoTransform, GCPList, Metadata, and VRTRasterBand subelements.

<VRTDataset rasterXSize="512" rasterY¥YSize="512">

* SRS: This element contains the spatial reference system (coordinate system) in OGC WKT format.
Note that this must be appropriately escaped for XML, so items like quotes will have the ampersand
escape sequences substituted. As as well WKT, and valid input to the SetFromUserInput() method
(such as well known GEOGCS names, and PROJ.4 format) is also allowed in the SRS element.

<SRS>PROJCS ["NAD27 / UTM zone 11N",GEOGCS["NAD27",DATUM["North_American_D:e

* GeoTransform: This element contains a six value affine geotransformation for the dataset, mapping
between pixel/line coordinates and georeferenced coordinates. The list of values is the data of the
SRS element, and the values are separated by commas.

The parameter order is as follows: [0] top left x; [1] w-e pixel resolution; [2] rotation, O if image is
"north up"; [3] top left y; [4] rotation, O if image is "north up"; [5] n-s pixel resolution.

<GeoTransform>440720.0, 60, 0.0, 3751320.0, 0.0, -60.0</GeoTransform>

2.2 .vrt Format 7

* Metadata: This element contains a list of metadata name/value pairs associated with the VRTDataset
as a whole, or a VRTRasterBand. It has <MDI> (metadata item) subelements which have a "key"
attribute and the value as the data of the element.

<Metadata>
<MDI key="md_key">Metadata value</MDI>
</Metadata>

* VRTRasterBand: This represents one band of a dataset. It will have a dataType attribute with
the type of the pixel data associated with this band (use names Byte, Ulnt16, Int16, Ulnt32, Int32,
Float32, Float64, CInt16, CInt32, CFloat32 or CFloat64) and the band this element represents (1
based). This element may have Metadata, ColorInterp, NoDataValue, ColorTable, and Description
subelements as well as the various kinds of source elements such as SimpleSource. A raster band
may have many "sources" indicating where the actual raster data should be fetched from, and how it
should be mapped into the raster bands pixel space.

* ColorInterp: The data of this element should be the name of a color interpretation type. One of
Gray, Palette, Red, Green, Blue, Alpha, Hue, Saturation, Lightness, Cyan, Magenta, Yellow, Black,
or Unknown.

<ColorInterp>Gray</ColorInterp>:

* NoDataValue: If this element exists a raster band has a nodata value associated with, of the value
given as data in the element.

<NoDataValue>-100.0</NoDataValue>

¢ ColorTable: This element is parent to a set of Entry elements defining the entries in a color table.
Currently only RGBA color tables are supported with cl being red, c2 being green, c3 being blue
and c4 being alpha. The entries are ordered and will be assumed to start from color table entry 0.

<ColorTable>
<Entry cl="0" c2="0" c3="0" c4="255"/>
<Entry cl="145" c2="78" c3="224" c4="255"/>
</ColorTable>

* Description: This element contains the optional description of a raster band as it’s text value.

<Description>Crop Classification Layer</Description>

» UnitType: This optional element contains the vertical units for elevation band data. One of "m" for
meters or "ft" for feet. Default assumption is meters.

<UnitType>ft</UnitType>

» Offset: This optional element contains the offset that should be applied when computing "real" pixel
values from scaled pixel values on a raster band. The default is 0.0.

<Offset>0.0</Offset>

* Scale: This optional element contains the scale that should be applied when computing "real” pixel
values from scaled pixel values on a raster band. The default is 1.0.

<Scale>0.0</Scale>

8 GDAL Virtual Format Tutorial

» CategoryNames: This optional element contains a list of Category subelements with the names of
the categories for classified raster band.

<CategoryNames>
<Category>Missing</Category>
<Category>Non-Crop</Category>
<Category>Wheat</Category>
<Category>Corn</Category>
<Category>Soybeans</Category>

</CategoryNames>

* SimpleSource: The SimpleSource indicates that raster data should be read from a separate dataset,
indicating the dataset, and band to be read from, and how the data should map into this bands raster
space. The SimpleSource may have the SourceFilename, SourceBand, SrcRect, and DstRect subele-
ments. The SrcRect element will indicate what rectangle on the indicated source file should be
read, and the DstRect element indicates how that rectangle of source data should be mapped into the
VRTRasterBands space.

The relative ToVRT attribute on the SourceFilename indicates whether the filename should be inter-
preted as relative to the .vrt file (value is 1) or not relative to the .vrt file (value is 0). The default is
0.

<SimpleSource>
<SourceFilename relativeToVRT="1">utm.tif</SourceFilename>
<SourceBand>1</SourceBand>
<SrcRect xOff="0" yOff="0" xSize="512" ySize="512"/>
<DstRect xOff="0" yOff="0" xSize="512" ySize="512"/>
</SimpleSource>

* KernelFilteredSource: This is a pixel source derived from the Simple Source (so it shares the
SourceFilename, SourceBand, SrcRect and DestRect elements, but it also passes the data through a
simple filtering kernel specified with the Kernel element. The Kernel element should have two child
elements, Size and Coefs and optionally the boolean attribute normalized (defaults to false=0). The
size must always be an odd number, and the Coefs must have Size * Size entries separated by spaces.

<KernelFilteredSource>
<SourceFilename>/debian/home/warmerda/openev/utm.tif</SourceFilename>
<SourceBand>1</SourceBand>
<Kernel normalized="1">
<Size>3</Size>
<Coefs>0.11111111 0.11211111 0.121111111 ©0.212212121111 ©0.211211111 0.211111111 0.11111111 0O0.111111
</Kernel>
</KernelFilteredSource>

2.3 .vrt Descriptions for Raw Files

So far we have described how to derive new virtual datasets from existing files supports by GDAL. How-
ever, it is also common to need to utilize raw binary raster files for which the regular layout of the data
is known but for which no format specific driver exists. This can be accomplished by writing a .vrt file
describing the raw file.

For example, the following .vrt describes a raw raster file containing floating point complex pixels in a file
called 12p3hhsso.img. The image data starts from the first byte (ImageOffset=0). The byte offset between
pixels is 8 (PixelOffset=8), the size of a CFloat32. The byte offset from the start of one line to the start of
the next is 9376 bytes (LineOffset=9376) which is the width (1172) times the size of a pixel (8).

2.3 .vrt Descriptions for Raw Files 9

<VRTDataset rasterXSize="1172" raster¥Size="1864">
<VRTRasterBand dataType="CFloat32" band="1" subClass="VRTRawRasterBand">
<SourceFilename relativetoVRT="1">12p3hhsso.img</SourceFilename>
<ImageOffset>0</ImageOffset>
<PixelOffset>8</PixelOffset>
<LineOffset>9376</LineOffset>
<ByteOrder>MSB</ByteOrder>
</VRTRasterBand>
</VRTDataset>

Some things to note are that the VRTRasterBand has a subClass specifier of "VRTRawRasterBand". Also,
the VRTRasterBand contains a number of previously unseen elements but no "source" information. VR-
TRawRasterBands may never have sources (ie. SimpleSource), but should contain the following elements
in addition to all the normal "metadata" elements previously described which are still supported.

* SourceFilename: The name of the raw file containing the data for this band. The relativeToVRT
attribute can be used to indicate if the SourceFilename is relative to the .vrt file (1) or not (0).

* ImageOffset: The offset in bytes to the beginning of the first pixel of data of this image band.
Defaults to zero.

 PixelOffset: The offset in bytes from the beginning of one pixel and the next on the same line. In
packed single band data this will be the size of the dataType in bytes.

* LineOffset: The offset in bytes from the beginning of one scanline of data and the next scanline of
data. In packed single band data this will be PixelOffset * rasterXSize.

* ByteOrder: Defines the byte order of the data on disk. Either LSB (Least Significant Byte first)
such as the natural byte order on Intel x86 systems or MSB (Most Significant Byte first) such as the
natural byte order on Motorola or Sparc systems. Defaults to being the local machine order.

A few other notes:

* The image data on disk is assumed to be of the same data type as the band dataType of the VR-
TRawRasterBand.

* All the non-source attributes of the VRTRasterBand are supported, including color tables, metadata,
nodata values, and color interpretation.

e The VRTRawRasterBand supports in place update of the raster, whereas the source based VR-
TRasterBand is always read-only.

* The OpenEV tool includes a File menu option to input parameters describing a raw raster file in a
GUI and create the corresponding .vrt file.

* Multiple bands in the one .vrt file can come from the same raw file. Just ensure that the ImageOffset,
PixelOffset, and LineOffset definition for each band is appropriate for the pixels of that particular
band.

Another example, in this case a 400x300 RGB pixel interleaved image.

<VRTDataset rasterXSize="400" raster¥YSize="300">
<VRTRasterBand dataType="Byte" band="1" subClass="VRTRawRasterBand">
<ColorInterp>Red</ColorInterp>
<SourceFilename relativetoVRT="1">rgb.raw</SourceFilename>
<ImageOffset>0</ImageOffset>
<PixelOffset>3</PixelOffset>
<LineOffset>1200</LineOffset>

10 GDAL Virtual Format Tutorial

</VRTRasterBand>

<VRTRasterBand dataType="Byte" band="2" subClass="VRTRawRasterBand">
<ColorInterp>Green</ColorInterp>
<SourceFilename relativetoVRT="1">rgb.raw</SourceFilename>
<ImageOffset>1</ImageOffset>
<PixelOffset>3</PixelOffset>
<LineOffset>1200</LineOffset>

</VRTRasterBand>

<VRTRasterBand dataType="Byte" band="3" subClass="VRTRawRasterBand">
<ColorInterp>Blue</ColorInterp>
<SourceFilename relativetoVRT="1">rgb.raw</SourceFilename>
<ImageOffset>2</ImageOffset>
<PixelOffset>3</PixelOffset>
<LineOffset>1200</LineOffset>

</VRTRasterBand>

</VRTDataset>

2.4 Programatic Creation of VRT Datasets

The VRT driver supports several methods of creating VRT datasets. As of GDAL 1.2.0 the vrtdataset.h
(p- ??) include file should be installed with the core GDAL include files, allowing direct access to the VRT
classes. However, even without that most capabilities remain available through standard GDAL interfaces.

To create a VRT dataset that is a clone of an existing dataset use the CreateCopy() method. For example to
clone utm.tif into a wrk.vrt file in C++ the following could be used:

GDALDriver xpoDriver = (GDALDriver x) GDALGetDriverByName ("VRT");
GDALDataset xpoSrcDS, *poVRIDS;

poSrcDS = (GDALDataset %) GDALOpenShared("utm.tif", GA_ReadOnly);

poVRTIDS =

poDriver->CreateCopy("wrk.vrt", poSrcDS, FALSE, NULL, NULL, NULL);
delete poVRTDS;
delete poSrcDS;

To create a virtual copy of a dataset with some attributes added or changed such as metadata or coordinate
system that are often hard to change on other formats, you might do the following. In this case, the virtual
dataset is created "in memory" only by virtual of creating it with an empty filename, and then used as a
modified source to pass to a CreateCopy() written out in TIFF format.

POVRIDS = poDriver->CreateCopy("", poSrcDS, FALSE, NULL, NULL, NULL);

PoVRIDS->SetMetadatalItem("SourceAgency", "United States Geological Survey");
POVRIDS->SetMetadataltem("SourceDate", "July 21, 2003");

POVRIDS->GetRasterBand(1)->SetNoDataValue(-999.0);

GDALDriver xpoTIFFDriver = (GDALDriver) GDALGetDriverByName ("GTiff");
GDALDataset »poTiffDS;

poTiffDS =
poTIFFDriver->CreateCopy ("wrk.tif", poVRTIDS, FALSE, NULL, NULL, NULL);
delete poTiffDS;

In this example a virtual dataset is created with the Create() method, and adding bands and sources pro-
grammatically, but still via the "generic" API. A special attribute of VRT datasets is that sources can be
added to the bands by passing the XML describing the source into SetMetadata() on the special domain
target "new_vrt_sources". The domain target "vrt_sources" may also be used, in which case any existing

2.4 Programatic Creation of VRT Datasets 11

sources will be discarded before adding the new ones. In this example we construct a simple averaging
filter source instead of using the simple source.

// construct XML for simple 3x3 average filter kernel source.
const char xpszFilterSourceXML =
"<KernelFilteredSource>"
" <SourceFilename>utm.tif</SourceFilename>1<SourceBand>1</SourceBand>"
" <Kernel>"
" <Size>3</Size>"
" <Coefs>0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111</Coefs>"
" </Kernel>"
"</KernelFilteredSource>";

// Create the virtual dataset.

POVRIDS = poDriver->Create("", 512, 512, 1, GDT_Byte, NULL);

POVRTDS->GetRasterBand (1) ->SetMetadataltem("source_0",pszFilterSourceXML",
"new_vrt_sources");

A more general form of this that will produce a 3x3 average filtered clone of any input datasource might
look like the following. In this case we deliberately set the filtered datasource as in the "vrt_sources"
domain to override the SimpleSource created by the CreateCopy() method. The fact that we used Create-
Copy() ensures that all the other metadata, georeferencing and so forth is preserved from the source dataset
... the only thing we are changing is the data source for each band.

int nBand;
GDALDriver xpoDriver = (GDALDriver =) GDALGetDriverByName ("VRT");
GDALDataset xpoSrcDS, *poVRIDS;

poSrcDS = (GDALDataset %) GDALOpenShared(pszSourceFilename, GA_ReadOnly);
POVRTIDS = poDriver->CreateCopy("", poSrcDS, FALSE, NULL, NULL, NULL);
for(nBand = 1; nBand <= poVRTDS->GetRasterCount (); nBand++)

{
char szFilterSourceXML[10000];

GDALRasterBand *poBand = poVRTDS->GetRasterBand(nBand);

sprintf (szFilterSourceXML,
"<KernelFilteredSource>"
" <SourceFilename>%$s</SourceFilename>1<SourceBand>%d</SourceBand>"
" <Kernel>"
" <Size>3</Size>"
" <Coefs>0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111</Coefs>"
" </Kernel>"
"</KernelFilteredSource>",
pszSourceFilename, nBand);

poBand->SetMetadataltem("source_0", szFilterSourceXML, "vrt_sources");

Using Derived Bands

A specialized type of band is a ’derived’ band which derives its pixel information from its source bands.
With this type of band you must also specify a pixel function, which has the responsibility of generating the
output raster. Pixel functions are created by an application and then registered with GDAL using a unique
key.

Using derived bands you can create VRT datasets that manipulate bands on the fly without having to create
new band files on disk. For example, you might want to generate a band using four source bands from a
nine band input dataset (x0, x3, x4, and x8):

12 GDAL Virtual Format Tutorial

band_value = sqgrt ((x3*x3+x4*x4)/(x0%x8));

You could write the pixel function to compute this value and then register it with GDAL with the name
"MyFirstFunction". Then, the following VRT XML could be used to display this derived band:

<VRTDataset rasterXSize="1000" rasterY¥YSize="1000">
<VRTRasterBand dataType="Float32" band="1" subClass="VRTDerivedRasterBand">>
<Description>Magnitude</Description>
<PixelFunctionType>MyFirstFunction</PixelFunctionType>
<SimpleSource>
<SourceFilename relativeToVRT="1">nine_band.dat</SourceFilename>
<SourceBand>1</SourceBand>
<SrcRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
<DstRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
</SimpleSource>
<SimpleSource>
<SourceFilename relativeToVRT="1">nine_band.dat</SourceFilename>
<SourceBand>4</SourceBand>
<SrcRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
<DstRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
</SimpleSource>
<SimpleSource>
<SourceFilename relativeToVRT="1">nine_band.dat</SourceFilename>
<SourceBand>5</SourceBand>
<SrcRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
<DstRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
</SimpleSource>
<SimpleSource>
<SourceFilename relativeToVRT="1">nine_band.dat</SourceFilename>
<SourceBand>9</SourceBand>
<SrcRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
<DstRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
</SimpleSource>
</VRTRasterBand>
</VRTDataset>

In addition to the subclass specification (VRTDerivedRasterBand) and the PixelFunctionType value, there
is another new parameter that can come in handy: SourceTransferType. Typically the source rasters are
obtained using the data type of the derived band. There might be times, however, when you want the
pixel function to have access to higher resolution source data than the data type being generated. For ex-
ample, you might have a derived band of type "Float", which takes a single source of type "CFloat32"
or "CFloat64", and returns the imaginary portion. To accomplish this, set the SourceTransferType to
"CFloat64". Otherwise the source would be converted to "Float" prior to calling the pixel function, and the
imaginary portion would be lost.

<VRTDataset rasterXSize="1000" raster¥Size="1000">
<VRTRasterBand dataType="Float32" band="1" subClass="VRTDerivedRasterBand">>
<Description>Magnitude</Description>
<PixelFunctionType>MyFirstFunction</PixelFunctionType>
<SourceTransferType>"CFloat64"</SourceTransferType>

Writing Pixel Functions
To register this function with GDAL (prior to accessing any VRT datasets with derived bands that use
this function), an application calls GDALAddDerivedBandPixelFunc with a key and a GDALDerivedPix-

elFunc:

GDALAddDerivedBandPixelFunc ("MyFirstFunction"”, TestFunction);

2.4 Programatic Creation of VRT Datasets 13

A good time to do this is at the beginning of an application when the GDAL drivers are registered.

GDALDerivedPixelFunc is defined with a signature similar to IRasterIO:

Parameters:
papoSources A pointer to packed rasters; one per source. The datatype of all will be the same, speci-
fied in the eSrcType parameter.
nSources The number of source rasters.

pData The buffer into which the data should be read, or from which it should be written. This buffer
must contain at least nBufXSize * nBufYSize words of type eBufType. It is organized in left
to right, top to bottom pixel order. Spacing is controlled by the nPixelSpace, and nLineSpace
parameters.

nBufXSize The width of the buffer image into which the desired region is to be read, or from which
it is to be written.

nBufYSize The height of the buffer image into which the desired region is to be read, or from which
it is to be written.

eSrcType The type of the pixel values in the papoSources raster array.
eBufType The type of the pixel values that the pixel function must generate in the pData data buffer.

nPixelSpace The byte offset from the start of one pixel value in pData to the start of the next pixel
value within a scanline. If defaulted (0) the size of the datatype eBufType is used.

nLineSpace The byte offset from the start of one scanline in pData to the start of the next.

Returns:

CE_Failure on failure, otherwise CE_None.

typedef CPLErr

(*GDALDerivedPixelFunc) (void **papoSources, int nSources, void =*pData,
int nXSize, int nY¥Size,
GDALDataType eSrcType, GDALDataType eBufType,
int nPixelSpace, int nLineSpace);

The following is an implementation of the pixel function:

#include "gdal.h"

CPLErr TestFunction (void **papoSources, int nSources, void xpData,
int nXSize, int nYSize,
GDALDataType eSrcType, GDALDataType eBufType,
int nPixelSpace, int nLineSpace)

int ii, iLine, iCol;
double pix_val;
double x0, x3, x4, x8;

/* ———— Init —--——— x/
if (nSources != 4) return CE_Failure;
/* ———— Set pixels ———— x/
for(ilLine = 0; iLine < n¥Size; iLine++) {
for(iCol = 0; iCol < nXSize; 1iCol++) {
ii = iLine * nXSize + iCol;

/* Source raster pixels may be obtained with SRCVAL macro =/
x0 = SRCVAL (papoSources[0], eSrcType, 1ii);
x3 SRCVAL (papoSources[1l], eSrcType, ii);

GDAL Virtual Format Tutorial

x4 = SRCVAL (papoSources([2], eSrcType, 1ii);
x8 = SRCVAL (papoSources[3], eSrcType, 1ii);

pix_val = sqgrt ((x3+*x3+x4*x4)/(x0xx8));

GDALCopyWords (&pix_val, GDT_Floaté4, O,
((GByte x)pData) + nLineSpace % iLine +
iCol » nPixelSpace, eBufType, nPixelSpace, 1);

/* —-—-—-— Return success ———- */
return CE_None;

Chapter 3

Sponsors, Acknowledgements and
Credits

16 Sponsors, Acknowledgements and Credits

There are too many people who have helped since GDAL/OGR was launched in late 1998 for me to thank
them all. T have received moral support, financial support, code contributions, sample datasets, and bug
reports from literally hundreds of people. However, below I would like to single out a few people and
organizations who have supported GDAL over the years. Forgive me for all those I left out.

Frank Warmerdam

3.1 Sponsorship

Sponsors help fund maintenance, development and promotion of GDAL/OGR. If your organization de-
pends on GDAL/OGR consider becoming a sponsor.

3.1.1 Silver Sponsors

3.1.2 Other Sponsors

* MicroImages Inc.

3.1.3 Past Sponsors

3.2 Personal

¢ Andrey Kiselev: my right hand man on GDAL for several years. He is primarily responsible for the
HDF, MrSID, L1B, and PCIDSK drivers. He has also relieved me of most libtiff maintenance work.

* Daniel Morissette: for his key contributions to CPL library, and development of the Mapinfo TAB
translator.

* Howard Butler: for substantial improvements to the python bindings.

* Ken Shih: for the bulk of the implementation of the OLE DB provider.

* Markus Neteler: for various contributions to GDAL documentation and general supportiveness.

* Silke Reimer: for work on Debian, and RPM packaging as well as the GDAL man pages.

¢ Alessandro Amici: for work on configuration and build system, and for the initial Debian packaging.
» Stephane Villeneuve: for development of the Mapinfo MIF translator.

e Marin Byrne: for producing the current GDAL icon set (based on the earlier version by Martin
Daly).

* Darek Krawczyk: for producing design of the GDAL Team Member t-shirt (based on Marin’s
and Martin’s graphics).

3.3 Corporate

* Applied Coherent Technologies: Supported implementation of the GDAL contour gen-
erator, as well as various improvements to HDF drivers.

3.3 Corporate 17

* Atlantis Scientific: Supported the development of the CEOS, and a variety of other radar
oriented format drivers as well as development of OpenEV, my day-to-day GDAL image viewer.

* A.U.G. Signals: Supported work on the HDF, NITF and ODBC drivers.

* Avenza Systems: Supported development of dgnlib, the basis of OGR dgn support, as well as
preliminary work on image warping in GDAL.

* Cadcorp: Supported development of the Virtual Warped Raster capability.

* DM Solutions Group: Supported the development of the DGN driver, the OGR Arc/Info Bi-
nary Coverage driver, OGR WCTS (Web Coordinate Transformation Server), OGR VRT driver,
ODBC driver, MySQL driver, SQLite driver, OGR JOIN and OGR C APIL.

* Geological Survey of Canada, Natural Resources Canada: Supported the initial develop-
ment of the ArcSDE raster driver.

* 0SGIS and the Geo-Information and ICT Department of the Ministry of Transport, Public Works
and Water Management: Funded the DWG/DXF writing driver in OGR.

* Geosoft: Supported improvements to libtiff (RGBA Strip/Tile access), and the Arc/Info Binary
Grid driver.

* GeoTango: Supported OGR Memory driver, Virtual Raster Filtering, and NITF RPC capabilities.
e i-cubed: Supported the MrSID driver.

* Intergraph: Supported development of the Erdas Imagine driver.

* Keyhole: Supported development of Erdas Imagine driver, and the GDAL Warp API.

* OPeNDAP: Supported development of the OGR OPeNDAP Driver.

* PCI Geomatics: Supported development of the JPEG2000 (JP2KAK) driver.

* Pixia: Supported NITF/JPEG2000 read support.

* UN FAO: Supported development of the IDA (WinDisp) driver, and GDAL VB6 bindings.

* SoftMap: Supported initial development of OGR as well as the OGR Maplnfo integration.

* SRC: Supported development of the OGR OCI (Oracle Spatial) driver.

e Safe Software: Supported development of the OGR OLE DB provider, TIGER/Line driver,
S-57 driver, DTED driver, FMEODbjects driver, SDTS driver and NTF driver.

* Yukon Department of the Environment: Supported development of CDED / USGS
DEM Writer.

18

Sponsors, Acknowledgements and Credits

Chapter 4

GDAL Downloads

20 GDAL Downloads

This page has been moved to the wiki with a topic on downloading binaries (pre-built
executables and a topic on downloading source.

Chapter 5

Simple C Example: gdalinfo.c

22 Simple C Example: gdalinfo.c

/**

* $Id: gdalinfo.c 12555 2007-10-27 12:58:01Z rouault $

Project: GDAL Utilities
Purpose: Commandline application to list info about a file.
Author: Frank Warmerdam, warmerdam@pobox.com

LR R R I I R I R I I I I I

Copyright (c) 1998, Frank Warmerdam

*

*

*

*

*

*

*

*

* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the

* Software is furnished to do so, subject to the following conditions:

*
*
*
*
*
*
*
*
*
*
*
*

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

***/

#include "gdal.h"

#include "gdal_alg.h"
#include "ogr_srs_api.h"
#include "cpl_string.h"
#include "cpl_conv.h"
#include "cpl_multiproc.h"

CPL_CVSID("$Id: gdalinfo.c 12555 2007-10-27 12:58:01Z rouault $");

static int

GDALInfoReportCorner (GDALDatasetH hDataset,
OGRCoordinateTransformationH hTransform,
const char % corner_name,
double x, double y);

/**/
/* Usage () */

/**/
void Usage ()
printf ("Usage: gdalinfo [--help-general] [-mm] [-stats] [-nogcp] [-nomd]\n"

" [-noct] [-checksum] [-mdd domain]* datasetname\n");
exit(1);

/****k**k*k‘k‘k‘k************‘k*********************k*k*k*k‘k‘k**********************k/
/ % main () */

/**/

int main(int argc, char *x argv)

GDALDatasetH hDataset;
GDALRasterBandH hBand;
int i, iBand;

double adfGeoTransform([6];

23

GDALDriverH hDriver;

char **papszMetadata;

int bComputeMinMax = FALSE, bSample = FALSE;

int bShowGCPs = TRUE, bShowMetadata = TRUE ;

int bStats = FALSE, bApproxStats = TRUE, iMDD;

int bShowColorTable = TRUE, bComputeChecksum = FALSE;
const char *pszFilename = NULL;

char *xpapszExtraMDDomains NULL, =*xpapszFileList;

const char xpszProjection = NULL;
OGRCoordinateTransformationH hTransform

NULL;
GDALAllRegister () ;

argc = GDALGeneralCmdLineProcessor (argc, &argv, 0);
if(arge < 1)
exit (—argc);

if (EQUAL(argv[i], "-mm"))
bComputeMinMax = TRUE;
else if(EQUAL(argv[i], "-stats"))
{
bStats = TRUE;
bApproxStats = FALSE;
}
else if(EQUAL(argv[i], "-approx_stats"))
{
bStats = TRUE;
bApproxStats = TRUE;
}
else if(EQUAL(argv[i], "-sample"))
bSample = TRUE;
else if (EQUAL (argv[i], "-checksum"))
bComputeChecksum = TRUE;
else if(EQUAL(argv[i], "-nogcp"))
bShowGCPs = FALSE;
else if (EQUAL(argv[i], "-nomd"))
bShowMetadata = FALSE;
else if(EQUAL(argv[i], "-noct"))
bShowColorTable = FALSE;
else if(EQUAL(argv[i], "-mdd") && i < argc-1)
papszExtraMDDomains = CSLAddString(papszExtraMDDomains,
argv[++i]);
else if(argv[i][0] == "-")
Usage () ;
else if(pszFilename == NULL)
pszFilename = argv[i];
else
Usage () ;

if(pszFilename == NULL)
Usage () ;

hDataset = GDALOpen(pszFilename, GA_ReadOnly);

if (hDataset == NULL)
{
fprintf (stderr,
"gdalinfo failed - unable to open ’'%s’.\n",

24

Simple C Example: gdalinfo.c

pszFilename);
CSLDestroy (argv);
GDALDumpOpenDatasets (stderr);
GDALDestroyDriverManager () ;

CPLDumpSharedList (NULL) ;

hDriver = GDALGetDatasetDriver (hDataset);

printf("Driver: %s/%s\n",
GDALGetDriverShortName (hDriver),
GDALGetDriverLongName (hDriver));

papszFileList = GDALGetFilelList (hDataset);
if (CSLCount (papszFilelList) == 0)
{
printf("Files: none associated\n");
}
else
{
printf("Files: %s\n", papszFileList[0]);
for(i = 1; papszFileList[i] != NULL; i++)
printf(" %s\n", papszFileList[i]);
}
CSLDestroy (papszFileList);

printf("Size is %d, %d\n",
GDALGetRasterXSize (hDataset),
GDALGetRasterYSize (hDataset));

if (GDALGetProjectionRef (hDataset) != NULL)

OGRSpatialReferenceH hSRS;
char *pszProjection;

pszProjection = (char %) GDALGetProjectionRef (hDataset);

hSRS = OSRNewSpatialReference (NULL) ;

if (OSRImportFromWkt (hSRS, &pszProjection) == CE_None)

{
char *pszPrettyWkt = NULL;
OSRExportToPrettyWkt (hSRS, &pszPrettyWkt, FALSE);
printf("Coordinate System is:\n%s\n", pszPrettyWkt);
CPLFree(pszPrettyWkt);

}

else
printf("Coordinate System is ‘%s’\n",

GDALGetProjectionRef (hDataset));

OSRDestroySpatialReference (hSRS);

25

if (GDALGetGeoTransform(hDataset, adfGeoTransform) == CE_None)
{
if (adfGeoTransform[2] == 0.0 && adfGeoTransform[4] == 0.0)
{
printf("Origin = (%.15f,%.15f)\n",
adfGeoTransform[0], adfGeoTransform[3]);

printf("Pixel Size =

($.15f,%.15f)\n",
adfGeoTransform[1]

, adfGeoTransform([5]);
}
else
printf ("GeoTransform =\n"
" %.l6g, %.l6g,
" %.l6g, %.l6g,
adfGeoTransform[0
adfGeoTransform([1
adfGeoTransform[2],
[3
[
[

.16g\n"
.16g\n",

1,
]
]

o

’

adfGeoTransform[3],
adfGeoTransform[4],
adfGeoTransform[5]);

if (bShowGCPs && GDALGetGCPCount (hDataset) > 0)
{
printf ("GCP Projection = %$s\n", GDALGetGCPProjection (hDataset));
for(i = 0; 1 < GDALGetGCPCount (hDataset); i++)
{
const GDAL_GCP *psGCP;

psGCP

GDALGetGCPs (hDataset) + i;

printf("GCP[%3d]: Id=%s, Info=%s\n"
" (%.159,%.159) -> (%.159,%.159,%.159)\n",
i, psGCP->pszId, psGCP->pszInfo,
psGCP->dfGCPPixel, psGCP->dfGCPLine,
psGCP->dfGCPX, psGCP->dfGCPY, psGCP->dfGCPZ);

papszMetadata = GDALGetMetadata(hDataset, NULL);
if (bShowMetadata && CSLCount (papszMetadata) > 0)
{

printf ("Metadata:\n");

for(i = 0; papszMetadata[i] != NULL; i++)
{
printf(" $%$s\n", papszMetadatali]);

for(iMDD = 0; iMDD < CSLCount (papszExtraMDDomains); iMDD++)
{
papszMetadata = GDALGetMetadata (hDataset, papszExtraMDDomains|[iMDD]
if (bShowMetadata && CSLCount (papszMetadata) > 0)
{
printf ("Metadata (%s):\n", papszExtraMDDomains[iMDD]) ;
for(i = 0; papszMetadata[i] != NULL; i++)
{
printf(" $%$s\n", papszMetadatal[i]);

26 Simple C Example: gdalinfo.c

K e */
/ * Report "IMAGE_STRUCTURE" metadata. */
. *x/

papszMetadata = GDALGetMetadata (hDataset, "IMAGE_STRUCTURE");
if (bShowMetadata && CSLCount (papszMetadata) > 0)
{

printf("Image Structure Metadata:\n");

for(i = 0; papszMetadata[i] != NULL; i++)
{
printf(" $%$s\n", papszMetadatali]);
}
}

e *x/
/ * Report subdatasets. */
ok */

papszMetadata = GDALGetMetadata (hDataset, "SUBDATASETS");
if (CSLCount (papszMetadata) > 0)
{

printf ("Subdatasets:\n");

for(i = 0; papszMetadata[i] != NULL; i++)
{
printf(" $%$s\n", papszMetadatali]);
}
}

[k */
/% Report geolocation. */
K */

papszMetadata = GDALGetMetadata(hDataset, "GEOLOCATION");
if (CSLCount (papszMetadata) > 0)
{

printf("Geolocation:\n");
for(i = 0; papszMetadata[i] != NULL; i++)
{
printf(" $%$s\n", papszMetadatal[i]);
}
}
K e */
/ * Setup projected to lat/long transform if appropriate. */
ok *x/
if (GDALGetGeoTransform(hDataset, adfGeoTransform) == CE_None)

pszProjection = GDALGetProjectionRef (hDataset) ;

if(pszProjection != NULL && strlen(pszProjection) > 0)

OGRSpatialReferenceH hProj, hLatLong = NULL;

hProj = OSRNewSpatialReference(pszProjection);
if(hProj != NULL)
hLatLong = OSRCloneGeogCS(hProj);

if (hLatLong != NULL)

{
CPLPushErrorHandler (CPLQuietErrorHandler);
hTransform = OCTNewCoordinateTransformation(hProj, hLatLong);
CPLPopErrorHandler () ;

OSRDestroySpatialReference(hLatLong);

if (hProj != NULL)
OSRDestroySpatialReference(hProj);

27

/ *
/*
/%

printf ("Corner Coordinates:\n");

GDALInfoReportCorner (hDataset, hTransform, "Upper Left",
0.0, 0.0);

GDALInfoReportCorner (hDataset, hTransform, "Lower Left",
0.0, GDALGetRasterYSize (hDataset));

GDALInfoReportCorner (hDataset, hTransform, "Upper Right",
GDALGetRasterXSize (hDataset), 0.0);

GDALInfoReportCorner (hDataset, hTransform, "Lower Right",
GDALGetRasterXSize (hDataset),
GDALGetRasterYSize (hDataset));

GDALInfoReportCorner (hDataset, hTransform, "Center",
GDALGetRasterXSize (hDataset) /2.0,
GDALGetRasterYSize (hDataset) /2.0);

if(hTransform != NULL)

{
OCTDestroyCoordinateTransformation(hTransform);
hTransform = NULL;

*/

Loop over bands. */

*/
for(iBand = 0; iBand < GDALGetRasterCount (hDataset); iBand++)
{

double dfMin, dfMax, adfCMinMax[2], dfNoData;

int bGotMin, bGotMax, bGotNodata, bSuccess;

int nBlockXSize, nBlockYSize, nMaskFlags;

double dfMean, dfStdDev;

GDALColorTableH hTable;

CPLErr eErr;

hBand = GDALGetRasterBand(hDataset, iBand+1l);

if (bSample)

{
float afSample[10000];
int nCount;

nCount = GDALGetRandomRasterSample(hBand, 10000, afSample);
printf ("Got %d samples.\n", nCount);

GDALGetBlockSize (hBand, &nBlockXSize, &nBlockYSize);
printf ("Band %$d Block=%dx%d Type=%s, ColorInterp=%s\n", iBand+l,
nBlockXSize, nBlockYSize,
GDALGetDataTypeName (
GDALGetRasterDataType (hBand)),
GDALGetColorInterpretationName (
GDALGetRasterColorInterpretation (hBand)));

if (GDALGetDescription(hBand) != NULL
&& strlen (GDALGetDescription(hBand)) > 0)
printf(" Description = $s\n", GDALGetDescription (hBand));

dfMin = GDALGetRasterMinimum(hBand, &bGotMin);
dfMax = GDALGetRasterMaximum(hBand, &bGotMax);

if(bGotMin || bGotMax || bComputeMinMax)
{
printf(" "),
if (bGotMin)
printf("Min=%.3f ", dfMin);

if (bGotMax)
printf ("Max=%.3f ", dfMax);

Simple C Example: gdalinfo.c

if (bComputeMinMax)
{
GDALComputeRasterMinMax (hBand, FALSE, adfCMinMax);
printf(" Computed Min/Max=%.3f,%.3f",
adfCMinMax[0], adfCMinMax[1l]);

printf ("\n");

eErr = GDALGetRasterStatistics(hBand, bApproxStats, bStats,
&dfMin, &dfMax, &dfMean, &dfStdDev);
if(eErr == CE_None)
{
printf(" Minimum=%.3f, Maximum=%.3f, Mean=%.3f, StdDev=%.3f\n",
dfMin, dfMax, dfMean, dfStdDev);

if (bComputeChecksum)
{
printf(" Checksum=%d\n",
GDALChecksumImage (hBand, 0, O,
GDALGetRasterXSize (hDataset),
GDALGetRasterYSize (hDataset)));

dfNoData = GDALGetRasterNoDataValue (hBand, &bGotNodata);
1if (bGotNodata)

{
printf(" NoData Value=%.18g\n", dfNoData);

if (GDALGetOverviewCount (hBand) > 0)
{

int iOverview;

printf(" Overviews: ");

for(iOverview = 0;
iOverview < GDALGetOverviewCount (hBand) ;
iOverview++)

GDALRasterBandH hOverview;
const char *pszResampling = NULL;

if(iOverview != 0)
printf(", ");

hOverview = GDALGetOverview (hBand, iOverview);
printf ("$dx%d",
GDALGetRasterBandXSize (hOverview),

GDALGetRasterBandYSize (hOverview));
pszResampling =
GDALGetMetadatalItem(hOverview, "RESAMPLING", "");
if (pszResampling != NULL

&& EQUALN (pszResampling, "AVERAGE_BIT2",12))
printf("x");

}

printf("\n");

if (GDALHasArbitraryOverviews (hBand))
{

printf(" Overviews: arbitrary\n");

29

nMaskFlags = GDALGetMaskFlags (hBand);

1f(
{

1f(

(nMaskFlags & (GMF_NODATA|GMF_ALL_VALID)) == 0)

printf(" Mask Flags: ");

if (nMaskFlags & GMF_PER_DATASET)
printf ("PER_DATASET ");

if (nMaskFlags & GMF_ALPHA)

printf("ALPHA ");
if (nMaskFlags & GMF_NODATA)
printf ("NODATA ");

if (nMaskFlags & GMF_ALL_VALID)
printf("ALL_VALID ");
printf ("\n");

strlen (GDALGetRasterUnitType (hBand)) > 0)

printf(" Unit Type: %$s\n", GDALGetRasterUnitType (hBand));
GDALGetRasterCategoryNames (hBand) != NULL)

char x*papszCategories = GDALGetRasterCategoryNames (hBand) ;
int i;

printf(" Categories:\n");
for(i = 0; papszCategories[i] != NULL; i++)
printf(" %3d: %s\n", i, papszCategories[i]);

GDALGetRasterScale (hBand, &bSuccess) != 1.0

| | GDALGetRasterOffset (hBand, &bSuccess) != 0.0)

printf(" Offset: %.15g, Scale:%$.15g\n",
GDALGetRasterOffset (hBand, &bSuccess),
GDALGetRasterScale(hBand, &bSuccess));

papszMetadata = GDALGetMetadata (hBand, NULL);

1f(
{

bShowMetadata && CSLCount (papszMetadata) > 0)

printf(" Metadata:\n");
for(i = 0; papszMetadata[i] != NULL; i++)
{

printf(" %$s\n", papszMetadatali]);

papszMetadata = GDALGetMetadata (hBand, "IMAGE_STRUCTURE");

1f(
{

1f(

bShowMetadata && CSLCount (papszMetadata) > 0)

printf(" Image Structure Metadata:\n");
for(i = 0; papszMetadata[i] != NULL; i++)
{
printf(" %s\n", papszMetadatali]);
}
GDALGetRasterColorInterpretation (hBand) == GCI_PalettelIndex
&& (hTable = GDALGetRasterColorTable(hBand)) != NULL)
int i;
printf(" Color Table (%s with %d entries)\n",

GDALGetPaletteInterpretationName (
GDALGetPaletteInterpretation(hTable)),
GDALGetColorEntryCount (hTable));

30 Simple C Example: gdalinfo.c

if (bShowColorTable)
{
for(i = 0; 1 < GDALGetColorEntryCount (hTable); i++)

{
GDALColorEntry sEntry;

GDALGetColorEntryAsRGB(hTable, i, &sEntry);

printf(" $3d: %d,%d,%d,%d\n",
ir
sEntry.cl,
sEntry.c2,
sEntry.c3,
sEntry.c4d);
}
}
}
if (GDALGetDefaultRAT(hBand) != NULL)

{
GDALRasterAttributeTableH hRAT = GDALGetDefaultRAT (hBand);

GDALRATDumpReadable (hRAT, NULL);

GDALClose (hDataset);

CSLDestroy (papszExtraMDDomains);
CSLDestroy (argv);

GDALDumpOpenDatasets (stderr);
GDALDestroyDriverManager () ;

CPLDumpSharedList (NULL) ;
CPLCleanupTLS();

exit(0);

/% ok % ok ko ko ko ko kK kK ok Kk Kk ko ko ok ok ko ok ok ko ok K ko Rk ko ok ok ok kR ok ko ko kK kR k ke k ke ok ok kR kK ok ok ok ok ok ok /)

/* GDALInfoReportCorner () */

/**********'k*~k*********'k'k*~k~k********'k'k**~k********************************/

static int

GDALInfoReportCorner (GDALDatasetH hDataset,
OGRCoordinateTransformationH hTransform,
const char * corner_name,
double x, double y)

double dfGeoX, dfGeoY;

double adfGeoTransform[6];

printf("$-11s ", corner_name);
K e */
/* Transform the point into georeferenced coordinates. */
Y *x/

if (GDALGetGeoTransform(hDataset, adfGeoTransform) == CE_None)

{
dfGeoX = adfGeoTransform[0] + adfGeoTransform[l] * X

+ adfGeoTransform[2] *x y;
dfGeoY = adfGeoTransform[3] + adfGeoTransform[4] * X
+ adfGeoTransform([5] * y;

31

else

printf("(%7.1f,%7.1f)\n", x, v);
return FALSE;

if (ABS(dfGeoX) < 181 && ABS (dfGeoY) < 91)

printf("(%12.7f£,%12.7f) ", dfGeoX, dfGeoY);
}
else
{

printf("(%12.3£f,%12.3f) ", dfGeoX, dfGeoY);

if (hTransform != NULL
&& OCTTransform (hTransform, 1, &§&dfGeoX, &§&dfGeoY, NULL)

printf("(%s,", GDALDecToDMS (dfGeoX, "Long"

r2)
printf("%s)", GDALDecToDMS(dfGeoY, "Lat", 2)

) i

printf ("\n");

return TRUE;

)

)

*/
*/
*/

*/
*/

32

Simple C Example: gdalinfo.c

Chapter 6

Standard Driver Registration:
gdalallregister.cpp

34 Standard Driver Registration: gdalallregister.cpp

/**

* $Id: gdalallregister.cpp 13124 2007-11-28 00:08:49Z pvachon $

Project: GDAL Core
Purpose: Implementation of GDALAllRegister (), primary format registration.
Author: Frank Warmerdam, warmerdam@pobox.com

LR R R R R I R R R I R R I I I

Copyright (c) 1998, Frank Warmerdam

*

*

*

*

*

*

*

*

* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the

* Software is furnished to do so, subject to the following conditions:

*
*
*
*
*
*
*
*
*
*
*
*

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

***/

#include "gdal_priv.h"
#include "gdal_frmts.h"

CPL_CVSID("$Id: gdalallregister.cpp 13124 2007-11-28 00:08:49Z pvachon $");
#ifdef notdef

// we may have a use for this some day

static char *szConfiguredFormats = "GDAL_FORMATS";

#endif

/**/

/ * GDALAllRegister () %/
/* */
/% Register all identifiably supported formats. x/

/**/

void CPL_STDCALL GDALAllRegister ()

GetGDALDriverManager () —>AutoLoadDrivers () ;

#ifdef FRMT_vrt
GDALRegister_VRT () ;
#endif

#ifdef FRMT_gdb
GDALRegister_GDB();
#endif

#ifdef FRMT_gtiff
GDALRegister_ GTiff ();
#endif

#ifdef FRMT_nitf
GDALRegister NITF () ;
GDALRegister_RPFTOC() ;

#endif

35

#ifdef FRMT_hfa
GDALRegister_ HFA();
#endif

#ifdef FRMT_ceos?2
GDALRegister_ SAR_CEOS();
#endif

#ifdef FRMT_ceos
GDALRegister_CEOS();
#endif

#ifdef FRMT_jaxapalsar
GDALRegister_ PALSARJaxa () ;
#endif

#ifdef FRMT_gff
GDALRegister_ GFF () ;
#endif

#ifdef FRMT_elas
GDALRegister_ELAS();
#endif

#ifdef FRMT_aigrid

// GDALRegister_AIGrid2();
GDALRegister_ AIGrid();

#endif

#ifdef FRMT_aaigrid
GDALRegister_ AAIGrid();
#endif

#ifdef FRMT_sdts
GDALRegister_SDTS () ;
#endif

#ifdef FRMT_ogdi
GDALRegister_OGDI () ;
#endif

#ifdef FRMT_dted
GDALRegister_ DTED() ;
#endif

#ifdef FRMT_png
GDALRegister_ PNG () ;
#endif

#ifdef FRMT_jpeg
GDALRegister_JPEG() ;
#endif

#ifdef FRMT_mem
GDALRegister MEM() ;
#endif

#ifdef FRMT_ jdem
GDALRegister_ JDEM() ;
#endif

#ifdef FRMT_gif
GDALRegister_GIF () ;
#endif

#ifdef FRMT_envisat
GDALRegister_Envisat ();

36

Standard Driver Registration: gdalallregister.cpp

#endif

#ifdef FRMT_fits
GDALRegister_ FITS();
#endif

#ifdef FRMT_bsb
GDALRegister_BSB();
#endif

#ifdef FRMT_xpm
GDALRegister_ XPM() ;
#endif

#ifdef FRMT_bmp
GDALRegister_BMP () ;
#endif

#ifdef FRMT_dimap
GDALRegister_ DIMAP () ;
#endif

#ifdef FRMT_airsar
GDALRegister_ AirSAR();
#endif

#ifdef FRMT_rs2
GDALRegister_RS2();
#endif

#ifdef FRMT_pcidsk
GDALRegister_PCIDSK();
#endif

#ifdef FRMT_pcraster
GDALRegister_PCRaster();
#endif

#ifdef FRMT_ilwis
GDALRegister ILWIS();
#endif

#ifdef FRMT_sgi
GDALRegister_SGI();
#endif

#ifdef FRMT_srtmhgt
GDALRegister_SRTMHGT () ;
#endif

#ifdef FRMT_leveller
GDALRegister_Leveller();
#endif

#ifdef FRMT_terragen
GDALRegister_Terragen();
#endif

#ifdef FRMT_netcdf
GDALRegister_GMT () ;
GDALRegister_netCDF () ;

#endif

#ifdef FRMT_hdf4
GDALRegister_HDF4 () ;

GDALRegister_HDF4Image () ;

#endif

#ifdef FRMT_raw
GDALRegister_PNM();
GDALRegister_DOQ1 () ;
GDALRegister_DOQ2 () ;
GDALRegister_ ENVI();
GDALRegister_EHdr () ;
GDALRegister_GenBin();
GDALRegister_PAux();
GDALRegister_ MFF () ;
GDALRegister_ HKV () ;
GDALRegister_FujiBAS();
GDALRegister_GSC () ;
GDALRegister_ FAST();
GDALRegister_ BT () ;
GDALRegister_ LAN() ;
GDALRegister_CPG () ;
GDALRegister_ IDA();
GDALRegister_ NDF () ;
GDALRegister_ DIPEx();

#endif

#ifdef FRMT_pds
GDALRegister_ ISIS3();
GDALRegister_ISIS2();
GDALRegister_PDS () ;

#endif

#ifdef FRMT_ers
GDALRegister_ERS () ;
#endif

#ifdef FRMT_jp2kak

// JPEG2000 support using Kakadu toolkit
GDALRegister_JP2KAK() ;

#endif

#ifdef FRMT_ecw
GDALRegister_ ECW() ;
GDALRegister_ JP2ECW() ;

#endif

#ifdef FRMT_Jjpeg2000

// JPEG2000 support using JasPer toolkit

// This one should always be placed after other JasPer supported formats,

// such as BMP or PNM. In other case we will get bad side effects.
GDALRegister_ JPEG2000 () ;

#endif

#ifdef FRMT_11b
GDALRegister_ L1B();
#endif

#ifdef FRMT_fit
GDALRegister_ FIT();
#endif

#ifdef FRMT_grib
GDALRegister_ GRIB();
#endif

#ifdef FRMT_mrsid
GDALRegister MrSID();
#endif

#ifdef FRMT_rmf
GDALRegister_ RMF () ;

38

Standard Driver Registration: gdalallregister.cpp

#endif

#ifdef FRMT_wcs
GDALRegister_WCS () ;
#endif

#ifdef FRMT_wms
GDALRegister_ WMS () ;
#endif

#ifdef FRMT_sde
GDALRegister_SDE () ;
#endif

#ifdef FRMT_msgn
GDALRegister_ MSGN() ;
#endif

#ifdef FRMT_idrisi

GDALRegister_ IDRISI();

#endif

#ifdef FRMT_ingr
GDALRegister_INGR();
#endif

#ifdef FRMT_gsg
GDALRegister_GSAG();
GDALRegister_GSBG() ;

GDALRegister_GS7BG () ;

#endif

#ifdef FRMT_cosar

GDALRegister_COSAR() ;

#endif

#ifdef FRMT_tsx

GDALRegister_ TSX();

#endif

#ifdef FRMT_coasp

GDALRegister_ COASP () ;

#endif

ok e */
/ * Our test for the following is weak or expensive so we try */
/* them last. */
Y T —— *x/

#ifdef FRMT_rik
GDALRegister_RIK();
#endif

#ifdef FRMT_usgsdem

GDALRegister_USGSDEM() ;

#endif

#ifdef FRMT_gxf
GDALRegister_GXF () ;

#endif

#ifdef FRMT_grass

GDALRegister_GRASS () ;

#endif

#ifdef FRMT_dods

GDALRegister_DODS() ;
#endif

#ifdef FRMT_wcs
GDALRegister_ HTTP () ;
#endif

#ifdef FRMT_hdf5
GDALRegister_HDF5();
GDALRegister_HDF5Image () ;

#endif

#ifdef FRMT_adrg
GDALRegister_ADRG() ;

#endif

K e */
/* Deregister any drivers explicitly marked as supressed by the */
/ * GDAL_SKIP environment variable. */
[k */

GetGDALDriverManager () -—>AutoSkipDrivers () ;

40

Standard Driver Registration: gdalallregister.cpp

Chapter 7

Sample Driver: jdemdataset.cpp

42 Sample Driver: jdemdataset.cpp

/**

* $Id: jdemdataset.cpp 10645 2007-01-18 02:22:39Z warmerdam $

Project: JDEM Reader
Purpose: All code for Japanese DEM Reader
Author: Frank Warmerdam, warmerdam@pobox.com

LR R R R R I R R R I R R I I I
Copyright (c) 2000, Frank Warmerdam <warmerdam@pobox.com>

*

*

*

*

*

*

*

*

* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the

* Software is furnished to do so, subject to the following conditions:

*
*
*
*
*
*
*
*
*
*
*
*

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

***/
#include "gdal_pam.h"
CPL_CVSID("$Id: jdemdataset.cpp 10645 2007-01-18 02:22:39Z warmerdam $");
CPL_C_START
void GDALRegister_JDEM (void) ;
CPL_C_END
/**/
/ * JDEMGetField () %/

/**/

static int JDEMGetField(char *pszField, int nWidth)

char szWork [32];
CPLAssert (nWidth < (int) sizeof (szWork));

strncpy (szWork, pszField, nWidth);
szWork [nWidth] = "\0’;

return atoi (szWork);
/**/
/* JDEMGetAngle () */
/***k/
static double JDEMGetAngle (char xpszField)

int nAngle = JDEMGetField(pszField, 7);

int nDegree, nMin, nSec;

// Note, this isn’t very general purpose, but it would appear

// from the field widths that angles are never negative. Nice
// to be a country in the "first quadrant™".

43

nDegree = nAngle / 10000;
nMin = (nAngle / 100) % 100;

°

nSec = nAngle % 100;

return nDegree + nMin / 60.0 + nSec / 3600.0;

/% K %k ok ko ko ko ko kK ok Kk Kk Kk ko ko ko ok kK ok ok ok ok ko ko ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kR kR kR ok ok ok ok ok ok /)

/* */
/% JDEMDataset x/
/* */

/**/

class JDEMRasterBand;

class JDEMDataset : public GDALPamDataset

{
friend class JDEMRasterBand;

FILE *fp;
GByte abyHeader[1012];
public:

~JDEMDataset () ;
static GDALDataset #Open(GDALOpenInfo x);

CPLErr GetGeoTransform(double x padfTransform);
const char xGetProjectionRef ();

Vi

/**/

/* x/
/ * JDEMRasterBand */
/ * *x/

/**/
class JDEMRasterBand : public GDALPamRasterBand
{
friend class JDEMDataset;
public:
JDEMRasterBand (JDEMDataset «, int);
virtual CPLErr IReadBlock(int, int, wvoid *);

Vi

/**/
/% JDEMRasterBand () */

/*~k************~k**************************~k******************************/
JDEMRasterBand: : JDEMRasterBand (JDEMDataset xpoDS, int nBand)

this->poDS = poDS;

this->nBand = nBand;

eDataType = GDT_Float32;

nBlockXSize = poDS->GetRasterXSize();
nBlockYSize 1;

/**/

44 Sample Driver: jdemdataset.cpp

/ * IReadBlock () %/

/% o % ok ok ok ko ko ko kK ok Kk Kk Kk ko ko ok ok ko ok ok ko ok ok K ok kK ko ok ok ok ok ok ok ok ok ok ok ok ok K ok ko ke kR ok ok ok kK ok ok ok ok ok /)

CPLErr JDEMRasterBand::IReadBlock (int nBlockXOff, int nBlockYOff,
void % pImage)

JDEMDataset xpoGDS = (JDEMDataset =) poDS;

char *pszRecord;

int nRecordSize = nBlockXSizex5 + 9 + 2;
int i;

VSIFSeek (poGDS->fp, 1011 + nRecordSizexnBlockYOff, SEEK_SET);

pszRecord = (char *) CPLMalloc (nRecordSize);
VSIFRead(pszRecord, 1, nRecordSize, poGDS->fp);

if (!'EQUALN ((char %) poGDS->abyHeader,pszRecord, 6))
{
CPLFree (pszRecord);

CPLError (CE_Failure, CPLE_AppDefined,
"JDEM Scanline corrupt. Perhaps file was not transferred\n"
"in binary mode?");

return CE_Failure;

if (JDEMGetField(pszRecord + 6, 3) != nBlockYOff + 1)
CPLFree(pszRecord);
CPLError (CE_Failure, CPLE_AppDefined,
"JDEM scanline out of order, JDEM driver does not\n"

"currently support partial datasets.");
return CE_Failure;

for(i = 0; 1 < nBlockXSize; i++)
((float =) pImage) [i] = (float)
(JDEMGetField(pszRecord + 9 + 5 x i, 5) % 0.1);

return CE_None;

/**/

/ * */
/ % JDEMDataset */
/% %/

/**/

/**/

/% ~JDEMDataset () */

Jhkk ok kkk ok hkkkkhkkkkhkkkkhkkkhkkkkhkkxk/

JDEMDataset: :~JDEMDataset ()

FlushCache () ;
if(fp != NULL)
VSIFClose(fp);

/**/

/ * GetGeoTransform () */
/**/

CPLErr JDEMDataset::GetGeoTransform(double * padfTransform)

45

double dfLLLat, dfLLLong, dfURLat, dfURLong;

dfLLLat = JDEMGetAngle((char x) abyHeader + 29);
dfLLLong = JDEMGetAngle((char) abyHeader + 36);
dfURLat = JDEMGetAngle((char x) abyHeader + 43);
dfURLong = JDEMGetAngle((char) abyHeader + 50);

padfTransform[0] = dfLLLong;

padfTransform[3] = dfURLat;

padfTransform[1l] = (dfURLong - dfLLLong) / GetRasterXSize();
padfTransform[2] = 0.0;

padfTransform([4] = 0.0;

padfTransform[5] = -1 * (dfURLat - dfLLLat) / GetRasterYSize();

return CE_None;

/**/
/ * GetProjectionRef () %/

/**/

const char xJDEMDataset::GetProjectionRef ()

return("GEOGCS[\"Tokyo\",DATUM[\"Tokyo\", SPHEROID[\"Bessel 1841\",6377397.155,299.1528128, AUTHORITY [\

/**/
/% Open () */

/**/
GDALDataset xJDEMDataset::0Open(GDALOpenInfo * poOpenInfo)

{

K e */

/ * Before trying JDEMOpen () we first verify that there is at */

/ * least one "\n#keyword" type signature in the first chunk of */

/* the file. */

ok *x/
if(poOpenInfo->fp == NULL || poOpenInfo->nHeaderBytes < 50)

return NULL;

/* check if century values seem reasonable =/
if((!EQUALN((char =)poOpenInfo->pabyHeader+11,"19",2)
&& !EQUALN ((char x)poOpenInfo->pabyHeader+11,"20",2))
|| (!EQUALN ((char =)poOpenInfo->pabyHeader+15,"19",2)
&& !'EQUALN ((char «)poOpenInfo->pabyHeader+15,"20",2))
|| (!EQUALN ((char =)poOpenInfo->pabyHeader+19,"19",2)
&& !EQUALN ((char x)poOpenInfo->pabyHeader+19,"20",2)))

return NULL;

[k */

/% Create a corresponding GDALDataset. x/

[k */
JDEMDataset *poDS;

poDS = new JDEMDataset ();

poDS—->fp = poOpenInfo->fp;
poOpenInfo->fp = NULL;

46 Sample Driver: jdemdataset.cpp

ok e */
/ * Read the header. */
[k */

VSIFSeek (poDS->fp, 0, SEEK_SET);
VSIFRead (poDS->abyHeader, 1, 1012, poDS->fp);

poDS—->nRasterXSize JDEMGetField((char %) poDS->abyHeader + 23, 3);
poDS—->nRaster¥YSize = JDEMGetField((char =*) poDS—->abyHeader + 26, 3);

[k */

/% Create band information objects. x/

[k */
poDS->SetBand(1, new JDEMRasterBand(poDS, 1));

ok e *x/

/ * Initialize any PAM information. */

ok e */

poDS—>SetDescription(poOpenInfo->pszFilename);
poDS->TryLoadXML () ;

return(poDS);

/**/

/ * GDALRegister_JDEM () */
/***‘k**************************‘k************‘k****************************/

void GDALRegister_JDEM()

GDALDriver «*poDriver;

if (GDALGetDriverByName ("JDEM") == NULL)
{

poDriver = new GDALDriver();

poDriver->SetDescription("JDEM");
poDriver—->SetMetadataItem(GDAL_DMD_LONGNAME,
"Japanese DEM (.mem)");
poDriver—->SetMetadatalItem(GDAL_DMD_HELPTOPIC,
"frmt_various.html#JDEM");
poDriver—->SetMetadataltem(GDAL_DMD_EXTENSION, "mem");

poDriver->pfnOpen = JDEMDataset: :0pen;

GetGDALDriverManager () —>RegisterDriver (poDriver);

Chapter 8

NEWS

48

NEWS

Chapter 9

GDAL FAQ

50

GDAL FAQ

. What’s this OGR Stuff?

The gdal/ogr tree holds source for a vector IO library inspired by OpenGIS Simple Features. In
theory it is separate from GDAL, but currently they reside in the same source tree and are somewhat
entangled. More information can be found at http://ogr.maptools.org. It is my plan to
properly fold OGR into GDAL properly at some point in the future. Then GDAL will be a raster and
vector library.

. How do I add support for a new format?

To some extent this is now covered by the GDAL Driver Implementation Tutorial.

. Can I get a MS Visual Studio Project file for GDAL?

The GDAL developers find it more convenient to build with makefiles and the Visual Studio NMAKE
utility. Maintaining a parallel set of project files for GDAL is too much work, so there are no project
files directly available from the maintainers. Occasionally other users do prepare such project files,
and you may be able to get them by asking on the gdal-dev list. However, I would strongly suggest
you just use the NMAKE based build system. With debugging enabled you can still debug into
GDAL with Visual Studio.

. Can I build GDAL with MS Visual C++ 2005 Express Edition?

Yes, you can. It’s also possible to use GDAL libraries in applications developed using MS Visual
C++ 2005 Express Edition.

Download and install Visual C++ 2005 Express Edition. Follow instructions presented on this
website:

http://msdn.microsoft.com/vstudio/express/visualc/download/
Download and install Microsoft Platform SDK. Also, follow these instructions carefully with-
out omitting any of steps presented there:
http://msdn.microsoft.com/vstudio/express/visualc/usingpsdk/
Add following two paths to Include files in the Visual C++ IDE settings. Do it the same way as
presented in Step 3 from the website above.

C:\\Program Files\\Microsoft Platform SDK\\Include\\atl
C:\\Program Files\\Microsoft Platform SDK\\Include\\mfc

Since you will build GDAL from command line using nmake tool, you also need to set or
update INCLUDE and LIB environment variables manually. You can do it in two ways:

(a) using the System applet available in the Control Panel
(b) by editing vsvars32.bat script located in
C:$\$Program Files$\$Microsoft Visual Studio 8$\$CommonT$\$T ools\Svsvars32.bat

These variables should have following values assigned:

INCLUDE=C:\\Program Files\\Microsoft Visual Studio 8\\VC\\Include;
C:\\Program Files\\Microsoft Platform SDK\\Include;
C:\\Program Files\\Microsoft Platform SDK\\Include\\mfc;
C:\\Program Files\\Microsoft Platform SDK\\Include\\atl;$INCLUDES%

LIB=C:\\Program Files\\Microsoft Visual Studio 8\\VC\\Lib;
C:\\Program Files\\Microsoft Visual Studio 8\\SDK\\v2.0\\1lib;
C:\\Program Files\\Microsoft Platform SDK\\1lib;$LIB%

NOTE: If you have edited system-wide INCLUDE and LIB variables, using System applet,
every Console (cmd.exe) will have it properly set. But if you have edited them through vs-
vars32.bat script, you will need to run this script in the Console before every compilation.
Patch atlwin.h header

At line 1725 add int i; declaration, so it looks as follows:

51

BOOL SetChainEntry (DWORD dwChainID, CMessageMapx pObject, DWORD dwMsgMapID = 0)
{

int i;

// first search for an existing entry

¢ Patch atlbase.h header

At line 287, comment AllocStdCallThunk and FreeStdCallThunk functions and add macros
replacements:

/***
PVOID _ stdcall _ AllocStdCallThunk (VOID) ;
VOID __ stdcall __ FreeStdCallThunk (PVOID) ;

#define AllocStdCallThunk () __ _AllocStdCallThunk ()
#define FreeStdCallThunk (p) _ FreeStdCallThunk (p)

#pragma comment (1ib, "atlthunk.lib")

ok ok Kk Kk K ok Kk ko ko ko kK kK kK K ok K Kk Kk ko ok ok ko ok kR ko kK ok kK k ok k ok ok

/* NEW MACROS */
#define AllocStdCallThunk () HeapAlloc (GetProcessHeap(),0,sizeof (_stdcallthunk))
#define FreeStdCallThunk (p) HeapFree (GetProcessHeap(), 0, p)

* Building GDAL
Open console windows (Start -> Run -> cmd.exe -> OK)

If you have edited vsvars32.bat script, you need to run it using full path:

Cc:$\$> 7C:\\Program Files\\Microsoft Visual Studio 8\\Common7\\Tools\\vsvars32.bat
Setting environment for using Microsoft Visual Studio 2005 x86 tools

Go do GDAL sources root directory, for example:
C:8\$ > cd work$\$gdal

Run nmake to compile
C:\Swork\$gdal > nmake /f makefile.ve

If no errors occur, after a few minutes you should see GDAL libraries in C:\work\gdal.

Now, you can use these libraries in your applications developed using Visual C++ 2005 Express
Edition.

. Can I build GDAL with Cygwin or MingW?

GDAL should build with Cygwin using the Unix-like style build methodology. It is also possible to
build with MingW though there are some complications. The following might work:

./configure —--prefix=$PATH_TO_MINGW_ROOT --host=mingw32 $\$
--without-1libtool --without-python $YOUR_CONFIG_OPTIONS

Using external win32 libraries will often be problematic with either of these environments - at the
least requiring some manual hacking of the GDALmake.opt file.

. Can I build GDAL with Borland C or other C compilers?

These are not supported compilers for GDAL; however, GDAL is mostly pretty generic, so if you
are willing to take on the onerous task of building an appropriate makefile / project file it should be

GDAL FAQ

possible. You will find most portability issues in the gdal/port/cpl_port.h file, and you will need to
prepare a gdal/port/cpl_config.h file appropriate to your platform. Using cpl_config.h.vc as a guide
may be useful.

7. What exactly was the license terms for GDAL?

The following terms are the same as X windows is released under, and is generally known as the
"MIT License". It is intended to give you permission to do whatever you want with the GDAL
source, including building proprietary commercial software, without further permission from me, or
requirement to distribute your source code. A few portions of GDAL under under slightly different
terms. For instance the libpng, libjpeg, libtiff, and libgeotiff license terms may vary slightly though I
don’t think any of them differ in any significant way. Some external libraries which can be optionally
used by GDAL are under radically different licenses.

Copyright (c) 2000, Frank Warmerdam

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

8. What are “Well Known Text” projections, and how do I use them?

OpenGIS Well Known Text is a textual format for defining coordinate systems. It is loosely based
on the EPSG coordinate systems model. While GDAL itself just passes these definitions around
as text strings, there is also an OGRSpatialReference class in gdal/ogr for manipulating them and
a linkage to PROJ. 4 for transforming between coordinate systems. The OGRSpatialReference,
and PROJ.4 linkaged (but not PROJ.4 itself) is linked into the GDAL shared library by default.
More documentation on WKT and OGRSpatialReference can be found in the OGR Projections
Tutorial.

9. Can I reproject rasters with GDAL?

Yes, you can use the gdalwarp utility program or programmatically use the GDALWarpOpera-
tion (p. ??) class described in the Warp API Tutorial.

10. Why won’t gdalwarp or gdal_merge write to most formats?

GDAL supports many raster formats for reading, but significantly less formats for writing. Of the
ones supported for writing most are only supported in create copy mode. Essentially this means they
have to be written sequentially from a provided input copy of the image to be written. Programs
like gdal_merge.py or gdalwarp that write chunks of imagery non-sequentially cannot easily write to
these sequential write formats. Generally speaking formats that are compressed, such as PNG, JPEG
and GIF are sequential write. Also some formats require information such as the coordinate system
and color table to be known at creation time and so these are also sequential write formats.

53

11.

12.

13.

14.

When you encounter this problem it is generally a good idea to first write the result to GeoTIFF
format, and then translate to the desired target format.

To determine which formats support which capabilities, use the —formats switch with pretty much
any GDAL utility. Each driver will include either rw (read-only), rw (read or sequential write) or
rw+ (read, sequential write or random write).

Is the GDAL library thread-safe?

No, GDAL is not completely thread safe.

However for GDAL 1.3.0 much work has been done on making some common scenarios thread safe.
In particular for the situation where many threads are reading from GDAL datasets at once should
work as long as no two threads access the same GDALDataset (p.??) object at the same time.
However, in this scenario, no threads can be writing to GDAL while others are reading or chaos may
ensue.

Also, while the GDAL core infrastructure is now thread-safe for this specific case, only a few drivers
have been vetted to be thread safe.

It is intended that work will continue on improving GDAL'’s thread safety in future versions.

Does GDAL work in different international numeric locales?

No. GDAL makes extensive use of sprintf() and atof() internally to translate numeric values. If a
locale is in effect that modifies formatting of numbers, altering the role of commas and periods in
numbers, then PROJ.4 will not work. This problem is common in some European locales.

On Unix-like platforms, this problem can be avoided by forcing the use of the default numeric locale
by setting the LC_NUMERIC environment variable to C, e.g.

$ export LC_NUMERIC=C
$ gdalinfo abc.tif

How do I ""debug'' GDAL?

Various helpful debugging information will be produced by GDAL and OGR if the CPL_DEBUG
environment variable is set to the value ON. Review the documentation for the CPLDebug() (p. ??)
function for more information on built-in debugging messages.

On Unix operating systems GDAL can be built with the CFG environment variable set to "debug" to
enable debugger support with the -g compiler switch. On Windows edit the nmake.opt and ensure
/Zi appears in the OPTFLAGS variable.

How should I deallocate resources acquainted from GDAL on Windows?

The safest way to release resources allocated and returned (with ownership transfered to caller) from
GDAL library is to use dedicated deallocator function. Deallocators promise to release resources
on the right module side, without crossing modules boundaries what usually causes memory access
violation errors.

» Example of correct resource deallocation:
OGRDataSource*x poDS = NULL;

// OGRDataSource aquisition made on side of the GDAL module
poDS = OGRSFDriverRegistrar::0pen("point.shp", FALSE);

1/

// Properly resource release using deallocator function
OGRDataSource: :DestroyDataSource (poDS);

* Example of incorrect resource deallocation:

GDAL FAQ

OGRDataSource* poDS = NULL;

// OGRDataSource aquisition made on side of the GDAL module
poDS = OGRSFDriverRegistrar::0pen("point.shp", FALSE);

//

// Deallocation across modules boundaries.

// Here, the deallocation crosses GDAL DLL library and client’s module (ie. executabl
delete poDS;

More detailed explanation of the problem can be found here: Allocating and freeing
memory across module boundaries.

Chapter 10

Building GDAL From Source

56 Building GDAL From Source

This topic is now lives in the wiki at: http://trac.osgeo.org/gdal/wiki/BuildHints

Chapter 11

GDAL Data Model

58 GDAL Data Model

This document attempts to describe the GDAL data model. That is the types of information that a GDAL
data store can contain, and their semantics.

11.1 Dataset

A dataset (represented by the GDALDataset (p. ??) class) is an assembly of related raster bands and some
information common to them all. In particular the dataset has a concept of the raster size (in pixels and
lines) that applies to all the bands. The dataset is also responsible for the georeferencing transform and
coordinate system definition of all bands. The dataset itself can also have associated metadata, a list of
name/value pairs in string form.

Note that the GDAL dataset, and raster band data model is loosely based on the OpenGIS Grid Coverages
specification.

11.1.1 Coordinate System

Dataset coordinate systems are represented as OpenGIS Well Known Text strings. This can contain:

* An overall coordinate system name.

* A geographic coordinate system name.

* A datum identifier.

* An ellipsoid name, semi-major axis, and inverse flattening.
* A prime meridian name and offset from Greenwich.

* A projection method type (ie. Transverse Mercator).

A list of projection parameters (ie. central_meridian).

¢ A units name, and conversion factor to meters or radians.

* Names and ordering for the axes.

* Codes for most of the above in terms of predefined coordinate systems from authorities such as
EPSG.

For more information on OpenGIS WKT coordinate system definitions, and mechanisms to manipulate
them, refer to the osr_tutorial document and/or the OGRSpatialReference class documentation.

The coordinate system returned by GDALDataset::GetProjectionRef() (p.??) describes
the georeferenced coordinates implied by the affine georeferencing transform returned by
GDALDataset::GetGeoTransform() (p.??). The coordinate system returned by GDAL-
Dataset::GetGCPProjection() (p. ??) describes the georeferenced coordinates of the GCPs returned by
GDALDataset::GetGCPs() (p. 2?).

Note that a returned coordinate system strings of "" indicates nothing is known about the georeferencing
coordinate system.

11.1 Dataset 59

11.1.2 Affine GeoTransform

GDAL datasets have two ways of describing the relationship between raster positions (in pixel/line coordi-
nates) and georeferenced coordinates. The first, and most commonly used is the affine transform (the other
is GCPs).

The affine transform consists of six coefficients returned by GDALDataset::GetGeoTransform() (p. ??)
which map pixel/line coordinates into georeferenced space using the following relationship:

Xgeo = GT(0) + XpixelxGT(l) + Y1linexGT (2)
Ygeo = GT(3) + XpixelxGT (4) + YlinexGT (5)

In case of north up images, the GT(2) and GT(4) coefficients are zero, and the GT(1) is pixel width, and
GT(5) is pixel height. The (GT(0),GT(3)) position is the top left corner of the top left pixel of the raster.

Note that the pixel/line coordinates in the above are from (0.0,0.0) at the top left corner of the top left pixel
to (width_in_pixels,height_in_pixels) at the bottom right corner of the bottom right pixel. The pixel/line
location of the center of the top left pixel would therefore be (0.5,0.5).

11.1.3 GCPs

A dataset can have a set of control points relating one or more positions on the raster to geo-
referenced coordinates. All GCPs share a georeferencing coordinate system (returned by GDAL-
Dataset::GetGCPProjection() (p. ??)). Each GCP (represented as the GDAL_GCP (p. ??) class) contains
the following:

typedef struct

{
char xpszId;
char xpszInfo;
double dfGCPPixel;
double dfGCPLine;
double dfGCPX;
double dfGCPY;
double dfGCPZ;

} GDAL_GCP (p.??);

The pszId string is intended to be a unique (and often, but not always numerical) identifier for the GCP
within the set of GCPs on this dataset. The pszInfo is usually an empty string, but can contain any user
defined text associated with the GCP. Potentially this can also contain machine parsable information on
GCP status though that isn’t done at this time.

The (Pixel,Line) position is the GCP location on the raster. The (X,Y,Z) position is the associated georef-
erenced location with the Z often being zero.

The GDAL data model does not imply a transformation mechanism that must be generated from the GCPs
... this is left to the application. However 1st to Sth order polynomials are common.

Normally a dataset will contain either an affine geotransform, GCPs or neither. It is uncommon to have
both, and it is undefined which is authoritative.

11.1.4 Metadata

GDAL metadata is auxiliary format and application specific textual data kept as a list of name/value pairs.
The names are required to be well behaved tokens (no spaces, or odd characters). The values can be of any
length, and contain anything except an embedded null (ASCII zero).

60 GDAL Data Model

The metadata handling system is not well tuned to handling very large bodies of metadata. Handling of
more than 100K of metadata for a dataset is likely to lead to performance degradation.

Over time there will be some well known names defined with established semantics; however, that has not
occurred at this time.

Some formats will support generic (user defined) metadata, while other format drivers will map specific
format fields to metadata names. For instance the TIFF driver returns a few information tags as metadata
including the date/time field which is returned as:

TIFFTAG_DATETIME=1999:05:11 11:29:56

Metadata is split into named groups called domains, with the default domain having no name (NULL or
""). Some specific domains exist for special purposes. Note that currently there is no way to enumerate
all the domains available for a given object, but applications can "test" for any domains they know how to
interprete.

11.1.4.1 SUBDATASETS Domain

The SUBDATASETS domain holds a list of child datasets. Normally this is used to provide pointers to a
list of images stored within a single multi image file (such as HDF or NITF). For instance, an NITF with
four images might have the following subdataset list.

SUBDATASET_1_NAME=NITF_IM:0:multi_lb.ntf
SUBDATASET_1_DESC=Image 1 of multi_lb.ntf
SUBDATASET_2_ NAME=NITF_IM:1:multi_lb.ntf
SUBDATASET_2_DESC=Image 2 of multi_lb.ntf
SUBDATASET_3_NAME=NITF_IM:2:multi_lb.ntf
SUBDATASET_3_DESC=Image 3 of multi_lb.ntf
SUBDATASET_4_NAME=NITF_IM:3:multi_lb.ntf
SUBDATASET_4_DESC=Image 4 of multi_lb.ntf
SUBDATASET_5_NAME=NITF_IM:4:multi_lb.ntf
SUBDATASET_5_DESC=Image 5 of multi_lb.ntf

The value of the _NAME is the string that can be passed to GDALOpen() (p. ??) to access the file. The
_DESC value is intended to be a more user friendly string that can be displayed to the user in a selector.

11.1.4.2 IMAGE_STRUCTURE Domain

Metadata in the default domain is intended to be related to the image, and not particularly related to the
way the image is stored on disk. That is, it is suitable for copying with the dataset when it is copied to a
new format. Some information of interest is closely tied to a particular file format and storage mechanism.
In order to prevent this getting copied along with datasets it is placed in a special domain called IMAGE_-
STRUCTURE that should not normally be copied to new formats.

One item that appears in the IMAGE_STRUCTURE domain is the compression scheme used for a fromat.
The metadata item name is COMPRESSION but the value can be format specific.

11.1.4.3 xml: Domains

Any domain name prefixed with "xml:" is not normal name/value metadata. It is a single XML document
stored in one big string.

11.2 Raster Band 61

11.2 Raster Band

A raster band is represented in GDAL with the GDALRasterBand (p. ??) class. It represents a single
raster band/channel/layer. It does not necessarily represent a whole image. For instance, a 24bit RGB
image would normally be represented as a dataset with three bands, one for red, one for green and one for
blue.

A raster band has the following properties:

» A width and height in pixels and lines. This is the same as that defined for the dataset, if this is a full
resolution band.

A datatype (GDALDataType). One of Byte, Ulnt16, Int16, Ulnt32, Int32, Float32, Float64, and the
complex types CInt16, CInt32, CFloat32, and CFloat64.

* A block size. This is a preferred (efficient) access chunk size. For tiled images this will be one tile.
For scanline oriented images this will normally be one scanline.

e A list of name/value pair metadata in the same format as the dataset, but of information that is
potentially specific to this band.

* An optional description string.
* An optional list of category names (effectively class names in a thematic image).
* An optional minimum and maximum value.

* An optional offset and scale for transforming raster values into meaning full values (ie translate
height to meters)

* An optional raster unit name. For instance, this might indicate linear units for elevation data.

* A color interpretation for the band. This is one of:

— GCI_Undefined: the default, nothing is known.

— GCI_Graylndex: this is an independent grayscale image

— GCI_PaletteIndex: this raster acts as an index into a color table

— GCI_RedBand: this raster is the red portion of an RGB or RGBA image

— GCI_GreenBand: this raster is the green portion of an RGB or RGBA image
— GCI_BlueBand: this raster is the blue portion of an RGB or RGBA image

— GCI_AlphaBand: this raster is the alpha portion of an RGBA image

— GCI_HueBand: this raster is the hue of an HLS image

— GCI_SaturationBand: this raster is the saturation of an HLS image

— GCI_LightnessBand: this raster is the hue of an HLS image

— GCI_CyanBand: this band is the cyan portion of a CMY or CMYK image

— GCI_MagentaBand: this band is the magenta portion of a CMY or CMYK image
— GCI_YellowBand: this band is the yellow portion of a CMY or CMYK image
— GCI_BlackBand: this band is the black portion of a CMYK image.

¢ A color table, described in more detail later.

* Knowledge of reduced resolution overviews (pyramids) if available.

62 GDAL Data Model

11.3 Color Table

A color table consists of zero or more color entries described in C by the following structure:

typedef struct
{

/- gray, red, cyan or hue -/
short cl;

/- green, magenta, or lightness -/
short c2;

/- blue, yellow, or saturation -/
short c3;

/- alpha or blackband -/
short c4;
} GDALColorEntry (p.??);

The color table also has a palette interpretation value (GDALPaletteInterp) which is one of the following
values, and indicates how the c1/c2/c3/c4 values of a color entry should be interpreted.

GPI_Gray: Use cl as grayscale value.

GPI_RGB: Use cl as red, c2 as green, c3 as blue and c4 as alpha.

GPI_CMYK: Use cl as cyan, c2 as magenta, c3 as yellow and c4 as black.

GPI_HLS: Use cl as hue, c2 as lightness, and c3 as saturation.

To associate a color with a raster pixel, the pixel value is used as a subscript into the color table. That
means that the colors are always applied starting at zero and ascending. There is no provision for indicating
a prescaling mechanism before looking up in the color table.

11.4 Overviews

A band may have zero or more overviews. Each overview is represented as a "free standing” GDALRaster-
Band (p. ??). The size (in pixels and lines) of the overview will be different than the underlying raster, but
the geographic region covered by overviews is the same as the full resolution band.

The overviews are used to display reduced resolution overviews more quickly than could be done by read-
ing all the full resolution data and downsampling.

Bands also have a HasArbitraryOverviews property which is TRUE if the raster can be read at any resolu-
tion efficiently but with no distinct overview levels. This applies to some FFT encoded images, or images
pulled through gateways (like OGDI) where downsampling can be done efficiently at the remote point.

Chapter 12

GDAL Driver Implementation Tutorial

64 GDAL Driver Implementation Tutorial

12.1 Overall Approach

In general new formats are added to GDAL by implementing format specific drivers as subclasses of
GDALDataset (p.??), and band accessors as subclasses of GDALRasterBand (p.??). As well, a
GDALDriver (p.??) instance is created for the format, and registered with the GDALDriverManager
(p- ?7?), to ensure that the system knows about the format.

This tutorial will start with implementing a simple read-only driver (based on the JDEM driver), and then
proceed to utilizing the RawRasterBand helper class, implementing creatable and updatable formats, and
some esoteric issues.

It is strongly advised that the GDAL Data Model description be reviewed and understood before at-
tempting to implement a GDAL driver.

12.2 Contents

—

Implementing the Dataset (p. ??)
Implementing the RasterBand (p. ??)
The Driver (p.??)

Adding Driver to GDAL Tree (p. ??)
Adding Georeferencing (p. ??)
Overviews (p.??)

File Creation (p. ??)

RawDataset/RawRasterBand Helper Classes (p. ??)

N ok »D

Metadata, and Other Exotic Extensions (p. ??)

12.3 Implementing the Dataset

We will start showing minimal implementation of a read-only driver for the Japanese DEM format
(jdemdataset . cpp). First we declare a format specific dataset class, JDEMDataset in this case.

class JDEMDataset : public GDALDataset
{

FILE *fp;
GByte abyHeader[1012];
public:

~JDEMDataset () ;

static GDALDataset *Open(GDALOpenInfo *);
bi

In general we provide capabilities for a driver, by overriding the various virtual methods on the GDAL-
Dataset (p. ??) base class. However, the Open() method is special. This is not a virtual method on the base
class, and we will need a freestanding function for this operation, so we declare it static. Implementing
it as a method in the JDEMDataset class is convenient because we have privileged access to modify the
contents of the database object.

The open method itself may look something like this:

12.3 Implementing the Dataset 65

GDALDataset *JDEMDataset::0pen(GDALOpenInfo * poOpenInfo)

A
// Before trying JDEMOpen () we first verify that there is at
// least one "\n#keyword" type signature in the first chunk of
// the file.
T
if (poOpenInfo->fp == NULL || poOpenInfo->nHeaderBytes < 50)
return NULL;
// check if century values seem reasonable
if ((!EQUALN ((char «*)poOpenInfo->pabyHeader+11l,"19",2)
&& !EQUALN ((char *)poOpenInfo->pabyHeader+11,"20",2))
|| (!EQUALN ((char *)poOpenInfo->pabyHeader+15,"19",2)
&& !EQUALN ((char «*)poOpenInfo->pabyHeader+15,"20",2))
|| (!EQUALN ((char)poOpenInfo->pabyHeader+19,"19",2)
&& !EQUALN ((char «*)poOpenInfo->pabyHeader+19,"20",2)))
{
return NULL;
}
/]
// Create a corresponding GDALDataset.
[T
JDEMDataset *poDS;
poDS = new JDEMDataset ();
poDS—->fp = poOpenInfo->fp;
poOpenInfo->fp = NULL;
T
// Read the header.
[
VSIFSeek (poDS->fp, 0, SEEK_SET);
VSIFRead(poDS->abyHeader, 1, 1012, poDS->fp);
poDS->nRasterXSize = JDEMGetField((char x) poDS->abyHeader + 23, 3);
poDS->nRasterYSize = JDEMGetField((char %) poDS->abyHeader + 26, 3);
[
// Create band information objects.
f

poDS->nBands = 1;
poDS->SetBand(1, new JDEMRasterBand(poDS, 1));

return(poDS);

The first step in any database Open function is to verify that the file being passed is in fact of the type this
driver is for. It is important to realize that each driver’s Open function is called in turn till one succeeds.
Drivers must quietly return NULL if the passed file is not of their format. They should only produce an
error if the file does appear to be of their supported format, but is for some reason unsupported or corrupt.

The information on the file to be opened is passed in contained in a GDALOpenInfo object. The
GDALOpenInfo includes the following public data members:

char xpszFilename;
GDALAccess eAccess; // GA_ReadOnly or GA_Update

GBool bStatOK;
VSIStatBuf sStat;

FILE *fp;

66 GDAL Driver Implementation Tutorial

int nHeaderBytes;
GByte *pabyHeader;

The driver can inspect these to establish if the file is supported. If the pszFilename refers to an object in
the file system, the bStatOK flag will be set, and the sStat structure will contain normal stat() information
about the object (be it directory, file, device). If the object is a regular readable file, the fp will be non-
NULL, and can be used for reads on the file (please use the VSI stdio functions from cpl_vsi.h (p. ??)). As
well, if the file was successfully opened, the first kilobyte or so is read in, and put in pabyHeader, with
the exact size in nHeaderBytes.

In this typical testing example it is verified that the file was successfully opened, that we have at least
enough header information to perform our test, and that various parts of the header are as expected for this
format. In this case, there are no magic numbers for JDEM format so we check various date fields to ensure
they have reasonable century values. If the test fails, we quietly return NULL indicating this file isn’t of
our supported format.

if (poOpenInfo->fp == NULL || poOpenInfo->nHeaderBytes < 50)
return NULL;

// check 1if century values seem reasonable
if((!EQUALN((char =)poOpenInfo->pabyHeader+11,"19",2)
&& !'EQUALN ((char «*)poOpenInfo->pabyHeader+11l,"20",2))
|| (!EQUALN ((char =)poOpenInfo->pabyHeader+15,"19",2)
&& !EQUALN ((char «*)poOpenInfo->pabyHeader+15,"20",2))
|| (!EQUALN ((char =)poOpenInfo->pabyHeader+19,"19",2)
&& !EQUALN ((char x)poOpenInfo->pabyHeader+19,"20",2)))

return NULL;

It is important to make the is this my format test as stringent as possible. In this particular case the test is
weak, and a file that happened to have 19s or 20s at a few locations could be erroneously recognized as
JDEM format, causing it to not be handled properly.

Once we are satisfied that the file is of our format, we need to create an instance of the database class in
which we will set various information of interest.

JDEMDataset *poDS;
poDS = new JDEMDataset () ;

poDS->fp = poOpenInfo->fp;
poOpenInfo->fp = NULL;

Generally at this point we would open the file, to acquire a file handle for the dataset; however, if read-only
access is sufficient it is permitted to assume ownership of the FILE * from the GDALOpenlInfo object.
Just ensure that it is set to NULL in the GDALOpenInfo to avoid having it get closed twice. It is also
important to note that the state of the FILE * adopted is indeterminate. Ensure that the current location
is reset with VSIFSeek() before assuming you can read from it. This is accomplished in the following
statements which reset the file and read the header.

VSIFSeek (poDS->fp, 0, SEEK_SET);
VSIFRead (poDS->abyHeader, 1, 1012, poDS->fp);

Next the X and Y size are extracted from the header. The nRasterXSize and nRasterYSize are data fields
inherited from the GDALDataset (p. ??) base class, and must be set by the Open() method.

12.4 Implementing the RasterBand 67

JDEMGetField((char %) poDS->abyHeader + 23,
JDEMGetField((char %) poDS->abyHeader + 26,

poDS->nRasterXSize

3
poDS->nRasterYSize 3

)i

)

Finally, all the bands related to this dataset must be attached using the SetBand() method. We will explore
the JDEMRasterBand() class shortly.

poDS->SetBand(1, new JDEMRasterBand(poDS, 1));

return(poDS);

12.4 Implementing the RasterBand

Similar to the customized JDEMDataset class subclassed from GDALDataset (p.??), we also need to
declare and implement a customized JDEMRasterBand derived from GDALRasterBand (p. ??) for access
to the band(s) of the JDEM file. For JDEMRasterBand the declaration looks like this:

class JDEMRasterBand : public GDALRasterBand
{
public:
JDEMRasterBand (JDEMDataset *, int);
virtual CPLErr IReadBlock(int, int, wvoid *);

bi
The constructor may have any signature, and is only called from the Open() method. Other virtual methods,
such as IReadBlock() must be exactly matched to the method signature in gdal_priv.h (p. 2?).

The constructor implementation looks like this:

JDEMRasterBand: : JDEMRasterBand (JDEMDataset xpoDS, int nBand)

{
this->poDS = poDS;
this->nBand = nBand;

eDataType = GDT_Float32;

nBlockXSize = poDS->GetRasterXSize();
nBlockYSize = 1;

The following data members are inherited from GDALRasterBand (p. ??), and should generally be set in
the band constructor.

e poDS: Pointer to the parent GDALDataset (p. ??).

* nBand: The band number within the dataset.

» eDataType: The data type of pixels in this band.

* nBlockXSize: The width of one block in this band.

* nBlockYSize: The height of one block in this band.
The full set of possible GDALDataType values are declared in gdal.h (p.??), and include GDT_Byte,
GDT _UlInt16, GDT_Int16, and GDT_Float32. The block size is used to establish a natural or efficient

block size to access the data with. For tiled datasets this will be the size of a tile, while for most other
datasets it will be one scanline, as in this case.

Next we see the implementation of the code that actually reads the image data, IReadBlock().

68 GDAL Driver Implementation Tutorial

CPLErr JDEMRasterBand::IReadBlock(int nBlockXOff, int nBlockYOff,
void * pImage)

JDEMDataset #*poGDS = (JDEMDataset =) poDS;

char *pszRecord;

int nRecordSize = nBlockXSizex5 + 9 + 2;
int i;

VSIFSeek (poGDS->fp, 1011 + nRecordSizexnBlockYOff, SEEK_SET);

pszRecord = (char =) CPLMalloc (nRecordSize);
VSIFRead(pszRecord, 1, nRecordSize, poGDS->fp);

if ('EQUALN ((char %) poGDS->abyHeader,pszRecord, 6))

{
CPLFree (pszRecord);

CPLError (CE_Failure, CPLE_AppDefined,
"JDEM Scanline corrupt. Perhaps file was not transferred\n"
"in binary mode?");

return CE_Failure;

if (JDEMGetField(pszRecord + 6, 3) != nBlockYOff + 1)
CPLFree(pszRecord);

CPLError (CE_Failure, CPLE_AppDefined,
"JDEM scanline out of order, JDEM driver does not\n"
"currently support partial datasets.");

return CE_Failure;

}

for(1 = 0; 1 < nBlockXSize; i++)
((float x) pImage) [i] = JDEMGetField(pszRecord + 9 + 5 % i, 5) 0.1;

return CE_None;

Key items to note are:

e Itis typical to cast the GDALRasterBand::poDS member to the derived type of the owning dataset. If
your RasterBand class will need privileged access to the owning dataset object, ensure it is declared
as a friend (omitted above for brevity).

e If an error occurs, report it with CPLError() (p. ??), and return CE_Failure. Otherwise return CE_-
None.

* The pImage buffer should be filled with one block of data. The block is the size declared in nBlock-
XSize and nBlockYSize for the raster band. The type of the data within pImage should match the
type declared in eDataType in the raster band object.

¢ The nBlockXOff and nBlock YOff are block offsets, so with 128x128 tiled datasets values of 1 and 1
would indicate the block going from (128,128) to (255,255) should be loaded.

12.5 The Driver

While the JDEMDataset and JDEMRasterBand are now ready to use to read image data, it still isn’t clear
how the GDAL system knows about the new driver. This is accomplished via the GDALDriverManager
(p- ??). To register our format we implement a registration function:

12.5 The Driver 69

CPL_C_START

void

GDALRegister_JDEM (void) ;

CPL_C_END

void GDALRegister_JDEM()

{

GDALDriver «*poDriver;

if (GDALGetDriverByName ("JDEM") == NULL)

{

poDriver = new GDALDriver();

poDriver->SetDescription("JDEM");
poDriver->SetMetadataItem(GDAL_DMD_LONGNAME,
"Japanese DEM (.mem)");
poDriver->SetMetadataltem(GDAL_DMD_HELPTOPIC,
"frmt_various.html#JDEM");
poDriver->SetMetadataltem(GDAL_DMD_EXTENSION, "mem");

poDriver->pfnOpen = JDEMDataset: :0pen;

GetGDALDriverManager () ->RegisterDriver (poDriver);

The registration function will create an instance of a GDALDriver (p. ??) object when first called, and
register it with the GDALDriverManager (p.??). The following fields can be set in the driver before
registering it with the GDALDriverManager().

The description is the short name for the format. This is a unique name for this format, often used
to identity the driver in scripts and commandline programs. Normally 3-5 characters in length, and
matching the prefix of the format classes. (mandatory)

GDAL_DMD_LONGNAME: A longer descriptive name for the file format, but still no longer than
50-60 characters. (mandatory)

GDAL_DMD_HELPTOPIC: The name of a help topic to display for this driver, if any. In this case
JDEM format is contained within the various format web page held in gdal/html. (optional)

GDAL_DMD_EXTENSION: The extension used for files of this type. If more than one pick the
primary extension, or none at all. (optional)

GDAL_DMD_MIMETYPE: The standard mime type for this file format, such as "image/png". (op-
tional)

GDAL_DMD_CREATIONOPTIONLIST: There is evolving work on mechanisms to describe cre-
ation options. See the geotiff driver for an example of this. (optional)

GDAL_DMD_CREATIONDATATYPES: A list of space separated data types supported by this cre-
ate when creating new datasets. If a Create() method exists, these will be will supported. If a
CreateCopy() method exists, this will be a list of types that can be losslessly exported but it may
include weaker data types than the type eventually written. For instance, a format with a Create-
Copy() method, and that always writes Float32 might also list Byte, Int16, and Ulnt16 since they
can losslessly translated to Float32. An example value might be "Byte Int16 Ulnt16". (required - if
creation supported)

pfnOpen: The function to call to try opening files of this format. (optional)

pfnCreate: The function to call to create new updatable datasets of this format. (optional)

70 GDAL Driver Implementation Tutorial

» pfnCreateCopy: The function to call to create a new dataset of this format copied from another
source, but not necessary updatable. (optional)

» pfnDelete: The function to call to delete a dataset of this format. (optional)

» pfnUnloadDriver: A function called only when the driver is destroyed. Could be used to cleanup
data at the driver level. Rarely used. (optional)

12.6 Adding Driver to GDAL Tree

Note that the GDALRegister_JDEM() method must be called by the higher level program in order to have
access to the JDEM driver. Normal practice when writing new drivers is to:

1. Add a driver directory under gdal/frmts, with the directory name the same as the short name.

2. Add a GNUmakefile and makefile.vc in that directory modelled on those from other similar directo-
ries (ie. the jdem directory).

3. Add the module with the dataset, and rasterband implementation. Generally this is called <short_-
name>dataset.cpp, with all the GDAL specific code in one file, though that is not required.

4. Add the registration entry point declaration (ie. GDALRegister_JDEM()) to gdal/gcore/gdal_frmts.h.
5. Add a call to the registration function to frmts/gdalallregister.c, protected by an appropriate ifdef.

6. Add the format short name to the GDAL_FORMATS macro in GDALmake.opt.in (and to GDAL-
make.opt).

7. Add a format specific item to the EXTRAFLAGS macro in frmts/makefile.vc.

Once this is all done, it should be possible to rebuild GDAL, and have the new format available in all the
utilities. The gdalinfo utility can be used to test that opening and reporting on the format is working, and
the gdal_translate utility can be used to test image reading.

12.7 Adding Georeferencing

Now we will take the example a step forward, adding georeferencing support. We add the following two
virtual method overrides to JDEMDataset, taking care to exactly match the signature of the method on the
GDALRasterDataset base class.

CPLErr GetGeoTransform(double » padfTransform);
const char xGetProjectionRef ();

The implementation of GetGeoTransform() just copies the usual geotransform matrix into the supplied
buffer. Note that GetGeoTransform() may be called a lot, so it isn’t generally wise to do a lot of computation
in it. In many cases the Open() will collect the geotransform, and this method will just copy it over. Also
note that the geotransform return is based on an anchor point at the top left corner of the top left pixel, not
the center of pixel approach used in some packages.

CPLErr JDEMDataset::GetGeoTransform(double * padfTransform)

{
double dfLLLat, dfLLLong, dfURLat, dfURLong;

12.8 Overviews

71

dfLLLat = JDEMGetAngle((char x) abyHeader + 29);
dfLLLong = JDEMGetAngle((char =) abyHeader + 36);
dfURLat = JDEMGetAngle((char x) abyHeader + 43);
dfURLong = JDEMGetAngle((char =) abyHeader + 50);

padfTransform[0] = dfLLLong;

padfTransform[3] dfURLat;

padfTransform[1] (dfURLong - dfLLLong) / GetRasterXSize();
padfTransform[2] 0.0;

padfTransform[4] = 0.0;

padfTransform[5] = -1 % (dfURLat - dfLLLat) / GetRasterYSize();

return CE_None;

The GetProjectionRef() method returns a pointer to an internal string containing a coordinate system def-
inition in OGC WKT format. In this case the coordinate system is fixed for all files of this format, but in
more complex cases a definition may need to be composed on the fly, in which case it may be helpful to
use the OGRSpatialReference class to help build the definition.

const char xJDEMDataset::GetProjectionRef ()

{
return("GEOGCS[\"Tokyo\",DATUM[\"Tokyo\", SPHEROID[\"Bessel 1841\","
"6377397.155,299.1528128, AUTHORITY [\"EPSG\", 7004]], TONGS84 [-148,"
"507,685,0,0,0,0],AUTHORITY[\"EPSG\", 6301]],PRIMEM[\"Greenwich\","
"0, AUTHORITY [\"EPSG\",8901]],UNIT[\"DMSH\",0.0174532925199433,"
"AUTHORITY[\"EPSG\",9108]],AXIS[\"Lat\",NORTH],AXIS[\"Long\",EAST],"
"AUTHORITY [\"EPSG\",4301]1]1");

This completes explanation of the features of the JDEM driver. The full source for jdemdataset . cpp
can be reviewed as needed.

12.8 Overviews

GDAL allows file formats to make pre-built overviews available to applications via the GDALRaster-
Band::GetOverview() (p.??) and related methods. However, implementing this is pretty involved, and
goes beyond the scope of this document for now. The GeoTIFF driver (gdal/frmts/gtiff/geotiff.cpp) and re-
lated source can be reviewed for an example of a file format implementing overview reporting and creation
support.

Formats can also report that they have arbitrary overviews, by overriding the HasArbitraryOverviews()
method on the GDALRasterBand (p. ??), returning TRUE. In this case the raster band object is expected
to override the RasterIO() method itself, to implement efficient access to imagery with resampling. This is
also involved, and there are a lot of requirements for correct implementation of the RasterIO() method. An
example of this can be found in the OGDI and ECW formats.

However, by far the most common approach to implementing overviews is to use the default support in
GDAL for external overviews stored in TIFF files with the same name as the dataset, but the extension
.ovr appended. In order to enable reading and creation of this style of overviews it is necessary for the
GDALDataset (p. ??) to initialize the oOvManager object within itself. This is typically accomplished
with a call like the following near the end of the Open() method.

poDS—->oOvManager.Initialize(poDS, poOpenInfo->pszFilename);

72 GDAL Driver Implementation Tutorial

This will enable default implementations for reading and creating overviews for the format. It is advised
that this be enabled for all simple file system based formats unless there is a custom overview mechanism
to be tied into.

12.9 File Creation

There are two approaches to file creation. The first method is called the CreateCopy() method, and involves
implementing a function that can write a file in the output format, pulling all imagery and other information
needed from a source GDALDataset (p. ??). The second method, the dynamic creation method, involves
implementing a Create method to create the shell of the file, and then the application writes various infor-
mation by calls to set methods.

The benefits of the first method are that that all the information is available at the point the output file is
being created. This can be especially important when implementing file formats using external libraries
which require information like colormaps, and georeferencing information at the point the file is created.
The other advantage of this method is that the CreateCopy() method can read some kinds of information,
such as min/max, scaling, description and GCPs for which there are no equivalent set methods.

The benefits of the second method are that applications can create an empty new file, and write results to it
as they become available. A complete image of the desired data does not have to be available in advance.

For very important formats both methods may be implemented, otherwise do whichever is simpler, or
provides the required capabilities.

12.9.1 CreateCopy

The GDALDriver::CreateCopy() (p. ??) method call is passed through directly, so that method should be
consulted for details of arguments. However, some things to keep in mind are:

* If the bStrict flag is FALSE the driver should try to do something reasonable when it cannot exactly
represent the source dataset, transforming data types on the fly, dropping georeferencing and so forth.

* Implementing progress reporting correctly is somewhat involved. The return result of the progress
function needs always to be checked for cancellation, and progress should be reported at reasonable
intervals. The JPEGCreateCopy() method demonstrates good handling of the progress function.

» Special creation options should be documented in the online help. If the options take the format
"NAME=VALUE" the papszOptions list can be manipulated with CPLFetchNameValue() as demon-
strated in the handling of the QUALITY and PROGRESSIVE flags for JPEGCreateCopy().

* The returned GDALDataset (p. ??) handle can be in ReadOnly or Update mode. Return it in Update
mode if practical, otherwise in ReadOnly mode is fine.

The full implementation of the CreateCopy function for JPEG (which is assigned to pfnCreateCopy in the
GDALDriver (p. ??) object) is here.

static GDALDataset =
JPEGCreateCopy (const char x pszFilename, GDALDataset xpoSrcDS,
int bStrict, char *+* papszOptions,
GDALProgressFunc pfnProgress, void x pProgressData)

int nBands
int nXSize
int nYSize

poSrcDS—>GetRasterCount () ;
poSrcDS->GetRasterXSize () ;
poSrcDS—->GetRaster¥YSize () ;

12.9 File Creation

int nQuality = 75;
int DbProgressive = FALSE;

if(nBRands != 1 && nBands != 3)

CPLError (CE_Failure, CPLE_NotSupported,
"JPEG driver doesn’t support %d bands. Must be 1 (grey) "
"or 3 (RGB) bands.\n", nBands);

return NULL;

if (poSrcDS->GetRasterBand(l)->GetRasterDataType () != GDT_Byte && bStrict)

CPLError (CE_Failure, CPLE_NotSupported,
"JPEG driver doesn’t support data type %s. "
"Only eight bit byte bands supported.\n",
GDALGetDataTypeName (
poSrcDS->GetRasterBand (1) -—>GetRasterDataType()));

return NULL;

if (CSLFetchNameValue (papszOptions, "QUALITY") != NULL)

nQuality = atoi (CSLFetchNameValue (papszOptions, "QUALITY"));
if(nQuality < 10 || nQuality > 100)
{
CPLError (CE_Failure, CPLE_IllegalArg,
"QUALITY=%s is not a legal value in the range 10-100.",
CSLFetchNameValue (papszOptions, "QUALITY"));
return NULL;

if (CSLFetchNameValue (papszOptions, "PROGRESSIVE") != NULL)

bProgressive = TRUE;

FILE *fpImage;

fpImage = VSIFOpen(pszFilename, "wb");
if(fpImage == NULL)
{

CPLError (CE_Failure, CPLE_OpenFailed,
"Unable to create Jjpeg file %s.\n",
pszFilename);

return NULL;

struct jpeg_compress_struct sCInfo;
struct jpeg_error_mgr sJErr;

sCInfo.err = jpeg_std_error(&sJErr);

74

GDAL Driver Implementation Tutorial

jpeg_create_compress (&sCInfo);
jpeg_stdio_dest (&sCInfo, fpImage);

sCInfo.image_width = nXSize;
sCInfo.image_height = n¥YSize;
sCInfo.input_components = nBands;

if(nBands == 1)
{
sCInfo.in_color_space = JCS_GRAYSCALE;

}

else

{

sCInfo.in_color_space = JCS_RGB;
jpeg_set_defaults(&sCInfo);
jpeg_set_quality(&sCInfo, nQuality, TRUE);

if(bProgressive)
jpeg_simple_progression(&sCInfo);

jpeg_start_compress(&sCInfo, TRUE);

Loop over image, copying image data.

GByte xpabyScanline;

CPLErr eErr;
pabyScanline = (GByte %) CPLMalloc(nBands * nXSize);
for(int iLine = 0; iLine < nY¥Size; iLine++)
{
JSAMPLE *ppSamples;
for(int iBand = 0; iBand < nBands; iBand++)

{
GDALRasterBand * poBand = poSrcDS->GetRasterBand(iBand+1l
eErr = poBand->RasterIO(GF_Read, 0, iLine, nXSize, 1,
pabyScanline + iBand, nXSize, 1,
nBands, nBands * nXSize);

ppSamples = pabyScanline;
jpeg_write_scanlines(&sCInfo, &ppSamples, 1);
CPLFree(pabyScanline);

jpeg_finish_compress(&sCInfo);
jpeg_destroy_compress (&sCInfo);

VSIFClose (fpImage);

return (GDALDataset =) GDALOpen (pszFilename, GA_ReadOnly);

12.9.2 Dynamic Creation

)i

GDT_Byte,

In the case of dynamic creation, there is no source dataset. Instead the size, number of bands, and pixel
data type of the desired file is provided but other information (such as georeferencing, and imagery data)
would be supplied later via other method calls on the resulting GDALDataset (p. ??).

12.9 File Creation

The following sample implement PCI .aux labelled raw raster creation. It follows a common approach of
creating a blank, but valid file using non-GDAL calls, and then calling GDALOpen(,GA_Update) at the
end to return a writable file handle. This avoids having to duplicate the various setup actions in the Open()

function.

GDALDataset xPAuxDataset::Create(const char * pszFilename,

int nXSize, int nYSize, int nBands,
GDALDataType eType,
char x* // papszParmList)

char xpszAuxFilename;

if(eType != GDT_Byte && eType != GDT_Float32 && eType != GDT_UIntlé6
&& eType !'= GDT_Intl6)

CPLError(CE_Failure, CPLE_AppDefined,
"Attempt to create PCI .Aux labelled dataset with an illegal\n"
"data type (%s).\n",
GDALGetDataTypeName (eType));

return NULL;

FILE *fp;
fp = VSIFOpen(pszFilename, "w");

if(fp == NULL)
{
CPLError (CE_Failure, CPLE_OpenFailed,
"Attempt to create file ‘%s’ failed.\n",
pszFilename);
return NULL;

Just write out a couple of bytes to establish the binary
file, and then close it.

VSIFWrite ((void =) "\O\O", 2, 1, fp);
VSIFClose(fp);

pszAuxFilename = (char x) CPLMalloc(strlen(pszFilename)+5);
strcpy (pszAuxFilename, pszFilename);;

for(int i = strlen(pszAuxFilename)-1; i > 0; i--)
{
if(pszAuxFilename[i] == ".")

{

pszAuxFilename[i] = "\0’;
break;
}
}
strcat (pszAuxFilename, ".aux");

76 GDAL Driver Implementation Tutorial

fp = VSIFOpen(pszAuxFilename, "wt");
if(fp == NULL)
{
CPLError (CE_Failure, CPLE_OpenFailed,
"Attempt to create file ‘%s’ failed.\n",
pszAuxFilename) ;
return NULL;

et ettt
// We need to write out the original filename but without any
// path components in the AuxilaryTarget line. Do so now.
[T

int iStart;

iStart = strlen(pszFilename)-1;

while(iStart > 0 && pszFilename[iStart-1] != '/’

&& pszFilename[iStart-1] != "\\’)
iStart—--;

VSIFPrintf (fp, "AuxilaryTarget: %s\n", pszFilename + iStart);
[T
// Write out the raw definition for the dataset as a whole.
/] T o

VSIFPrintf(fp, "RawDefinition: %d %d %d\n",

nXSize, n¥YSize, nBands);

ettt
// Write out a definition for each band. We always write band
// sequential files for now as these are pretty efficiently
// handled by GDAL.
e

int nImgOffset = 0;

for(int iBand = 0; iBand < nBands; iBand++)
{

const char x pszTypeName;

int nPixelOffset;

int nLineOffset;

nPixelOffset = GDALGetDataTypeSize (eType)/8;
nLineOffset = nXSize * nPixelOffset;

if(eType == GDT_Float32)
pszTypeName = "32R";

else if(eType == GDT_Intl6)
pszTypeName = "163";

else if(eType == GDT_UIntl6)
pszTypeName = "16U";

else
pszTypeName = "8U";

VSIFPrintf (fp, "ChanDefinition-%d: %s %d %d %d %s\n",
iBand+1l, pszTypeName,
nImgOffset, nPixelOffset, nLineOffset,
#ifdef CPL_LSB
"Swapped"
#else
"Unswapped"
#endif
)i

nImgOffset += n¥Size * nLineOffset;

12.10 RawDataset/RawRasterBand Helper Classes 77

return (GDALDataset =) GDALOpen(pszFilename, GA_Update);

File formats supporting dynamic creation, or even just update-in-place access also need to implement
an IWriteBlock() method on the raster band class. It has semantics similar to IReadBlock(). As well,
for various esoteric reasons, it is critical that a FlushCache() method be implemented in the raster band
destructor. This is to ensure that any write cache blocks for the band be flushed out before the destructor is
called.

12.10 RawDataset/RawRasterBand Helper Classes

Many file formats have the actual imagery data stored in a regular, binary, scanline oriented format. Rather
than re-implement the access semantics for this for each formats, there are provided RawDataset and
RawRasterBand classes declared in gdal/frmts/raw that can be utilized to implement efficient and con-
venient access.

In these cases the format specific band class may not be required, or if required it can be derived from
RawRasterBand. The dataset class should be derived from RawDataset.

The Open() method for the dataset then instantiates raster bands passing all the layout information to the
constructor. For instance, the PNM driver uses the following calls to create it’s raster bands.

if (poOpenInfo->pabyHeader[1l] == "5’)
{
poDS->SetBand (
1, new RawRasterBand(poDS, 1, poDS->fpImage,
iIn, 1, nWidth, GDT_Byte, TRUE));
}
else
{
poDS—>SetBand (
1, new RawRasterBand(poDS, 1, poDS->fpImage,
iIn, 3, nWidthx3, GDT_Byte, TRUE));
poDS—->SetBand (
2, new RawRasterBand(poDS, 2, poDS->fplImage,
iIn+l, 3, nWidth+3, GDT_Byte, TRUE));
poDS—->SetBand (
3, new RawRasterBand(poDS, 3, poDS->fplImage,
iIn+2, 3, nWidth%3, GDT_Byte, TRUE));

The RawRasterBand takes the following arguments.

¢ poDS: The GDALDataset (p. ??) this band will be a child of. This dataset must be of a class derived
from RawRasterDataset.

e nBand: The band it is on that dataset, 1 based.

» fpRaw: The FILE * handle to the file containing the raster data.

* nImgOffset: The byte offset to the first pixel of raster data for the first scanline.

» nPixelOffset: The byte offset from the start of one pixel to the start of the next within the scanline.

78 GDAL Driver Implementation Tutorial

* nLineOffset: The byte offset from the start of one scanline to the start of the next.
» eDataType: The GDALDataType code for the type of the data on disk.

» bNativeOrder: FALSE if the data is not in the same endianness as the machine GDAL is running
on. The data will be automatically byte swapped.

Simple file formats utilizing the Raw services are normally placed all within one file in the gdal/frmts/raw
directory. There are numerous examples there of format implementation.

12.11 Metadata, and Other Exotic Extensions

There are various other items in the GDAL data model, for which virtual methods exist on the GDAL-
Dataset (p. ??) and GDALRasterBand (p. ??). They include:

e Metadata: Name/value text values about a dataset or band. The GDALMajorObject (p. ??) (base
class for GDALRasterBand (p.??) and GDALDataset (p.??)) has built-in support for holding
metadata, so for read access it only needs to be set with calls to SetMetadataltem() during the Open().
The SAR_CEOS (frmts/ceos2/sar_ceosdataset.cpp) and GeoTIFF drivers are examples of drivers
implementing readable metadata.

¢ ColorTables: GDT_Byte raster bands can have color tables associated with them. The
frmts/png/pngdataset.cpp driver contains an example of a format that supports colortables.

* ColorInterpretation: The PNG driver contains an example of a driver that returns an indication of
whether a band should be treated as a Red, Green, Blue, Alpha or Greyscale band.

* GCPs: GDALDatasets can have a set of ground control points associated with them (as opposed
to an explicit affine transform returned by GetGeotransform()) relating the raster to georeferenced
coordinates. The MFF2 (gdal/frmts/raw/hkvdataset.cpp) format is a simple example of a format
supporting GCPs.

* NoDataValue: Bands with known "nodata" values can implement the GetNoDataValue() method.
See the PAux (frmts/raw/pauxdataset.cpp) for an example of this.

¢ Category Names: Classified images with names for each class can return them using the GetCate-
goryNames() method though no formats currently implement this.

Chapter 13

GDAL API Tutorial

80 GDAL API Tutorial

13.1 Opening the File

Before opening a GDAL supported raster datastore it is necessary to register drivers. There is a driver for
each supported format. Normally this is accomplished with the GDALAIIRegister() (p. ??) function which
attempts to register all known drivers, including those auto-loaded from .so files using GDALDriverMan-
ager::AutoLoadDrivers() (p.??). If for some applications it is necessary to limit the set of drivers it may
be helpful to review the code from gdalallregister.cpp.

Once the drivers are registered, the application should call the free standing GDALOpen() (p. ??) function
to open a dataset, passing the name of the dataset and the access desired (GA_ReadOnly or GA_Update).

In C++:

#include "gdal_priv.h"
int main ()
{
GDALDataset *poDataset;
GDALAllRegister();
poDataset = (GDALDataset =) GDALOpen(pszFilename, GA_ReadOnly);
if (poDataset == NULL)
{

}

InC:

#include "gdal.h"
int main ()

{
GDALDatasetH hDataset;

GDALAllRegister () ;

hDataset GDALOpen (pszFilename, GA_ReadOnly);
if (hDataset == NULL)
{
}
In Python:

import gdal
from gdalconst import =*

dataset = gdal.Open(filename, GA_ReadOnly)
if dataset is None:

Note that if GDALOpen() (p. ??) returns NULL it means the open failed, and that an error messages will
already have been emitted via CPLError() (p.??). If you want to control how errors are reported to the
user review the CPLError() (p.??) documentation. Generally speaking all of GDAL uses CPLError()
(p- ??) for error reporting. Also, note that pszFilename need not actually be the name of a physical file
(though it usually is). It’s interpretation is driver dependent, and it might be an URL, a filename with
additional parameters added at the end controlling the open or almost anything. Please try not to limit
GDAL file selection dialogs to only selecting physical files.

13.2 Getting Dataset Information

13.2 Getting Dataset Information

As described in the GDAL Data Model, a GDALDataset (p.??) contains a list of raster bands, all
pertaining to the same area, and having the same resolution. It also has metadata, a coordinate system, a

georeferencing transform, size of raster and various other information.

adfGeoTransform[0] /x top left x x/

adfGeoTransform[1l] /x w-e pixel resolution */
adfGeoTransform[2] /x rotation, 0 if image is "north up" x/
adfGeoTransform[3] /* top left y x/

adfGeoTransform[4] /x rotation, 0 if image is "north up" x/
adfGeoTransform[5] /* n-s pixel resolution =/

If we wanted to print some general information about the dataset we might do the following:

In C++:

double adfGeoTransform[6];

printf("Driver: %s/%s\n",
poDataset—>GetDriver () ->GetDescription (),
poDataset->GetDriver () ->GetMetadataItem(GDAL_DMD_LONGNAME)

printf("Size is %dx%dx%d\n",
poDataset->GetRasterXSize (), poDataset->GetRasterYSize(),
poDataset—->GetRasterCount ());

if (poDataset->GetProjectionRef () = NULL)
printf ("Projection is ‘%s’\n", poDataset->GetProjectionRef ());
if (poDataset->GetGeoTransform(adfGeoTransform) == CE_None)
{
printf("Origin = (%.6f,%.6f)\n",
adfGeoTransform[0], adfGeoTransform([3]);

printf("Pixel Size =

($.6f,%.6f)\n",
adfGeoTransform[1],

adfGeoTransform[5]);

In C:

GDALDriverH hDriver;
double adfGeoTransform[6];

hDriver = GDALGetDatasetDriver (hDataset);

printf ("Driver: %$s/%$s\n",
GDALGetDriverShortName (hDriver),
GDALGetDriverLongName (hDriver));
printf("Size is %dx%dx%d\n",

GDALGetRasterXSize (hDataset),
GDALGetRasterYSize (hDataset),
GDALGetRasterCount (hDataset));

if (GDALGetProjectionRef (hDataset) != NULL)
printf("Projection is ‘%s’\n", GDALGetProjectionRef (hDataset)

if (GDALGetGeoTransform(hDataset, adfGeoTransform) == CE_None)
{
printf("Origin = (%.6f,%.6f)\n",
adfGeoTransform[0], adfGeoTransform[3]);

printf("Pixel Size = (%.6f,%.6f)\n",

)i

)i

82

GDAL API Tutorial

adfGeoTransform[1l], adfGeoTransform[5]);

In Python:

print ’Driver: ', dataset.GetDriver ().ShortName,’/’, \
dataset.GetDriver () . LongName

print ’Size is ’,dataset.RasterXSize,’x’,dataset.RasterYSize, \
'x' ,dataset .RasterCount

print ’'Projection is ’,dataset.GetProjection ()

geotransform = dataset.GetGeoTransform()

if not geotransform is None:
print ’Origin = (’,geotransform[0], ’,’,geotransform[3],")’
print 'Pixel Size = (’,geotransform[l], ’,’,geotransform[5],’)’

13.3 Fetching a Raster Band

At this time access to raster data via GDAL is done one band at a time. Also, there is metadata, blocksizes,
color tables, and various other information available on a band by band basis. The following codes fetches
a GDALRasterBand (p. ??) object from the dataset (numbered 1 through GetRasterCount()) and displays
a little information about it.

In C++:

GDALRasterBand *poBand;

int nBlockXSize, nBlockYSize;
int bGotMin, bGotMax;

double adfMinMax[2];

poBand = poDataset->GetRasterBand(1);
poBand->GetBlockSize (&nBlockXSize, &nBlockYSize);
printf ("Block=%dx%d Type=%s, ColorInterp=%s\n",
nBlockXSize, nBlockYSize,
GDALGetDataTypeName (poBand->GetRasterDataType ()),
GDALGetColorInterpretationName (
poBand->GetColorInterpretation()));

adfMinMax[0] = poBand->GetMinimum(&bGotMin);
adfMinMax[1l] = poBand->GetMaximum(&bGotMax);
if(! (bGotMin && bGotMax))

GDALComputeRasterMinMax ((GDALRasterBandH) poBand, TRUE, adfMinMax);

printf("Min=%.3fd, Max=%.3f\n", adfMinMax[0], adfMinMax[1l]);

if (poBand->GetOverviewCount () > 0)

printf ("Band has %d overviews.\n", poBand->GetOverviewCount ());

if (poBand->GetColorTable() != NULL)
printf ("Band has a color table with %d entries.\n",
poBand->GetColorTable () ->GetColorEntryCount ());

InC:

GDALRasterBandH hBand;

int nBlockXSize, nBlockYSize;
int bGotMin, bGotMax;
double adfMinMax [2];

hBand = GDALGetRasterBand(hDataset, 1);
GDALGetBlockSize (hBand, &nBlockXSize, &nBlockYSize);

13.4 Reading Raster Data 83

printf ("Block=%dx%d Type=%s, ColorInterp=%s\n",
nBlockXSize, nBlockYSize,
GDALGetDataTypeName (GDALGetRasterDataType (hBand)),
GDALGetColorInterpretationName (
GDALGetRasterColorInterpretation (hBand)));

adfMinMax [0] GDALGetRasterMinimum(hBand, &bGotMin);
adfMinMax[1l] = GDALGetRasterMaximum(hBand, &bGotMax);
if(! (bGotMin && bGotMax))

GDALComputeRasterMinMax (hBand, TRUE, adfMinMax);

printf("Min=%.3fd, Max=%.3f\n", adfMinMax[0], adfMinMax[1l]);

if (GDALGetOverviewCount (hBand) > 0)
printf ("Band has %d overviews.\n", GDALGetOverviewCount (hBand)) ;

if (GDALGetRasterColorTable(hBand) != NULL)
printf ("Band has a color table with %d entries.\n",
GDALGetColorEntryCount (
GDALGetRasterColorTable(hBand)));

In Python (note several bindings are missing):

band = dataset.GetRasterBand(1l)
print ’Band Type=',gdal.GetDataTypeName (band.DataType)

min = band.GetMinimum ()

max = band.GetMaximum ()

if min is not None and max is not None:
(min, max) = ComputeRasterMinMax (1)

print 'Min=%.3f, Max=%.3f’ % (min,max)

if band.GetOverviewCount () > O:

print ’Band has ’, band.GetOverviewCount (), '

overviews.’

if not band.GetRasterColorTable () is None:
print ’‘Band has a color table with ', \
band.GetRasterColorTable () .GetCount (), ’ entries.’

13.4 Reading Raster Data

There are a few ways to read raster data, but the most common is via the GDALRasterBand::RasterIO()
(p- ??) method. This method will automatically take care of data type conversion, up/down sampling and
windowing. The following code will read the first scanline of data into a similarly sized buffer, converting
it to floating point as part of the operation.

In C++:
float *pafScanline;
int nXSize = poBand->GetXSize();
pafScanline = (float) CPLMalloc(sizeof (float)*nXSize);
poBand->RasterIO(GF_Read, 0, 0, nXSize, 1,
pafScanline, nXSize, 1, GDT_Float32,
0, 0);
InC:

float xpafScanline;
int nXSize = GDALGetRasterBandXSize (hBand);

84 GDAL API Tutorial

pafScanline = (float x) CPLMalloc(sizeof (float)*nXSize);
GDALRasterIO(hBand, GF_Read, 0, 0, nXSize, 1,
pafScanline, nXSize, 1, GDT_Float32,
0, 0);

In Python:

scanline = band.ReadRaster(0, 0, band.XSize, 1, \
band.XSize, 1, GDT_Float32)

Note that the returned scanline is of type string, and contains xsizex4 bytes of raw binary floating point
data. This can be converted to Python values using the struct module from the standard library:

import struct

tuple_of_floats = struct.unpack(’f’ x b2.XSize, scanline)

The RasterlO call takes the following arguments.

CPLErr GDALRasterBand::RasterIO(GDALRWFlag eRWFlag,
int nXOff, int nYOff, int nXSize, int nYSize,
void % pData, int nBufXSize, int nBufYSize,
GDALDataType eBufType,
int nPixelSpace,
int nLineSpace)

Note that the same RasterIO() call is used to read, or write based on the setting of eRWFlag (either GF_-
Read or GF_Write). The nXOff, nYOff, nXSize, nYSize argument describe the window of raster data on
disk to read (or write). It doesn’t have to fall on tile boundaries though access may be more efficient if it
does.

The pData is the memory buffer the data is read into, or written from. It’s real type must be whatever is
passed as eBufType, such as GDT_Float32, or GDT_Byte. The RasterIO() call will take care of converting
between the buffer’s data type and the data type of the band. Note that when converting floating point data
to integer RasterIO() rounds down, and when converting source values outside the legal range of the output
the nearest legal value is used. This implies, for instance, that 16bit data read into a GDT_Byte buffer will
map all values greater than 255 to 255, the data is not scaled!

The nBufXSize and nBufYSize values describe the size of the buffer. When loading data at full resolution
this would be the same as the window size. However, to load a reduced resolution overview this could be
set to smaller than the window on disk. In this case the RasterIO() will utilize overviews to do the IO more
efficiently if the overviews are suitable.

The nPixelSpace, and nLineSpace are normally zero indicating that default values should be used. How-
ever, they can be used to control access to the memory data buffer, allowing reading into a buffer containing
other pixel interleaved data for instance.

13.5 Closing the Dataset

Please keep in mind that GDALRasterBand (p. ??) objects are owned by their dataset, and they should
never be destroyed with the C++ delete operator. GDALDataset’s can be closed either by calling GDAL-
Close() (p.??) or using the delete operator on the GDALDataset (p.??). Either will result in proper
cleanup, and flushing of any pending writes.

13.6 Techniques for Creating Files 85

13.6 Techniques for Creating Files

New files in GDAL supported formats may be created if the format driver supports creation. There are
two general techniques for creating files, using CreateCopy() and Create(). The CreateCopy method in-
volves calling the CreateCopy() method on the format driver, and passing in a source dataset that should be
copied. The Create method involves calling the Create() method on the driver, and then explicitly writing
all the metadata, and raster data with separate calls. All drivers that support creating new files support the
CreateCopy() method, but only a few support the Create() method.

To determine if a particular format supports Create or CreateCopy it is possible to check the DCAP_-
CREATE and DCAP_CREATECOPY metadata on the format driver object. Ensure that GDALAIIReg-
ister() (p.??) has been called before calling GetDriverByName(). In this example we fetch a driver, and
determine whether it supports Create() and/or CreateCopy().

In C++:

#include "cpl_string.h"

const char xpszFormat = "GTiff";
GDALDriver xpoDriver;
char xxpapszMetadata;

poDriver = GetGDALDriverManager () —>GetDriverByName (pszFormat) ;

if(poDriver == NULL)
exit(1);

papszMetadata = poDriver->GetMetadatal();

if(CSLFetchBoolean(papszMetadata, GDAL_DCAP_CREATE, FALSE))
printf ("Driver %s supports Create() method.\n", pszFormat);

if(CSLFetchBoolean(papszMetadata, GDAL_DCAP_CREATECOPY, FALSE))
printf("Driver %s supports CreateCopy () method.\n", pszFormat);

InC:

#include "cpl_string.h"

const char xpszFormat = "GTiff";
GDALDriver hDriver = GDALGetDriverByName (pszFormat);
char xxpapszMetadata;

if (hDriver == NULL)
exit(1);

papszMetadata = GDALGetMetadata (hDriver, NULL);

if(CSLFetchBoolean(papszMetadata, GDAL_DCAP_CREATE, FALSE))
printf("Driver %s supports Create() method.\n", pszFormat);

if (CSLFetchBoolean(papszMetadata, GDAL_DCAP_CREATECOPY, FALSE))
printf("Driver %s supports CreateCopy() method.\n", pszFormat);

In Python:

format = "GTiff"
driver = gdal.GetDriverByName (format)
metadata = driver.GetMetadata ()
if metadata.has_key (gdal.DCAP_CREATE) \
and metadata[gdal.DCAP_CREATE] == ’'YES’:
print ’Driver %s supports Create () method.’ % format
if metadata.has_key (gdal.DCAP_CREATECOPY) \
and metadata[gdal.DCAP_CREATECOPY] == "YES':
print ’Driver $%s supports CreateCopy () method.’ % format

Note that a number of drivers are read-only and won’t support Create() or CreateCopy().

86 GDAL API Tutorial

13.7 Using CreateCopy()

The GDALDriver::CreateCopy() (p.??) method can be used fairly simply as most information is col-
lected from the source dataset. However, it includes options for passing format specific creation options,
and for reporting progress to the user as a long dataset copy takes place. A simple copy from the a file
named pszSrcFilename, to a new file named pszDstFilename using default options on a format whose
driver was previously fetched might look like this:

In C++:

GDALDataset #*poSrcDS =
(GDALDataset %) GDALOpen(pszSrcFilename, GA_ReadOnly);
GDALDataset xpoDstDS;

poDstDS = poDriver->CreateCopy(pszDstFilename, poSrcDS, FALSE,
NULL, NULL, NULL);
if(poDstDS != NULL)
delete poDstDS;

InC:

GDALDatasetH hSrcDS = GDALOpen(pszSrcFilename, GA_ReadOnly);
GDALDatasetH hDstDS;

hDstDS = GDALCreateCopy(hDriver, pszDstFilename, hSrcDS, FALSE,
NULL, NULL, NULL);
if (hDstDS != NULL)
GDALClose (hDstDS);

In Python:
src_ds = gdal.Open(src_filename)
dst_ds = driver.CreateCopy(dst_filename, src_ds, 0)

Note that the CreateCopy() method returns a writeable dataset, and that it must be closed properly to
complete writing and flushing the dataset to disk. In the Python case this occurs automatically when "dst_-
ds" goes out of scope. The FALSE (or 0) value used for the bStrict option just after the destination filename
in the CreateCopy() call indicates that the CreateCopy() call should proceed without a fatal error even if the
destination dataset cannot be created to exactly match the input dataset. This might be because the output
format does not support the pixel datatype of the input dataset, or because the destination cannot support
writing georeferencing for instance.

A more complex case might involve passing creation options, and using a predefined progress monitor like
this:

In C++:

#include "cpl_string.h"
char xxpapszOptions = NULL;

papszOptions = CSLSetNameValue (papszOptions, "TILED", "YES");
papszOptions = CSLSetNameValue (papszOptions, "COMPRESS", "PACKBITS");
poDstDS = poDriver->CreateCopy(pszDstFilename, poSrcDS, FALSE,
papszOptions, GDALTermProgress, NULL);
if(poDstDS != NULL)
delete poDstDS;
CSLDestroy (papszOptions);

In C:

13.8 Using Create() 87

#include "cpl_string.h"
char x*papszOptions = NULL;

papszOptions = CSLSetNameValue (papszOptions, "TILED", "YES");
papszOptions = CSLSetNameValue (papszOptions, "COMPRESS", "PACKBITS");
hDstDS = GDALCreateCopy(hDriver, pszDstFilename, hSrcDS, FALSE,
papszOptions, GDALTermProgres, NULL);
if(hDstDS != NULL)
GDALClose (hDstDS);
CSLDestroy (papszOptions);

In Python:
src_ds = gdal.Open(src_filename)
dst_ds = driver.CreateCopy(dst_filename, src_ds, O,

["TILED=YES’, ’'COMPRESS=PACKBITS’])

13.8 Using Create()

For situations in which you are not just exporting an existing file to a new file, it is generally necessary to
use the GDALDriver::Create() (p. ??) method (though some interesting options are possible through use
of virtual files or in-memory files). The Create() method takes an options list much like CreateCopy(), but
the image size, number of bands and band type must be provided explicitly.

In C++:
GDALDataset xpoDstDS;
char xxpapszOptions = NULL;
poDstDS = poDriver->Create(pszDstFilename, 512, 512, 1, GDT_Byte,
papszOptions);
InC:
GDALDatasetH hDstDS;
char xxpapszOptions = NULL;
hDstDS = GDALCreate(hDriver, pszDstFilename, 512, 512, 1, GDT_Byte,

papszOptions);

In Python:

dst_ds = driver.Create(dst_filename, 512, 512, 1, gdal.GDT_Byte)

Once the dataset is successfully created, all appropriate metadata and raster data must be written to the file.
What this is will vary according to usage, but a simple case with a projection, geotransform and raster data
is covered here.

In C++:

double adfGeoTransform[6] = { 444720, 30, 0, 3751320, 0, -30 };
OGRSpatialReference oSRS;

char *pszSRS_WKT = NULL;

GDALRasterBand =*poBand;

GByte abyRaster[512%x512];

88 GDAL API Tutorial

poDstDS—->SetGeoTransform(adfGeoTransform);

OoSRS.SetUTM(11, TRUE);
OSRS.SetWellKnownGeogCS ("NAD27");
oSRS.exportToWkt (&pszSRS_WKT) ;
poDstDS->SetProjection(pszSRS_WKT);
CPLFree(pszSRS_WKT);

poBand = poDstDS->GetRasterBand (1) ;
poBand->RasterIO(GF_Write, 0, 0, 512, 512,
abyRaster, 512, 512, GDT_Byte, 0, 0);

delete poDstDS;

In C:

double adfGeoTransform[6] = { 444720, 30, 0, 3751320, 0, -30 };
OGRSpatialReferenceH hSRS;

char xpszSRS_WKT = NULL;

GDALRasterBandH hBand;

GByte abyRaster[512%512];

GDALSetGeoTransform(hDstDS, adfGeoTransform);

hSRS = OSRNewSpatialReference(NULL);
OSRSetUTM(hSRS, 11, TRUE);
OSRSetWellKnownGeogCS (hSRS, "NAD27");
OSRExportToWkt (hSRS, &pszSRS_WKT);
OSRDestroySpatialReference(hSRS);

GDALSetProjection(hDstDS, pszSRS_WKT);
CPLFree(pszSRS_WKT);

hBand = GDALGetRasterBand(hDstDS, 1);
GDALRasterIO(hBand, GF_Write, 0, 0, 512, 512,
abyRaster, 512, 512, GDT_Byte, 0, 0);

GDALClose (hDstDS);

In Python:

import Numeric, osr
dst_ds.SetGeoTransform([444720, 30, 0, 3751320, 0, -30 1)

srs = osr.SpatialReference ()

srs.SetUTM(11, 1)
srs.SetWellKnownGeogCS ('NAD27’)
dst_ds.SetProjection(srs.ExportToWkt ())

raster = Numeric.zeros((512, 512))
dst_ds.GetRasterBand(l) .WriteArray(raster)

Chapter 14

GDAL Utilities

90 GDAL Utilities

The following utility programs are distributed with GDAL.

« gdalinfo (p. ??) - report information about a file.

» gdal_translate (p. ??) - Copy a raster file, with control of output format.

» gdaladdo (p. ??) - Add overviews to a file.

» gdalwarp (p. ??) - Warp an image into a new coordinate system.

¢ gdaltindex (p. ??) - Build a MapServer raster tileindex.

* gdal_contour (p. ??) - Contours from DEM.

e rgh2pct.py (p. ??) - Convert a 24bit RGB image to 8bit paletted.

* pct2rgb.py (p. 2?) - Convert an 8bit paletted image to 24bit RGB.

e gdal_merge.py (p.??) - Build a quick mosaic from a set of images.

* gdal2tiles.py (p.??) - Create a TMS tile structure, KML and simple web viewer.
« gdal_rasterize (p. ??) - Rasterize vectors into raster file.

* gdaltransform (p. ??) - Transform coordinates.

 nearblack (p. ??) - Convert nearly black/white borders to exact value.

» gdal_retile.py (p. ??) - Retiles a set of tiles and/or build tiled pyramid levels.
* gdal_grid (p. ??) - Create raster from the scattered data.

* gdal-config (p. ??) - Get options required to build software using GDAL.

14.1 Creating New Files

Access an existing file to read it is generally quite simple. Just indicate the name of the file or dataset on
the commandline. However, creating a file is more complicated. It may be necessary to indicate the the
format to create, various creation options affecting how it will be created and perhaps a coordinate system
to be assigned. Many of these options are handled similarly by different GDAL utilities, and are introduced
here.

-of format Select the format to create the new file as. The formats are assigned short names such as
GTiff (for GeoTIFF) or HFA (for Erdas Imagine). The list of all format codes can be listed with the
—formats switch. Only formats list as "(rw)" (read-write) can be written.

Many utilities default to creating GeoTIFF files if a format is not specified. File extensions are not
used to guess output format, nor are extensions generally added by GDAL if not indicated in the
filename by the user.

-co NAME=VALUE Many formats have one or more optional creation options that can be used to control
particulars about the file created. For instance, the GeoTIFF driver supports creation options to
control compression, and whether the file should be tiled.

The creation options available vary by format driver, and some simple formats have no creation
options at all. A list of options supported for a format can be listed with the "—format <format>"
commandline option but the web page for the format is the definitive source of information on driver
creation options.

14.2 General Command Line Switches 91

-a_srs SRS Several utilities, (gdal_translate and gdalwarp) include the ability to specify coordinate sys-
tems with commandline options like -a_srs (assign SRS to output), -s_srs (source SRS) and -t_srs
(target SRS).

These utilities allow the coordinate system (SRS = spatial reference system) to be assigned in a
variety of formats.

* NAD27/NAD83/WGS84/WGS72: These common geographic (lat/long) coordinate systems
can be used directly by these names.

* EPSG:n: Coordinate systems (projected or geographic) can be selected based on their EPSG
codes, for instance EPSG:27700 is the British National Grid. A list of EPSG coordinate systems
can be found in the GDAL data files gcs.csv and pcs.csv.

* PROJ.4 Definitions: A PROJ.4 definition string can be used as a coordinate system. For in-
stance "+proj=utm +zone=11 +datum=WGS84". Take care to keep the proj.4 string together as
a single argument to the command (usually by double quoting).

* OpenGIS Well Known Text: The Open GIS Consortium has defined a textual format for de-
scribing coordinate systems as part of the Simple Features specifications. This format is the
internal working format for coordinate systems used in GDAL. The name of a file containing
a WKT coordinate system definition may be used a coordinate system argument, or the entire
coordinate system itself may be used as a commandline option (though escaping all the quotes
in WKT is quite challenging).

e ESRI Well Known Text: ESRI uses a slight variation on OGC WKT format in their ArcGIS
product (ArcGIS .prj files), and these may be used in a similar manner to WKT files, but
the filename should be prefixed with ESRI::. For example "ESRI::NAD 1927 StatePlane
Wyoming West FIPS 4904.prj''.

14.2 General Command Line Switches
All GDAL command line utility programs support the following "general" options.

—version Report the version of GDAL and exit.

—formats List all raster formats supported by this GDAL build (read-only and read-write) and exit. The
format support is indicated as follows: ’ro’ is read-only driver; 'rw’ is read or write (ie. supports
CreateCopy); ‘rw+’ is read, write and update (ie. supports Create).

—format format List detailed information about a single format driver. The format should be the short
name reported in the —formats list, such as GTiff.

—optfile file Read the named file and substitute the contents into the commandline options list. Lines
beginning with # will be ignored. Multi-word arguments may be kept together with double quotes.

—config key value Sets the named configuration keyword to the given value, as opposed to setting them as
environment variables. Some common configuration keywords are GDAL_CACHEMAX (memory
used internally for caching in megabytes) and GDAL_DATA (path of the GDAL "data" directory).
Individual drivers may be influenced by other configuration options.

—debug value Control what debugging messages are emitted. A value of ON will enable all debug mes-
sages. A value of OFF will disable all debug messages. Another value will select only debug
messages containing that string in the debug prefix code.

—help-general Gives a brief usage message for the generic GDAL commandline options and exit.

92

GDAL Utilities

Chapter 15

gdalinfo

94 gdalinfo

lists information about a raster dataset

15.1 SYNOPSIS

gdalinfo [--help-general] [-mm] [-stats] [-nogcp] [-nomd]
[-noct] [-checksum] [-mdd domain]* datasetname

15.2 DESCRIPTION

The gdalinfo program lists various information about a GDAL supported raster dataset.

-mm Force computation of the actual min/max values for each band in the dataset.
-stats Read and display image statistics. Force computation if no statistics are stored in an image.

-nogcp Suppress ground control points list printing. It may be useful for datasets with huge amount of
GCPs, such as L1B AVHRR or HDF4 MODIS which contain thousands of the ones.

-nomd Suppress metadata printing. Some datasets may contain a lot of metadata strings.
-noct Suppress printing of color table.
-checksum Force computation of the checksum for each band in the dataset.

-mdd domain Report metadata for the specified domain
The gdalinfo will report all of the following (if known):

* The format driver used to access the file.

* Raster size (in pixels and lines).

* The coordinate system for the file (in OGC WKT).

» The geotransform associated with the file (rotational coefficients are currently not reported).

» Corner coordinates in georeferenced, and if possible lat/long based on the full geotransform (but not
GCPs).

* Ground control points.

* File wide (including subdatasets) metadata.

* Band data types.

* Band color interpretations.

* Band block size.

* Band descriptions.

* Band min/max values (internally known and possibly computed).
* Band checksum (if computation asked).

* Band NODATA value.

* Band overview resolutions available.

* Band unit type (i.e.. "meters" or "feet" for elevation bands).

* Band pseudo-color tables.

15.3 EXAMPLE

15.3 EXAMPLE

gdalinfo ~/openev/utm.tif

Driver: GTiff/GeoTIFF
Size is 512, 512
Coordinate System is:

PROJCS["NAD27 / UTM zone 11N",

GEOGCS ["NAD27",

DATUM["North_American_Datum_1927",
SPHEROID["Clarke 1866",6378206.4,294.97869821390111,
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433117,
PROJECTION ["Transverse_Mercator"],
PARAMETER(["latitude_of_origin",0],
PARAMETER ["central_meridian",-117],
PARAMETER["scale_factor",0.9996],
PARAMETER(["false_easting", 5000007,
PARAMETER(["false_northing",0],

UNIT["metre", 1]

Origin = (440720.000000,3751320.000000)

Pixel Size = (60.000000,-60.000000)
Corner Coordinates:

Upper Left (440720.000, 3751320.
Lower Left (440720.000, 3720600
Upper Right (471440.000, 3751320
Lower Right (471440.000, 3720600.
Center (456080.000, 3735960.

Band 1 Block=512x16 Type=Byte,

000)

.000)
.000)

000)
000)

(117d38" 28
(117d38" 20
(117d18"32
(117d18"28
(117d28" 27

ColorInterp=Gray

21",
.79"W,
L07"W,
.50"W,
.39"W,

33d54'8.47"N)

33d37'31
33d54"13
33d37" 35
33d45’52

.04"N)
.08"N)
.61"N)
.46"N)

96

gdalinfo

Chapter 16

gdal_translate

98 gdal_translate

converts raster data between different formats

16.1 SYNOPSIS

co "NAME=VALUE"] x
rc_dataset dst_dataset

gdal_translate [--help-general]

[-ot {Byte/Intl6/UIntl6/UInt32/Int32/Float32/Float6d/
CIntl6/CInt32/CFloat32/CFloat64}] [-not_strict]

[-of format] [-b band] [-outsize xsize[%] ysize[%]]

[-scale [src_min src_max [dst_min dst_max]]]

[-srcwin xoff yoff xsize ysize] [-projwin ulx uly lrx lry]

[-a_srs srs_def] [-a_ullr ulx uly lrx lry] [-a_nodata value]

[-gcp pixel line easting northing]«*

[-mo "META-TAG=VALUE"]* [-quiet] [-sds]

I:,

s

16.2 DESCRIPTION

The gdal_translate utility can be used to convert raster data between different formats, potentially perform-
ing some operations like subsettings, resampling, and rescaling pixels in the process.

-ot: type For the output bands to be of the indicated data type.

-not_strict: Be forgiving of mismatches and lost data when translating to the output format.

-of format: Select the output format. The default is GeoTIFF (GTiff). Use the short format name.

-b band: Select an input band band for output. Bands are numbered from 1 Multiple -b switches may be
used to select a set of input bands to write to the output file, or to reorder bands.

-outsize xsize[%] ysize[%]: Set the size of the output file. Outsize is in pixels and lines unless ” is attached
in which case it is as a fraction of the input image size.

-scale [src_min src_max [dst_min dst_max]]: Rescale the input pixels values from the range src_min to
src_max to the range dst_min to dst_max. If omitted the output range is 0 to 255. If omitted the input
range is automatically computed from the source data.

-srewin xoff yoff xsize ysize: Selects a subwindow from the source image for copying based on pixel/line
location.

-projwin ulx uly Irx Iry: Selects a subwindow from the source image for copying (like -srewin) but with
the corners given in georeferenced coordinates.

-a_srs srs_def: Override the projection for the output file. The srs_def may be any of the usual
GDAL/OGR forms, complete WKT, PROJ.4, EPSG:n or a file containing the WKT.

-a_ullr ulx uly Irx Iry: Assign/override the georeferenced bounds of the output file. This assigns georef-
erenced bounds to the output file, ignoring what would have been derived from the source file.

-a_nodata value: Assign a specified nodata value to output bands.
-mo "META-TAG=VALUE'": Passes a metadata key and value to set on the output dataset if possible.

-co "NAME=VALUE'"": Passes a creation option to the output format driver. Multiple -co options may be
listed. See format specific documentation for legal creation options for each format.

-gcep pixel line easting northing: Add the indicated ground control point to the output dataset. This option
may be provided multiple times to provide a set of GCPs.

16.3 EXAMPLE 929

-quiet: Suppress progress monitor and other non-error output.

-sds: Copy all subdatasets of this file to individual output files. Use with formats like HDF or OGDI that
have subdatasets.

src_dataset: The source dataset name. It can be either file name, URL of data source or subdataset name
for multi-dataset files.

dst_dataset: The destination file name.

16.3 EXAMPLE

gdal_translate -of GTiff -co "TILED=YES" utm.tif utm_tiled.tif

100 gdal_translate

Chapter 17

gdaladdo

102 gdaladdo

builds or rebuilds overview images

17.1 SYNOPSIS

gdaladdo [-r {nearest,average,average_mp, average_magphase,mode}]
[-—help-general] filename levels

17.2 DESCRIPTION

The gdaladdo utility can be used to build or rebuild overview images for most supported file formats with
one over several downsampling algorithms.

-r {nearest,average,average_mp,average_magphase,mode}: Select a resampling algorithm.

filename: The file to build overviews for.

levels: A list of integral overview levels to build.

Mode is not actually implemented, and average_mp is unsuitable for use. Average_magphase averages
complex data in mag/phase space. Nearest and average are applicable to normal image data. Nearest

applies a nearest neighbour (simple sampling) resampler, while average computes the average of all non-
NODATA contributing pixels.

Selecting a level value like 2 causes an overview level that is 1/2 the resolution (in each dimension) of the
base layer to be computed. If the file has existing overview levels at a level selected, those levels will be
recomputed and rewritten in place.

Some format drivers do not support overviews at all. Many format drivers store overviews in a secondary
file with the extension .ovr that is actually in TIFF format. The GeoTIFF driver stores overviews internally
to the file operated on.

Overviews created in TIFF format may be compressed using the COMPRESS_OVERVIEW configura-
tion option. All compression methods, supported by the GeoTIFF driver, available here. (eg —config
COMPRESS_OVERVIEW DEFLATE)

Most drivers also support an alternate overview format using Erdas Imagine format. To trigger this use the
USE_RRD=YES configuration option. This will place the overviews in an associated .aux file suitable for
direct use with Imagine or ArcGIS as well as GDAL applications. (eg —config USE_RRD YES)

17.3 EXAMPLE

Create overviews, embedded in the supplied TIFF file:

gdaladdo -r average abc.tif 2 4 8 16

Create an external compressed GeoTIFF overview file from the ERDAS .IMG file:
gdaladdo --config COMPRESS_OVERVIEW DEFLATE erdas.img 2 4 8 16

Create an Erdas Imagine format overviews for the indicated JPEG file:

gdaladdo --config USE_RRD YES airphoto.jpg 3 9 27 81

Chapter 18

gdalwarp

104 gdalwarp

simple image reprojection and warping utility

18.1 SYNOPSIS

gdalwarp
[-s_srs srs_def] [-t_srs srs_def] [-order n]] [-tps] [-et err_threshold]
[-te xmin ymin xmax ymax] [-tr xres yres] [-ts width height]
[-wo "NAME=VALUE"] [-ot Byte/Intlé6/...] [-wt Byte/Intlé6]
[-srcnodata "value [value...]"] [-dstnodata "value [value...]"] -dstalpha
[-r resampling_method] [-wm memory_in_mb] [-multi] [-qg]
[-of format] [-co "NAME=VALUE"]x* srcfilex dstfile

18.2 DESCRIPTION

The gdalwarp utility is an image mosaicing, reprojection and warping utility. The program can reproject to
any supported projection, and can also apply GCPs stored with the image if the image is "raw" with control
information.

-s_srs srs def: source spatial reference set. The coordinate systems that can be passed are anything sup-
ported by the OGRSpatialReference.SetFromUserInput() call, which includes EPSG PCS and GCSes
(ie. EPSG:4296), PROJ .4 declarations (as above), or the name of a .prf file containing well known
text.

-t_srs srs_def: target spatial reference set. The coordinate systems that can be passed are anything sup-
ported by the OGRSpatialReference.SetFromUserInput() call, which includes EPSG PCS and GCSes
(ie. EPSG:4296), PROJ.4 declarations (as above), or the name of a .prf file containing well known
text.

-order n: order of polynomial used for warping (1 to 3). The default is to select a polynomial order based
on the number of GCPs.

-tps Enable use of thin plate spline transformer based on available GCPs. Use this instead of the -order
switch.

-et err_threshold: error threshold for transformation approximation (in pixel units - defaults to 0.125).
-te xmin ymin xmax ymax: set georeferenced extents of output file to be created.

-tr xres yres: set output file resolution (in target georeferenced units)

-ts width height: set output file size in pixels and lines

-wo "NAME=VALUE'"": Set a warp options. The GDALWarpOptions::papszWarpOptions (p. ??) docs
show all options. Multiple -wo options may be listed.

-ot type: For the output bands to be of the indicated data type.

-wt type: Working pixel data type. The data type of pixels in the source image and destination image
buffers.

-r resampling_method: Resampling method to use. Available methods are:

near: nearest neighbour resampling (default, fastest algorithm, worst interpolation quality).
bilinear: bilinear resampling.

cubic: cubic resampling.

18.3 EXAMPLE 105

cubicspline: cubic spline resampling.

lanczos: Lanczos windowed sinc resampling.

-srcnodata value [value...]: Set nodata masking values for input bands (different values can be supplied
for each band). If more than one value is supplied all values should be quoted to keep them together
as a single operating system argument. Masked values will not be used in interpolation. Use a value
of None to ignore intrinsic nodata settings on the source dataset.

-dstnodata value [value...]: Set nodata values for output bands (different values can be supplied for each
band). If more than one value is supplied all values should be quoted to keep them together as a single
operating system argument. New files will be initialized to this value and if possible the nodata value
will be recorded in the output file.

-dstalpha: Create an output alpha band to identify nodata (unset/transparent) pixels.

-wm memory_in_mb: Set the amount of memory (in megabytes) that the warp API is allowed to use for
caching.

-multi: Use multithreaded warping implementation. Multiple threads will be used to process chunks of
image and perform input/output operation simultaneously.

-q: Be quiet.
-of format: Select the output format. The default is GeoTIFF (GTiff). Use the short format name.

-co "NAME=VALUE'"": passes a creation option to the output format driver. Multiple -co options may be
listed. See format specific documentation for legal creation options for each format.

srcfile: The source file name(s).

dstfile: The destination file name.

Mosaicing into an existing output file is supported if the output file already exists.

18.3 EXAMPLE

For instance, an eight bit spot scene stored in GeoTIFF with control points mapping the corners to lat/long
could be warped to a UTM projection with a command like this:

gdalwarp -t_srs ’+proj=utm +zone=11 +datum=WGS84’ raw_spot.tif utmll.tif

For instance, the second channel of an ASTER image stored in HDF with control points mapping the
corners to lat/long could be warped to a UTM projection with a command like this:

gdalwarp HDF4_SDS:ASTER_LIB:"pg-PR1IB0000-2002031402_100_001":2 pg-PR1IB0000-2002031402_100_001_2.tif

106 gdalwarp

Chapter 19

gdaltindex

108 gdaltindex

builds a shapefile as a raster tileindex

19.1 SYNOPSIS

gdaltindex [-tileindex field name] [-write_absolute_path] [-skip_different_projection] index_file [gdal_fi

19.2 DESCRIPTION

This program builds a shapefile with a record for each input raster file, an attribute containing the filename,
and a polygon geometry outlining the raster. This output is suitable for use with UMN MapServer as a
raster tileindex.

» The shapefile (index_file) will be created if it doesn’t already exist, otherwise it will append to the
existing file.
* The default tile index field is "location’.

* Raster filenames will be put in the file exactly as they are specified on the commandline unless the
option -write_absolute_path is used.

* If -skip_different_projection is specified, only files with same projection ref as files already inserted
in the tileindex will be inserted.

» Simple rectangular polygons are generated in the same coordinate system as the rasters.

19.3 EXAMPLE

gdaltindex dog_index.shp doqg/*.tif

Chapter 20

gdal_contour

110

gdal_contour

builds vector contour lines from a raster elevation model

20.1 SYNOPSIS

Usage: gdal_contour [-b <band>] [-a <attribute_name>] [-3d] [-inodata]
[-snodata n] [-f <formatname>] [-1 <interval>]
[-off <offset>] [-fl <level> <level>...]
<

src_filename> <dst_filename>

20.2 DESCRIPTION

This program generates a vector contour file from the input raster elevation model (DEM).

-s_srs srs def : source spatial reference set. The coordinate systems that can be passed are anything sup-
ported by the OGRSpatialReference.SetFromUserInput() call, which includes EPSG PCS and GCSes
(ie. EPSG:4296), PROJ.4 declarations (as above), or the name of a .prf file containing well known

text. </dl

-b band: picks a particular band to get the DEM from. Defaults to band 1.

-a name: provides a name for the attribute in which to put the elevation. If not provided no elevation

attribute is attached.
-3d: Force production of 3D vectors instead of 2D. Includes elevation at every vertex.
-inodata: Ignore any nodata value implied in the dataset - treat all values as valid.
-snodata value: Input pixel value to treat as "nodata".
-f format: create output in a particular format, default is shapefiles.
-i interval: elevation interval between contours.
-off offset: Offset from zero relative to which to interpret intervals.

-fl level: Name one or more "fixed levels" to extract.

20.3 EXAMPLE

This would create 10meter contours from the DEM data in dem.tif and produce a shapefile in con-

tour.shp/shx/dbf with the contour elevations in the "elev" attribute.

gdal_contour -a elev dem.tif contour.shp -i 10.0

Chapter 21

gdal_rasterize

112 gdal_rasterize

burns vector polygons into a raster

21.1 SYNOPSIS

Usage: gdal_rasterize [-b band] [-1]
[-burn value] | [-a attribute_name] | [-3d]
[-1 layername]* [-where expression] [-sgl select_statement]

<src_datasource> <dst_filename>

21.2 DESCRIPTION

This program burns vector polygons into the raster band(s) of a raster image. Vectors are read from OGR
supported vector formats.

-b band: The band(s) to burn values into. Multiple -b arguments may be used to burn into a list of bands.
The default is to burn into band 1.

-i: Invert rasterization. Burn the fixed burn value, or the burn value associated with the first feature into
all parts of the image not iside a polygon.

-burn value: A fixed value to burn into a band for all objects. A list of -burn options can be supplied, one
per band being written to.

-a attribute_name: Identifies an attribute field on the features to be used for a burn in value. The value
will be burned into all output bands.

-3d: Indicates that a burn value should be extracted from the "Z" values of the feature (not yet imple-
mented).

-1 layername: Indicates the layer(s) from the datasource that will be used for input features. May be
specified multiple times, but at least one layer name or a -sql option must be specified.

-where expression: An optional SQL WHERE style query expression to be applied to select features to
burn in from the input layer(s).

-sql select_statement: An SQL statement to be evaluated against the datasource to produce a virtual layer
of features to be burned in.

src_datasource: Any OGR supported readable datasource.

dst_filename: The GDAL supported output file. Must support update mode access. Currently gdal_-
rasterize cannot create new output files though that may be added eventually.

21.3 EXAMPLE

The following would burn all polygons from mask.shp into the RGB TIFF file work.tif with the color red
(RGB =255,0,0).

gdal_rasterize -b 1 -b 2 -b 3 -burn 255 -burn 0 -burn 0 -1 mask mask.shp work.tif

The following would burn all "class A" buildings into the output elevation file, pulling the top elevation
from the ROOF_H attribute.

gdal_rasterize -a ROOF_H -where ’class="A"' -1 footprints footprints.shp city_dem.tif

Chapter 22

rgb2pct.py

114 rgb2pct.py

converts an image into a pseudo-colored image

22.1 SYNOPSIS

rgb2pct.py [-n colors] [-of format] source_file dest_file

22.2 DESCRIPTION

This utility will compute an optimal pseudo-color table for a given RGB image using a median cut algo-
rithm on a downsampled RGB histogram. Then it converts the image into a pseudo-colored image using
the color table. This conversion utilizes Floyd-Steinberg dithering (error diffusion) to maximize output
image visual quality.

-n colors: Select the number of colors in the generated color table. Defaults to 256. Must be between 2
and 256.

-of format: Format to generated (defaults to GeoTIFF). Same semantics as the -of flag for gdal_translate.
Only output formats supporting pseudocolor tables should be used.

source_file: The input RGB file.

dest_file: The output pseudo-colored file that will be created.

NOTE: rgb2pct.py is a Python script, and will only work if GDAL was built with Python support.

Chapter 23

pct2rgb.py

116 pet2rgb.py

converts an image into a pseudo-colored image

23.1 SYNOPSIS

pct2rgb.py [-of format] [-b band] source_file dest_file

23.2 DESCRIPTION

This utility will convert a pseudocolor band on the input file into an output RGB file of the desired format.

-of format: Format to generated (defaults to GeoTIFF).
-b band: Band to convert to RGB, defaults to 1.
source_file: The input file.

dest_file: The output RGB file that will be created.

NOTE: pct2rgb.py is a Python script, and will only work if GDAL was built with Python support.

Chapter 24

gdaltransform

118 gdaltransform

transforms coordinates

24.1 SYNOPSIS

gdaltransform [--help-generall]

[i] [-s_srs srs_def] [-t_srs srs_def] [-order n]] [-tps]
[-gcp pixel line easting northing [elevation]]x

[srcfile [dstfile]]

24.2 DESCRIPTION

The gdaltransform utility reprojects a list of coordinates into any supported projection,including GCP-based
transformations.

-s_srs srs def: source spatial reference set. The coordinate systems that can be passed are anything sup-
ported by the OGRSpatialReference.SetFromUserInput() call, which includes EPSG PCS and GCSes
(ie. EPSG:4296), PROJ.4 declarations (as above), or the name of a .prf file containing well known
text.

-t_srs srs_def: target spatial reference set. The coordinate systems that can be passed are anything sup-
ported by the OGRSpatialReference.SetFromUserInput() call, which includes EPSG PCS and GCSes
(ie. EPSG:4296), PROJ.4 declarations (as above), or the name of a .prf file containing well known
text.

-order n: order of polynomial used for warping (1 to 3). The default is to select a polynomial order based
on the number of GCPs.

-tps Enable use of thin plate spline transformer based on available GCPs. Use this instead of the -order
switch.

-i Inverse transformation: from destination to source.

srcfile: File with source projection definition or GCP’s. If not given, source projection is read from the
command-line -s_srs or -gcp parameters

dstfile: File with destination projection definition.

Coordinates are read as pairs (or triples) of numbers per line from standard input, transformed, and written
out to standard output in the same way. All transformations offered by gdalwarp are handled, including
gcp-based ones.

Note that input and output must always be in decimal form. There is currently no support for DMS input
or output.

24.3 EXAMPLE

gdaltransform -s_srs epsg:28992 -t_srs epsg:31370
177502 311865
244510.77404604 166154.532871342 -1046.79270555763

Chapter 25

nearblack

120 nearblack

convert nearly black/white borders to black

25.1 SYNOPSIS

nearblack [-white] [-near dist] [-nb non_black_pixels]
[-o0 outfile] infile

25.2 DESCRIPTION

This utility will scan an image and try to set all pixels that are nearly black (or nearly white) around the
collar to exactly black (or white). This is often used to "fix up" lossy compressed airphotos so that color
pixels can be treated as transparent when mosaicing.

-0 outfile: The name of the output file to be created. Newly created files are currently always created with
the HFA driver (Erdas Imagine - .img)

-white: Search for nearly white (255) pixels instead of nearly black pixels.

-near dist: Select how far from black (or white) the pixel values can be and still considered near black
(white). Defaults to 15.

-nb non_black_pixels: number of non-black pixels that can be encountered before the giving up search
inwards. Defaults to 2.

infile: The input file. Any GDAL supported format, any number of bands, normally 8bit Byte bands.

The algorithm processes the image one scanline at a time. A scan "in" is done from either end setting pixels
to black (white) until at least "non_black_pixels" pixels that are more than "dist" gray levels away from
black (white) have been encountered at which point the scan stops. The nearly black (white) pixels are set
to black (white).

Note that this algorithm is only applied to horizontal scanlines, so a photo with an indentation in the top or
bottom will not have that indentation identified. The processing is all done in 8bit (Bytes).

If the output file is omitted, the processed results will be written back to the input file - which must support
update.

Chapter 26

gdal_merge.py

122 gdal_merge.py

mosaics a set of images

26.1 SYNOPSIS

gdal_merge.py [-o0 out_filename] [-of out_format] [-co NAME=VALUE] %
[-ps pixelsize_x pixelsize_y] [-separate] [-v] [-pct]
[-ul_1r ulx uly lrx lry] [-n nodata_value] [-init value]
[-ot datatype] [-createonly] input_files

26.2 DESCRIPTION

This utility will automatically mosaic a set of images. All the images must be in the same coordinate
system and have a matching number of bands, but they may be overlapping, and at different resolutions.
-0 out_filename: The name of the output file to be created.

-of format: Output format, defaults to GeoTIFF (GTiff).

-co NAME=VALUE: Creation option for output file. Multiple options can be specified.

-ot datatype: Force the output image bands to have a specific type. Use type names (ie. Byte, Int16,...)

-ps pixelsize_x pixelsize_y: Pixel size to be used for the output file. If not specified the resolution of the
first input file will be used.

-ul_Ir ulx uly Irx Iry: The extents of the output file. If not specified the aggregate extents of all input files
will be used.

-v: Generate verbose output of mosaicing operations as they are done.
-separate: Place each input file into a separate stacked band.

-pct: Grab a pseudocolor table from the first input image, and use it for the output. Merging pseudocolored
images this way assumes that all input files use the same color table.

-n nodata_value: Ignore pixels from files being merged in with this pixel value.

-init value: Pre-initialize the output file with this value. However, it is not marked as the nodata value in
the output file.

-createonly: The output file is created (and potentially pre-initialized) but no input image data is copied
into it.

NOTE: gdal_merge.py is a Python script, and will only work if GDAL was built with Python support.

Chapter 27

gdal2tiles.py

124 gdal2tiles.py

generates directory with TMS tiles, KMLs and simple web viewers

27.1 SYNOPSIS

gdal2tiles.py [-title "Title"] [-publishurl http://yourserver/dir/]
[-nogooglemaps] [-noopenlayers] [-nokml]
[-googlemapskey KEY] [-forcekml] [-V]

input_file [output_dir]

27.2 DESCRIPTION

This utility generates a directory with small tiles and metadata, following OSGeo Tile Map Service Spec-
ification. Simple web pages with viewers based on Google Maps and OpenLayers are generated as well
- so anybody can comfortably explore your maps on-line and you do not need to install or configure any
special software (like mapserver) and the map displays very fast in the webbrowser. You only need to
upload generated directory into a web server.

GDAL2Tiles creates also necessary metadata for Google Earth (KML SuperOverlay), in case the supplied
map uses EPSG:4326 projection.

World files and embedded georeference is used during tile generation, but you can publish a picture without
proper georeference too.
-title "'Title'': Title used for generated metadata, web viewers and KML files.

-publishurl http://yourserver/dir/: Address of a directory into which you are going to upload
the result. It should end with slash.

-nogooglemaps: Do not generate Google Maps based html page.
-noopenlayers: Do not generate OpenLayers based html page.
-nokml: Do not generate KML files for Google Earth.

-googlemapskey KEY: Key for your domain generated on Google Maps API web page
(http://www.google.com/apis/maps/signup.html).

-forcekml Force generating of KML files. Input file must use EPSG:4326 coordinates!

-v Generate verbose output of tile generation.

NOTE: gdal2tiles.py is a Python script, and will only work if GDAL was built with Python support.

Chapter 28

gdal-config

126 gdal-config

determines various information about a GDAL installation

28.1 SYNOPSIS

gdal-config [OPTIONS]
Options:

—-prefix [=DIR]]
—-1libs]
—-—cflags]
—--version]
——ogr—enabled]
——formats]

[
[
(
[
[
[

28.2 DESCRIPTION

This utility script (available on Unix systems) can be used to determine various information about a GDAL
installation. It is normally just used by configure scripts for applications using GDAL but can be queried
by an end user.

—prefix: the top level directory for the GDAL installation.

—libs: The libraries and link directives required to use GDAL.

—cflags: The include and macro definition required to compiled modules using GDAL.

—version: Reports the GDAL version.

—ogr-enabled: Reports "yes" or "no" to standard output depending on whether OGR is built into GDAL.

—formats: Reports which formats are configured into GDAL to stdout.

Chapter 29

gdal_retile.py

128 gdal_retile.py

gdal_retile - gdal_retily.py retiles a set of tiles and/or build tiled pyramid levels

29.1 SYNOPSIS

gdal_retile.py [-v] [-co NAME=VALUE]x [-of out_format] [-ps pixelWidth pixelHeight]

[-ot {Byte/Intl6/UIntl6/UInt32/Int32/Float32/Float64d/
CIntl6/CInt32/CFloat32/CFloat64}]’

[—tileIndex tileIndexName [-tileIndexField tileIndexFieldName]]
[-s_srs srs_def] [-pyramidOnly]
[-r {near/bilinear/cubic/cubicspline}]
—levels numberoflevels
—targetDir TileDirectory input_files

29.2 DESCRIPTION

This utility will retile a set of input tile(s). All the input tile(s) must be georeferenced in the same coordinate
system and have a matching number of bands. Optionally pyramid levels are generated. It is possible to
generate shape file(s) for the tiled output.

If your number of input tiles exhausts the command line buffer, use the general —optfile option

-targetDir directory: The Directory where the tile result is created. Pyramids are stored in subdirs num-
bered from 1. Created tile names have a numbering schema and contain the name of the source
tiles(s)

-of format: Output format, defaults to GeoTIFF (GTiff).
-co NAME=VALUE: Creation option for output file. Multiple options can be specified.
-ot datatype: Force the output image bands to have a specific type. Use type names (ie. Byte, Int16,...)

-ps pixelsize_x pixelsize_y: Pixel size to be used for the output file. If not specified, 256 x 256 is the
default

-levels numberOfLevels: Number of pyramids levels to build.
-v: Generate verbose output of tile operations as they are done.
-pyramidOnly: No retiling, build only the pyramids

-r algorithm: Resampling algorithm, default is near

-s_srs srs_def: Source spatial reference to use. The coordinate systems that can be passed are anything
supported by the OGRSpatialReference.SetFromUserInput() call, which includes EPSG PCS and
GCSes (ie.EPSG:4296), PROJ.4 declarations (as above), or the name of a .prf file containing well
known text. If no srs_def is given, the srs_def of the source tiles is used (if there is any). The srs_def
will be propageted to created tiles (if possible) and to the optional shape file(s).

-tileIndex tileIndexName: The name of shape file containing the result tile(s) index

-tileIndexField fileIndexFieldName: The name of the attribute containing the tile name

NOTE: gdal_merge.py is a Python script, and will only work if GDAL was built with Python support.

Chapter 30

gdal_grid

130 gdal_grid

creates regular grid from the scattered data

30.1 SYNOPSIS

Usage: gdal_grid [--help-general] [--formats]
[-ot {Byte/Intl6/UIntl6/UInt32/Int32/Float32/Float64/
CIntl6/CInt32/CFloat32/CFloat64}]

[-of format] [-co "NAME=VALUE"]

[-a_srs srs_def]

[-1 layername]* [-where expression] [-sgl select_statement]
[-txe xmin xmax] [-tye ymin ymax] [-outsize xsize ysize]
[-a algorithm[:parameterl=valuel]x] [-quiet]
<src_datasource> <dst_filename>

30.2 DESCRIPTION

This program creates regular grid (raster) from the scattered data read from the OGR datasource. Input
data will be interpolated to fill grid nodes with values, you can choose from various interpolation methods.

-ot type: For the output bands to be of the indicated data type.

-of format: Select the output format. The default is GeoTIFF (GTiff). Use the short format name.
-txe xmin xmax: Set georeferenced X extents of output file to be created.

-tye ymin ymax: Set georeferenced Y extents of output file to be created.

-outsize xsize ysize: Set the size of the output file in pixels and lines.

-a_srs srs_def: Override the projection for the output file. The srs_def may be any of the usual
GDAL/OGR forms, complete WKT, PROJ.4, EPSG:n or a file containing the WKT.

-a [algorithm[:parameter1=valuel |[:parameter2=value2]...]: Set the interpolation algorithm name and
(optionally) its parameters. See INTERPOLATION ALGORITHMS (p. ??) section for discussion

of available options.

-l layername: Indicates the layer(s) from the datasource that will be used for input features. May be
specified multiple times, but at least one layer name or a -sql option must be specified.

-where expression: An optional SQL. WHERE style query expression to be applied to select features to
burn in from the input layer(s).

-sql select_statement: An SQL statement to be evaluated against the datasource to produce a virtual layer
of features to be burned in.

-co "NAME=VALUE"": Passes a creation option to the output format driver. Multiple -co options may be
listed. See format specific documentation for legal creation options for each format.

-quiet: Suppress progress monitor and other non-error output.
src_datasource: Any OGR supported readable datasource.

dst_filename: The GDAL supported output file.

30.3 INTERPOLATION ALGORITHMS 131

30.3 INTERPOLATION ALGORITHMS

There are number of interpolation algorithms to choose from.

invdist: Inverse distance to a power. This is default algorithm. It has following parameters:

power: Weighting power (default 2.0).
smoothing: Smoothing parameter (default 0.0).

radiusl: The first radius (X axis if rotation angle is 0) of search ellipse. Set this parameter to zero
to use whole point array. Default is 0.0.

radius2: The second radius (Y axis if rotation angle is 0) of search ellipse. Set this parameter to
zero to use whole point array. Default is 0.0.

angle: Angle of search ellipse rotation in degrees (counter clockwise, default 0.0).

max_points: Maximum number of data points to use. Do not search for more points than this
number. This is only used if search ellipse is set (both radiuses are non-zero). Zero means that
all found points should be used. Default is 0.

min_points: Minimum number of data points to use. If less amount of points found the grid node
considered empty and will be filled with NODATA marker. This is only used if search ellipse
is set (both radiuses are non-zero). Default is 0.

nodata: NODATA marker to fill empty points (default 0.0).
average: Moving average algorithm. It has following parameters:

radiusl: The first radius (X axis if rotation angle is 0) of search ellipse. Set this parameter to zero
to use whole point array. Default is 0.0.

radius2: The second radius (Y axis if rotation angle is 0) of search ellipse. Set this parameter to
zero to use whole point array. Default is 0.0.

angle: Angle of search ellipse rotation in degrees (counter clockwise, default 0.0).

min_points: Minimum number of data points to use. If less amount of points found the grid node
considered empty and will be filled with NODATA marker. Default is 0.

nodata: NODATA marker to fill empty points (default 0.0).

Note, that it is essential to set search ellipse for moving average method. It is a window that will be
averaged when computing grid nodes values.

nearest: Moving average algorithm. It has following parameters:

radiusl: The first radius (X axis if rotation angle is 0) of search ellipse. Set this parameter to zero
to use whole point array. Default is 0.0.

radius2: The second radius (Y axis if rotation angle is 0) of search ellipse. Set this parameter to
zero to use whole point array. Default is 0.0.

angle: Angle of search ellipse rotation in degrees (counter clockwise, default 0.0).

nodata: NODATA marker to fill empty points (default 0.0).

132 gdal_grid

304 READING COMMA SEPARATED VALUES

Often you have a text file with a list of comma separated XYZ values to work with (so called CSV file).
You can easily use that kind of data source in gdal_grid (p.??). All you need is create a virtual dataset
header (VRT) for you CSV file and use it as input datasource for gdal_grid (p. ??). You can find details on
VRT format at Virtual Format description page.

Here is a small example. Let we have a CSV file called dem.csv containing

Easting,Northing,Elevation
86943.4,891957,139.13
87124.3,892075,135.01
86962.4,892321,182.04
87077.6,891995,135.01

For above data we will create dem.vrt header with the following content:

<OGRVRTDataSource>
<OGRVRTLayer name="dem">
<SrcDataSource>dem.csv</SrcDataSource>
<GeometryType>wkbPoint</GeometryType>
<GeometryField encoding="PointFromColumns" x="Easting" y="Northing" z="Elevation"/>
</OGRVRTLayer>
</OGRVRTDataSource>

Now you can use dem.vrt with all OGR programs (start with ogrinfo to test that everything works fine).
The datasource will contain single layer called "dem" filled with point features constructed from values in
CSV file. Using this technique you can handle CSV files with more than three columns, switch columns,
etc.

If your CSV file does not contain column headers then it can be handled in the following way:

<GeometryField encoding="PointFromColumns" x="field_1" y="field 2" z="field_3"/>

Comma Separated Value description page contains details on CSV format supported by
GDAL/OGR.

30.5 EXAMPLE

The following would create raster TIFF file from VRT datasource described in READING COMMA
SEPARATED VALUES (p. ??) section using the inverse distance to a power method.

gdal_grid -a invdist:power=2.0:smoothing=1.0 -txe 85000 89000 -tye 894000 890000 -outsize 400 400 -of GTif

Chapter 31

Sponsoring GDAL/OGR

134 Sponsoring GDAL/OGR

Development and maintenance of GDAL/OGR is supported by organizations contracting developers, orga-
nizations contributing improvements, users contributing improvements, and volunteers. Generally speak-
ing this works well, and GDAL/OGR has improved substantially over the years.

However, there are still many tasks which do not receive the attention they should. Processing bug reports,
writing documentation, writing test scripts, evaluating test script failures and user support often receive less
attention than would be desired. Some new features of broad interest are not implemented because they
aren’t important enough to any one person or organization.

In order to provide sustained funding to support the maintenance, improvement and promotion of the
GDAL/OGR project, the project seeks project sponsors to provide financial support. Sponsorship would
be accomplished via the 0SGeo Project Sponsorship program. Funds are held by OSGeo for
disposition on behalf of the project, and dispersed at the discretion of the GDAL/OGR Project Steering
Committee.

31.1 Sponsorship Uses

The primary intended use of the sponsorship funds is to hire a maintainer on a contract basis. The respon-
sibilities would include:

* Addressing bug reports - reproducing then fixing or passing on to another developer.

» Extending, and running the test suite.

* Improving documentation.

* Other improvements to the software.

* General user support on the mailing list.
Sponsorship funds may also be used to contract for specific improvements to GDAL, provision of resources

such as web hosting, funding code sprints, or funding project promotion. Decisions on spending of spon-
sorship funds will be made by the GDAL/OGR Project Steering Committee.

31.2 Sponsorship Benefits
Sponsoring GDAL/OGR provides the following benefits:

1. Ensures the sustainability and health of the GDAL/OGR project.

2. All sponsors will be listed on the project Credits page, ordered by contribution class (Platinum,
Gold, Silver) with a link back to the sponsor. Silver sponsors and above may include a logo. Platinum
sponsors may also have a logo appearing on the OSGeo main page.

3. Sponsors will be permitted to indicate they are project sponsors in web and other promotional mate-
rials, and use the GDAL/OGR logo.

4. Sponsor input on project focus and direction will be solicited via a survey.

5. Sponsors will received a degree of priority in processing of bug reports by any maintainer hired with
sponsorship funds.

6. Sponsors will receive a detailed report annually on the use of sponsorship funds.

31.3 Sponsorship Process 135

31.3 Sponsorship Process

Sponsors can sponsor GDAL for any amount of money of at least $500 USD. At or above the following
levels a sponsor will be designated as being one of the following class:

1. $27000+ USD: Platinum Sponsor
2. $9000+ USD: Gold Sponsor
3. $3000+ USD: Silver Sponsor
Sponsorships last one year, after which they may be continuing with a new payment, or allowed to lapse.

OSGeo is planning to be US 501(c)3 charity and sponsorships will be eligible as a charitable contribution
for US taxpayers. Appropriate receipts can be issued when needed.

Organizations or individuals interested in sponsoring the GDAL/OGR project should contact Frank
Warmerdam (warmerdam@pobox . com, +1 613 754 2041) with questions, or to make arrangements.

136 Sponsoring GDAL/OGR

Chapter 32

GDAL VB6 Bindings Tutorial

138 GDAL VB6 Bindings Tutorial

32.1 Introduction

A partial set of Visual Basic 6 bindings have been build for GDAL. Internally these bindings use Declare
based calls into the GDAL DLL C API but a set of shadow classes are also provided to provide object
oriented access to GDAL services in VB6 similar to those provided in C++.

Note that the VB6 bindings are nowhere near comprehensive, nor are they documented. However, in
combination with the corresponding C++ class documentation, and the following docs, it should be possible
to use GDAL to accomplish a variety of operations. It is not believed that the VB6 bindings will be of any
utility with earlier version of VB nor with VB.Net.

The classes for which access has been implemented includes GDALDriver (p. ??), GDALDataset (p. ??),
GDALRasterBand (p. ??), GDALColorTable (p. 2?), OGRSpatialReference and OGRCoordinateTrans-
formation.

A mailing list specifically on VB6 GDAL topics has been setup at
http://groups.yahoo.com/group/gdal-vb6—appdev .

32.2 Using GDAL VB6 Classes

To use VB6 GDAL bindings it is necessary to ensure that GDAL has been built with appropriate C entry
points exported using the "stdcall” calling convention. This is the current default, but was not as recently
as GDAL 1.2.6. So ensure you get a version more recent than 1.2.6.

Then add the GDAL VB6 class and module files to your VB6 project. These come from the gdal/vb6
directory and include the following key files:

* GDAL.bas - The main user visible module.

* GDALCore.bas - This module is for internal use.

¢ GDALDiriver.cls - The GDALDriver (p. ??) class.

e GDALDataset.cls - The GDALDataset (p. ??) class.

* GDALRasterBand.cls - The GDALRasterBand (p. ??) class.

¢ GDALColorTable.cls - The GDALColorTable (p. ??) class.

* OGRSpatialReference.cls - The OGRSpatialReference class.

* OGRCoordinateTransformation.cls - The OGRCoordinateTransformation class.
You may need to edit GDALCore.bas, and change occurrences of gdall2.dll to match what your GDAL

DLL is called. You can include a full path to the DLL if it can’t be guaranteed to be in the current working
directory of the application (or the windows system32 directory).

You should also be able to load the "test" project from the gdal\vb6\test directory. The test project has test
menu items roughly corresponding to the tasks in the following tutorial topics.

32.3 Tutorial - Read Dataset

This brief tutorial will demonstrate open a GDAL file, and fetching out some information, about the dataset,
and the individual bands. The results are printed to the default from in the following example for simplicity.

Before opening the file we need to register the GDAL format drivers. Normally we will just register all the
drivers with GDALAIIRegister() (p. ??).

32.3 Tutorial - Read Dataset 139

Call GDAL.AllRegister ()

Then we need to try and open the dataset. The GDAL.OpenDS() function returns a GDALDataset (p. ??)
object, so we dimension an appropriate object for this. GDAL.OpenDS() is the VB6 equivalent of the
GDALDataset::GDALOpen() (p. ??) function.

Dim ds As GDALDataset

Set ds = GDAL.OpenDS("utm.tif", GDAL.GA_ReadOnly)

Then we need to check if the open succeeded, and if not report an error.

If not ds.IsValid() Then
Call MsgBox("Open failed: " & GDAL.GetLastErrorMsg())
Exit Sub

End If

If things succeeded, we query width of the image in pixels (XSize), Height of the image in pixels (YSize)
and number of bands (BandCount) from the dataset properties.

Print "Size: " & ds.XSize & "x" & ds.¥Size & "x" & ds.BandCount

Next we read metadata from the dataset using the VB6 equivalent of the GDALMajorOb-
ject::GetMetadata() (p. 2?) method, and report it to the user. Metadata is returned as an array of strings
of "name=value" items. Array indices start at zero in the returned array. The domain argument should
normally be vbNullString though in specialized circumstances other domains might apply.

Dim MD As Variant
MD = ds.GetMetadata (vbNullString)
If (UBound(MD) > 0) Then

Print "Metadata:"

For 1 = 1 To UBound (MD)

Print " " & MD (i)

Next 1

End If

Parsing the "name=value" strings from GetMetadata() can be a bit of a bother, so if we were looking for
specific values we could use GetMetadataltem() and provide a specific item we want to extract. This would
extract just the value if it is found, or an empty string otherwise. The GetMetadataltem() is an analog of
the C++ GDALMajorObject::GetMetadataltem() (p. ??) method.

Dim MDValue As String

MDValue = ds.GetMetadataltem("TIFF_DATETIME", vbNullString)

if MDValue <> "" Then
Print "Creation Date: " & MDValue
End If

The GDALDataset::GetGeoTransform() (p. ??) method is used to get fetch the affine transformation used
to relate pixel/line locations on the image to georeferenced locations in the current coordinate system. In
the most common case (image is not rotated or sheared) you can just report the origin (upper left corner)
and pixel size from these values. The method returns O on success or an error class if it fails, so we only
use the return result (placed into the Geotransform array) on success.

Dim Geotransform(6) As Double

140 GDAL VB6 Bindings Tutorial

If ds.GetGeoTransform(Geotransform) = 0 Then
If Geotransform(2) = 0 and Geotransform(4) = 0 Then
Print "Origin: " & Geotransform(0) & "," & Geotransform(3)
Print "Pixel Size: " & Geotransform(l) & "x" & (-1 x= Geotransform(5))
End If
End If

The coordinate system can be fetched using the GDALDataset::GetProjectionRef() (p.??) analog,
GDALDataset.GetProjection(). The returned string is in OpenGIS Well Known Text format. A later exam-
ple will show how to use an OGRSpatialReference object to reformat the WKT into more readable format
and make other use of it.

Dim WKT As String

WKT = ds.GetProjection()
If Len(WKT) > 0 Then

Print "Projection: " & WKT
End If

GDALDataset (p. ??) objects have one or more raster bands associated with them. GDALRasterBand
(p- ??) objects can have metadata (accessed the same as on the GDALDataset (p. ??)) as well as an array
of pixel values, and various specialized metadata items like data type, color interpretation, offset/scale.
Here we report a few of the items.

First we loop over all the bands, fetching a band object for each band and report the band number, and
block size.

For 1 = 1 To ds.BandCount
Dim band As GDALRasterBand

Set band = ds.GetRasterBand(i)
Print "Band " & i & " BlockSize: " & band.BlockXSize & "x" & band.BlockYSize

The GDALRasterBand (p. ??) has a DataType property which has the value returned by the C++ method
GDALRasterBand::GetRasterDataType() (p.??). The returned value is an integer, but may be com-
pared to the predefined constants GDAL.GDT_Byte (p. ??), GDAL.GDT_UInt16 (p. ??), GDAL.GDT_-
Int16 (p.??), GDAL.GDT_UInt32 (p.??), GDAL.GDT _Int32 (p.??), GDAL.GDT_Float32 (p.??),
GDAL.GDT_Float64 (p. ??), GDAL.GDT_CInt16 (p. ??), GDAL.GDT_CInt32 (p. ??), GDAL.GDT _-
CFloat32 (p. ??) and GDAL.GDT_CFloat64 (p. ??). In this case we use the GDAL.GetDataTypeName()
method to convert the data type into a name we can show the user.

Print " DataType=" & GDAL.GetDataTypeName (band.DataType)

We also report the offset, scale, minimum and maximum for the band.

Print " Offset=" & band.GetOffset () & " Scale=" & band.GetScale() _
& " Min=" & band.GetMinimum() & " Max=" & band.GetMaximum ()

GDALRasterBands can also have GDALColorTable (p. ??) objects associated with them. They are read
with the GDALRasterBand::GetColorTable() (p. ??) analog in VB6. Individual RGBA entries should be
read into a 4 Integer array.

Dim ct As GDALColorTable
Set ct = band.GetColorTable ()
If ct.IsValid() Then
Dim CEntry(4) As Integer
Print " Has Color Table, " & ct.EntryCount & " entries"

32.4 Tutorial - Creating Files 141

For iColor = 0 To ct.EntryCount - 1
Call ct.GetColorEntryAsRGB (iColor, CEntry)
Print " " & iColor & ": " & CEntry(0) & "," & CEntry(l) & "," & CEntry(2) & "," & CEntry(3)
Next iColor
End If

But of course, the most important contents of a GDAL file is the raster pixel values themselves. The
C++ GDALRasterBand::RasterIO() (p. ??) method is provided in a somewhat simplified form. A pred-
imensioned 1D or 2D array of type Byte, Int, Long, Float or Double is passed to the RasterIO() method
along with the band and window to be read. Internally the "buffer size" and datatype is extracted from the
dimensions of the passed in buffer.

This example dimensions the RawData array to be the size of one scanline of data (XSize x 1) and reads the
first whole scanline of data from the file, but only prints out the second and tenth values (since the buffer
indexes are zero based).

Dim err As Long
Dim RawData () As Double
ReDim RawData (ds.XSize) As Double

err = band.RasterIO(GDAL.GF_Read, 0, 0, ds.XSize, 1, RawData)

if err = 0 Then
Print " Data: " & RawData(l) & " " & RawData(9)
End If

Finally, when done accessing a GDALDataset (p.??) we can explicitly close it using the CloseDS()
method, or just let it fall out of scope in which case it will be closed automatically.

Call ds.CloseDS ()

32.4 Tutorial - Creating Files

Next we address creating a new file from an existing file. To create a new file, you have to select a
GDALDriver (p. ??) to do the creating. The GDALDriver (p. ??) is essentially an object representing a
file format. We fetch it with the GetDriverByName() call from the GDAL module using the driver name.

Dim Drv As GDALDriver

Call GDAL.AllRegister

Drv = GDALCore.GetDriverByName ("GTiff")

If Not Drv.IsValid() Then
Call MsgBox("GTiff driver not found ")
Exit Sub

End If

You could get a list of registered drivers, and identify which support creation something like this:

drvCount = GDAL.GetDriverCount
For drvIndex = 0 To drvCount - 1
Set Drv = GDAL.GetDriver (drvIndex)

If Drv.GetMetadataltem (GDAL.DCAP_CREATE, "") = "YES" _
Or Drv.GetMetadataItem (GDAL.DCAP_CREATECOPY, "") = "YES" Then
xMsg = " (Read/Write)"
Else
xMsg = " (ReadOnly)"
End If
Print Drv.GetShortName() & ": " & Drv.GetMetadataltem (GDAL.DMD_LONGNAME, "") & xMsg

Next drvIndex

142 GDAL VB6 Bindings Tutorial

Once we have the driver object, the simplest way of creating a new file is to use CreateCopy(). This
tries to create a copy of the input file in the new format. A complete segment (without any error
checking) would look like the following. The CreateCopy() method corresponds to the C++ method
GDALDriver::CreateCopy() (p. ??). The VB6 implementation does not support the use of progress call-
backs.

Dim Drv As GDALDriver
Dim SrcDS As GDALDataset, DstDS As GDALDataset

Call GDAL.AllRegister
Set Drv = GDALCore.GetDriverByName ("GTiff")

Set SrcDS GDAL.Open("in.tif", GDAL.GA_ReadOnly)
Set DstDS = Drv.CreateCopy("out.tif", SrcDS, True, Nothing)

This is nice and simple, but sometimes we need to create a file with more detailed control. So, next we
show how to create a file and then copy pieces of data to it "manually". The GDALDriver::Create() (p. ??
analog is Create().

Set DstDS = Drv.Create("out.tif", SrcDS.XSize, SrcDS.YSize,
SrcDS.BandCount, GDAL.GDT_Byte, Nothing)

In some cases we may want to provide some creation options, which is demonstrated here. Creation options
(like metadata set through the SetMetadata() method) are arrays of Strings.

Dim CreateOptions(l) As String

CreateOptions (1) = "PHOTOMETRIC=MINISWHITE"
Set DstDS = Drv.Create("out.tif", SrcDS.XSize, SrcDS.Y¥Size,
SrcDS.BandCount, GDAL.GDT_Byte, CreateOptions)

When copying the GeoTransform, we take care to check that reading the geotransform actually worked.
Most methods which return CPLErr in C++ also return it in VB6. A return value of O will indicate success,
and non-zero is failure.

Dim err As Long
Dim gt (6) As Double

err = SrcDS.GetGeoTransform(gt)
If err = 0 Then

Call DstDS.SetGeoTransform(gt)
End If

Copy the projection. Even if GetProjection() fails we get an empty string which is safe enough to set on
the target. Similarly for metadata.

Call DstDS.SetProjection(SrcDS.GetProjection())
Call DstDS.SetMetadata (SrcDS.GetMetadata(""), "")

Next we loop, processing bands, and copy some common data items.

For iBand = 1 To SrcDS.BandCount
Dim SrcBand As GDALRasterBand, DstBand As GDALRasterBand

Set SrcBand SrcDS.GetRasterBand (iBand)
Set DstBand = DstDS.GetRasterBand (iBand)

32.5 Tutorial - Coordinate Systems and Reprojection 143

Call DstBand.SetMetadata (SrcBand.GetMetadata(""), "")
Call DstBand.SetOffset (SrcBand.GetOffset ())
Call DstBand.SetScale (SrcBand.GetScale())

Dim NoDataValue As Double, Success As Long

NoDataValue = SrcBand.GetNoDataValue (Success)
If Success <> 0 Then

Call DstBand.SetNoDataValue (NoDataValue)
End If

Then, if one is available, we copy the palette.

Dim ct As GDALColorTable
Set ct = SrcBand.GetColorTable ()
If ct.IsValid() Then
err = DstBand.SetColorTable (ct)
End If

Finally, the meat and potatoes. We copy the image data. We do this one scanline at a time so that we can
support very large images without require large amounts of RAM. Here we use a Double buffer for the
scanline, but if we knew in advance the type of the image, we could dimension a buffer of the appropriate
type. The RasterIO() method internally knows how to convert pixel data types, so using Double ensures all
data types (except for complex) are properly preserved, though at the cost of some extra data conversion
internally.

Dim Scanline() As Double, iLine As Long
ReDim Scanline (SrcDS.XSize) As Double
’ Copy band raster data.
For iLine = 0 To SrcDS.YSize - 1
Call SrcBand.RasterIO(GDAL.GF_Read, 0, iLine, SrcDS.XSize, 1,
Scanline)
Call DstBand.RasterIO(GDAL.GF_Write, 0, iLine, SrcDS.XSize, 1,
Scanline)

Next iLine

32.5 Tutorial - Coordinate Systems and Reprojection

The GDAL VB6 bindings also include limited support for use of the OGRSpatialReference and OGRCoor-
dinateTransformation classes. The OGRSpatialReference represents a coordinate system and can be used
to parse, manipulate and form WKT strings, such as those returned by the GDALDataset.GetProjection()
method. The OGRCoordinateTransformation class provides a way of reprojecting between two coordinate
systems.

The following example shows how to report the corners of an image in georeferenced and geographic
(lat/long) coordinates. First, we open the file, and read the geotransform.
Dim ds As GDALDataset

Call GDALCore.GDALAllRegister
Set ds = GDAL.OpenDS (FileDlg.Filename, GDAL.GA_ReadOnly)

If ds.IsValid() Then
Dim Geotransform(6) As Double

Call ds.GetGeoTransform(Geotransform)

144 GDAL VB6 Bindings Tutorial

Next, we fetch the coordinate system, and if it is non-empty we try to instantiate an OGRSpatialReference
from it.

' report projection in pretty format.

Dim WKT As String

Dim srs As New OGRSpatialReference

Dim latlong_srs As OGRSpatialReference
Dim ct As New OGRCoordinateTransformation

WKT = ds.GetProjection()
If Len (WKT) > 0 Then
Print "Projection: "
Call srs.SetFromUserInput (WKT)

If the coordinate system is projected it will have a PROJECTION node. In that case we build a new
coordinate system which is the corresponding geographic coordinate system. So for instance if the "srs"
was UTM 11 WGS84 then it’s corresponding geographic coordinate system would just be WGS84. Once
we have these two coordinate systems, we build a transformer to convert between them.

If srs.GetAttrValue ("PROJECTION", 0) <> "" Then
Set latlong_srs = srs.CloneGeogCSs ()
Set ct = GDAL.CreateCoordinateTransformation(srs, latlong_srs)
End If
End If

Next we call a helper function to report each corner, and the center. We pass in the name of the corner, the
pixel/line location at the corner, and the geotransform and transformer object.

Call ReportCorner ("Top Left ", 0, 0, _
Geotransform, ct)

Call ReportCorner ("Top Right ", ds.XSize, 0, _
Geotransform, ct)

Call ReportCorner ("Bottom Left ", 0, ds.YSize,

Geotransform, ct)

Call ReportCorner ("Bottom Right ", ds.XSize, ds.YSize,
Geotransform, ct)

Call ReportCorner ("Center ", ds.XSize / 2#, ds.YSize / 2%,
Geotransform, ct)

The ReportCorner subroutine starts by computing the corresponding georeferenced x and y location using
the pixel/line coordinates and the geotransform.

Private Sub ReportCorner (CornerName As String, pixel As Double, line As Double,
gt () As Double, ct As OGRCoordinateTransformation)

Dim geox As Double, geoy As Double

geox = gt (0) + pixel % gt(l) + line x gt (2)
geoy = gt (3) + pixel % gt(4) + line * gt (5)

Next, if we have a transformer, we use it to compute a corresponding latitude and longitude.

Dim longitude As Double, latitude As Double, Z As Double
Dim latlong_valid As Boolean

latlong_valid = False

If ct.IsvValid() Then

Z =0

longitude = geox

latitude = geoy

latlong_valid = ct.TransformOne (longitude, latitude, Z)
End If

32.5 Tutorial - Coordinate Systems and Reprojection 145

Then we report the corner location in georeferenced, and if we have it geographic coordinates.

If latlong_valid Then

Print CornerName & geox & "," & geoy & " " & longitude & "," & latitude
Else

Print CornerName & geox & "," & geoy
End If

End Sub

146 GDAL VB6 Bindings Tutorial

Chapter 33

GDAL Warp API Tutorial

148 GDAL Warp API Tutorial

33.1 Overview

The GDAL Warp API (declared in gdalwarper.h (p.??)) provides services for high performance image
warping using application provided geometric transformation functions (GDALTransformerFunc), a vari-
ety of resampling kernels, and various masking options. Files much larger than can be held in memory can
be warped.

This tutorial demonstrates how to implement an application using the Warp APL. It assumes implementation
in C++ as C and Python bindings are incomplete for the Warp API. It also assumes familiarity with the
GDAL Data Model, and the general GDAL APIL.

Applications normally perform a warp by initializing a GDALWarpOptions (p.??) structure with the
options to be utilized, instantiating a GDALWarpOperation (p. ??) based on these options, and then in-
voking the GDALWarpOperation::ChunkAndWarpImage() (p. ??) method to perform the warp options
internally using the GDALWarpKernel (p. ??) class.

33.2 A Simple Reprojection Case

First we will construct a relatively simple example for reprojecting an image, assuming an appropriate
output file already exists, and with minimal error checking.
#include "gdalwarper.h"
int main ()
{
GDALDatasetH hSrcDS, hDstDS;
// Open input and output files.

GDALAllRegister () ;

hSrcDS GDALOpen("in.tif", GA_ReadOnly);
hDstDS = GDALOpen("out.tif", GA_Update);

// Setup warp options.

GDALWarpOptions xpsWarpOptions = GDALCreateWarpOptions();

psWarpOptions—->hSrcDS = hSrcDS;
psWarpOptions->hDstDS = hDstDS;

psWarpOptions—->nBandCount = 1;
psWarpOptions->panSrcBands =

(int %) CPLMalloc(sizeof (int) % psWarpOptions->nBandCount);
psWarpOptions—>panSrcBands[0] = 1;
psWarpOptions—->panDstBands =

(int) CPLMalloc(sizeof (int) % psWarpOptions—->nBandCount);
psWarpOptions->panDstBands[0] = 1;

psWarpOptions->pfnProgress = GDALTermProgress;
// Establish reprojection transformer.

psWarpOptions—>pTransformerArg =
GDALCreateGenImgProjTransformer (hSrcDS,
GDALGetProjectionRef (hSrcDS),
hDstDS,
GDALGetProjectionRef (hDstDS),
FALSE, 0.0, 1);
psWarpOptions->pfnTransformer = GDALGenImgProjTransform;

33.3 Other Warping Options 149

// Initialize and execute the warp operation.
GDALWarpOperation oOperation;

oOperation.Initialize(psWarpOptions);
oOperation.ChunkAndWarpImage (0, O,
GDALGetRasterXSize (hDstDS),
GDALGetRasterYSize (hDstDS));

GDALDestroyGenImgProjTransformer (psWarpOptions->pTransformerArg);
GDALDestroyWarpOptions (psWarpOptions);

GDALClose (hDstDS);
GDALClose (hSrcDS);

return 0;

This example opens the existing input and output files (in.tif and out.tif). A GDALWarpOptions (p. ??)
structure is allocated (GDALCreateWarpOptions() sets lots of sensible defaults for stuff, always use it for
defaulting things), and the input and output file handles, and band lists are set. The panSrcBands and
panDstBands lists are dynamically allocated here and will be free automatically by GDALDestroy War-
pOptions(). The simple terminal output progress monitor (GDALTermProgress) is installed for reporting
completion progress to the user.

GDALCreateGenlmgProjTransformer() (p. ??) is used to initialize the reprojection transformation be-
tween the source and destination images. We assume that they already have reasonable bounds and coor-
dinate systems set. Use of GCPs is disabled.

Once the options structure is ready, a GDALWarpOperation (p. ??) is instantiated using them, and the
warp actually performed with GDALWarpOperation::ChunkAndWarpImage() (p. ??). Then the trans-
former, warp options and datasets are cleaned up.

Normally error check would be needed after opening files, setting up the reprojection transformer (returns
NULL on failure), and initializing the warp.

33.3 Other Warping Options

The GDALWarpOptions (p. ??) structures contains a number of items that can be set to control warping
behavior. A few of particular interest are:

1. GDALWarpOptions::dfWarpMemoryLimit (p. ??) - Set the maximum amount of memory to be
used by the GDALWarpOperation (p. ??) when selecting a size of image chunk to operate on. The
value is in bytes, and the default is likely to be conservative (small). Increasing the chunk size can
help substantially in some situations but care should be taken to ensure that this size, plus the GDAL
cache size plus the working set of GDAL, your application and the operating system are less than the
size of RAM or else excessive swapping is likely to interfere with performance. On a system with
256MB of RAM, a value of at least 64MB (roughly 64000000 bytes) is reasonable. Note that this
value does not include the memory used by GDAL for low level block caching.

2. GDALWarpOpations::eResampleAlg - One of GRA_NearestNeighbour (the default, and fastest),
GRA_Bilinear (2x2 bilinear resampling) or GRA_Cubic. The GRA_NearestNeighbour type should
generally be used for thematic or colormapped images. The other resampling types may give better
results for thematic images, especially when substantially changing resolution.

3. GDALWarpOptions::padfSrcNoDataReal (p.??) - This array (one entry per band being pro-
cessed) may be setup with a "nodata" value for each band if you wish to avoid having pixels of
some background value copied to the destination image.

150 GDAL Warp API Tutorial

4. GDALWarpOptions::papszWarpOptions (p. ??) - This is a string list of NAME=VALUE options
passed to the warper. See the GDALWarpOptions::papszWarpOptions (p. ??) docs for all options.
Supported values include:

o INIT_DEST=[value] or INIT_DEST=NO_DATA: This option forces the destination image to
be initialized to the indicated value (for all bands) or indicates that it should be initialized to
the NO_DATA value in padfDstNoDataReal/padfDstNoDatalmag. If this value isn’t set the
destination image will be read and the source warp overlayed on it.

* WRITE_FLUSH=YES/NO: This option forces a flush to disk of data after each chunk is pro-
cessed. In some cases this helps ensure a serial writing of the output data otherwise a block of
data may be written to disk each time a block of data is read for the input buffer resulting in a
lot of extra seeking around the disk, and reduced 1O throughput. The default at this time is NO.

33.4 Creating the Output File

In the previous case an appropriate output file was already assumed to exist. Now we will go through a case
where a new file with appropriate bounds in a new coordinate system is created. This operation doesn’t
relate specifically to the warp APIL. It is just using the transformation APL

#include "gdalwarper.h"
#include "ogr_spatialref.h"

GDALDriverH hDriver;
GDALDataType eDT;

GDALDatasetH hDstDS;
GDALDatasetH hSrcDS;

// Open the source file.

hSrcDS = GDALOpen("in.tif", GA_ReadOnly);
CPLAssert (hSrcDS != NULL);

// Create output with same datatype as first input band.
eDT = GDALGetRasterDataType (GDALGetRasterBand (hSrcDS,1));
// Get output driver (GeoTIFF format)

hDriver = GDALGetDriverByName ("GTiff");
CPLAssert (hDriver != NULL);

// Get Source coordinate system.
const char xpszSrcWKT, xpszDstWKT = NULL;

pszSrcWKT = GDALGetProjectionRef (hSrcDS);
CPLAssert (pszSrcWKT != NULL && strlen(pszSrcWKT) > 0);

// Setup output coordinate system that is UTM 11 WGS84.
OGRSpatialReference oSRS;

OoSRS.SetUTM(11, TRUE);
OSRS.SetWellKnownGeogCS ("WGS84");

OoSRS.exportToWkt (&pszDsStWKT) ;

// Create a transformer that maps from source pixel/line coordinates

33.4 Creating the Output File 151

// to destination georeferenced coordinates (not destination
// pixel line). We do that by omitting the destination dataset
// handle (setting it to NULL).

void xhTransformArg;

hTransformArg =
GDALCreateGenImgProjTransformer (hSrcDS, pszSrcWKT, NULL, pszDstWKT,
FALSE, 0, 1);
CPLAssert (hTransformArg != NULL);

// Get approximate output georeferenced bounds and resolution for file.

double adfDstGeoTransform[6];
int nPixels=0, nLines=0;
CPLErr eErr;

eErr = GDALSuggestedWarpOutput (hSrcDS,
GDALGenImgProjTransform, hTransformArg,
adfDstGeoTransform, &nPixels, &nLines);
CPLAssert (eErr == CE_None);

GDALDestroyGenImgProjTransformer (hTransformArg);
// Create the output file.

hDstDS = GDALCreate(hDriver, "out.tif", nPixels, nLines,
GDALGetRasterCount (hSrcDS), eDT, NULL);

CPLAssert (hDstDS != NULL);
// Write out the projection definition.

GDALSetProjection(hDstDS, pszDstWKT);
GDALSetGeoTransform(hDstDS, adfDstGeoTransform);

// Copy the color table, if required.
GDALColorTableH hCT;

hCT = GDALGetRasterColorTable(GDALGetRasterBand (hSrcDS,1));
if(hCT != NULL)
GDALSetRasterColorTable (GDALGetRasterBand (hDstDS,1), hCT);

proceed with warp as before

Some notes on this logic:

* We need to create the transformer to output coordinates such that the output of the transformer is
georeferenced, not pixel line coordinates since we use the transformer to map pixels around the
source image into destination georeferenced coordinates.

* The GDALSuggestedWarpQOutput() (p. ??) function will return an adfDstGeoTransform, nPixels
and nLines that describes an output image size and georeferenced extents that should hold all pixels
from the source image. The resolution is intended to be comparable to the source, but the output
pixels are always square regardless of the shape of input pixels.

» The warper requires an output file in a format that can be "randomly" written to. This generally limits
things to uncompressed formats that have an implementation of the Create() method (as opposed to
CreateCopy()). To warp to compressed formats, or CreateCopy() style formats it is necessary to
produce a full temporary copy of the image in a better behaved format, and then CreateCopy() it to
the desired final format.

152

GDAL Warp API Tutorial

* The Warp API copies only pixels. All colormaps, georeferencing and other metadata must be copied

to the destination by the application.

33.5 Performance Optimization

There are a number of things that can be done to optimize the performance of the warp APL

1.

Increase the amount of memory available for the Warp API chunking so that larger chunks can be
operated on at a time. This is the GDALWarpOptions::dfWarpMemoryLimit (p. ??) parameter.
In theory the larger the chunk size operated on the more efficient the I/O strategy, and the more
efficient the approximated transformation will be. However, the sum of the warp memory and the
GDAL cache should be less than RAM size, likely around 2/3 of RAM size.

Increase the amount of memory for GDAL caching. This is especially important when working with
very large input and output images that are scanline oriented. If all the input or output scanlines
have to be re-read for each chunk they intersect performance may degrade greatly. Use GDALSet-
CacheMax() (p. ??) to control the amount of memory available for caching within GDAL.

Use an approximated transformation instead of exact reprojection for each pixel to be transformed.
This code illustrates how an approximated transformation could be created based on a reprojection
transformation, but with a given error threshold (dfErrorThreshold in output pixels).

hTransformArg =
GDALCreateApproxTransformer (GDALGenImgProjTransform,
hGenImgProjArg, dfErrorThreshold);
pfnTransformer = GDALApproxTransform;

When writing to a blank output file, use the INIT_DEST option in the GDALWarpOp-
tions::papszWarpOptions (p. ??) to cause the output chunks to be initialized to a fixed value, in-
stead of being read from the output. This can substantially reduce unnecessary 10 work.

Use tiled input and output formats. Tiled formats allow a given chunk of source and destination
imagery to be accessed without having to touch a great deal of extra image data. Large scanline
oriented files can result in a great deal of wasted extra IO.

Process all bands in one call. This ensures the transformation calculations don’t have to be performed
for each band.

Use the GDALWarpOperation::ChunkAndWarpMulti() (p. ??) method instead of GDALWar-
pOperation::ChunkAndWarpImage() (p. ??). It uses a separate thread for the 10 and the actual
image warp operation allowing more effective use of CPU and 10 bandwidth. For this to work GDAL
needs to have been built with multi-threading support (default on Win32, —with-pthreads on Unix).

The resampling kernels vary is work required from nearest neighbour being least, then bilinear then
cubic. Don’t use a more complex resampling kernel than needed.

Avoid use of esoteric masking options so that special simplified logic case be used for common
special cases. For instance, nearest neighbour resampling with no masking on 8bit data is highly
optimized compared to the general case.

33.6 Other Masking Options

The GDALWarpOptions (p. ??) include a bunch of esoteric masking capabilities, for validity masks, and
density masks on input and output. Some of these are not yet implemented and others are implemented but
poorly tested. Other than per-band validity masks it is advised that these features be used with caution at
this time.

Chapter 34

GDAL for Windows CE

154 GDAL for Windows CE

Overview (p. ??)

Features (p. 2?)

Supported Platforms (p. ??)

Content of *wince’ directory (p. ??)

Building GDAL for Windows CE using Microsoft Visual C++ 2005 (p. ??)
Enable PROJ .4 support (p.??)

wince_building_geos

How can I help? (p.??)

34.1 Overview

This document is devoted to give some overview of the GDAL port for Windows CE operating system.

34.2 Features

Currently, from version 1. 4.0, GDAL includes following features for Windows CE platform:

e CPL library
¢ GDAL and OGR core API
e GDAL drivers:

— AAIGrid
— DTED
— GeoTIFF

¢ OGR drivers:

Generic

- CSV
MITAB
ESRI Shapefile

¢ Unit Test suite (gdalautotest/cpp)
* Optional PROJ . 4 support

* Optional GEOS support

34.3 Supported Platforms

GDAL for Windows CE has been tested on following versions of Windows CE:

¢ Windows CE 3.x
— Pocket PC 2002

34.4 Content of wince’ directory 155

¢ Windows CE 4.x
— Windows Mobile 2003
¢ Windows CE 5.x

— Windows Mobile 5

— customized versions of Windows CE 5.0
Supported compilers for Windows CE operating system:

¢ Microsoft Visual C++ 2005 Standard, Professional or Team Suite Edition

¢ Microsoft eMbedded Visual C++ 4.0
Note:
Currently, no project files provided for eVC++ 4.0 IDE

34.4 Content of *wince’ directory

Note:

Due to problems with removing directories from CVS and missed synchronization of RC branch, the
wince’ directory includes a few deprecated project files (see below).
Please DON’T USE them, unless you want to fix them yourself.

Active content:

* msve80 - project for Visual C++ 2005 to build GDAL DLL for Windows CE
* README - the file you’re currently reading

* TODO - planned and requested features

Deprecated
Following directories and projects are deprecated. DON’T USE THEM!

* evcd_gdalce_dll

* evcd_gdalce_dll_test
* evcd_gdalce_lib

* evcd_gdalce_lib_test
* msvc8_gdalce_lib

* msvc8_gdalce_lib_test
e wce_test_dll

¢ wce_test_lib

e wcelibcex

156 GDAL for Windows CE

34.5 Building GDAL for Windows CE using Microsoft Visual C++
2005

1. Requirements

¢ You need to have installed Visual C++ 2005 Standard, Professional or Team Suite Edition.
* You also need to have installed at least one SDK for Windows CE platform:

— Windows Mobile 2003 Pocket PC SDK
— Windows Mobile 2003 SmartphoneSDK
— Windows Mobile 5.0 Pocket PC SDK

— Windows Mobile 5.0 Smartphone SDK

e Last requirement 1is the Run-time Type Information library for the
Pocket PC 2003 SDK.
2. External dependencies

There is only one external dependency required to build GDAL for Windows CE. This dependency
is WCELIBCEX library available to download from:

http://sourceforge.net/projects/wcelibcex
You can download latest release - wcelibcex—1.0 - or checkout sources directly form SVN. In
both cases, you will be provided with project file for Visual C++ 2005.

Note:
WCELIBCEX is built to Static Library. For details, check README.txt file form the package.

3. Download GDAL 1.4.0 release or directly from CVS

Go to http://www.gdal.org/download.html and download ZIP package with GDAL
1.4.0. You can also checkout sources directly from SVN.

For this guidelines, I assume following directories structure:

C:\dev\gdal-1.4.0
C:\dev\wcelibcex-1.0

4. Projects configuration

(a) Open gdalce_dll.sln project in Visual C++ 2005 IDE
According to the paths presented in step 3, you should load following file:

C:\dev\gdal-1.4.0\wince\msvc80\gdalce_dll\gdalce_dll.sln

(b) Add WCELIBCEX project to gdalce_dll.sIn solution
Go to File -> Add -> Existing Project, navigage and open following file:

C:\dev\wcelibcex—-1.0\msvc80\wcelibcex_lib.vcproj

(c) Configure path to WCELIBCEX source:

* Go to View -> Property Manager to open property manager window

* Expand tree below gdalce_dll -> Debug -> gdalce_common

* Right-click on gdalce_common and select Properties

¢ In Property Pages dialog, under Common Properties, go to User Macros
¢ In macros list, double-click on macro named as WCELIBCEX_DIR

* According paths assumed in step 3, change the macro value to:

34.5 Building GDAL for Windows CE using Microsoft Visual C++ 2005 157

C:\dev\wcelibcex—-1.0\src

¢ Click OK to apply changes and close the dialog

(d) Configure wcelibcex_lib.vcproj as a dependency for gdalce_dll.vcproj

¢ Select gdalce_dll project in Solution Explorer

* Go to Project -> Project Dependencies

* In the 'Depends on:’ pane, select checkbox next to wcelibcex_lib
¢ Click OK to apply and close

5. Ready to build GDAL for Windows CE
Go to Build and select Build Solution

After a few minutes, you should see GDAL DLL ready to use. For example, when Pocket PC 2003
SDK is used and Debug configuration requested, all output files are located under this path:

C:\dev\gdal-1.4.0\wince\msvc80\gdalce_dll\Pocket PC 2003 (ARMV4)\Debug

There, you will find following binaries:

¢ gdalce.dll - dymamic-link library
 gdalce_i.lib - import library

34.5.1 Enable PROJ.4 support

PROJ .4 support is optional.
In the CVS repository of PROJ .4, there are available project files for Visual C++ 2005 for Windows CE.

It is recommended to read README.1xt file from wince\msvc80 directory in PROJ.4 sources tree. There,
you will find instructions how to build PROJ.4 without attaching its project to gdalce_dll.sIn. Then you can
just add proj.dll and proj_i.lib to linker settings of gdalce_dll.vcproj project.

Below, you can find instructions how to add projce_dll.vcproj project directly to gdalce_dll.sln and build
everything together.

1. Gotohttp://proj.maptools.org and learn how to checkout PROJ.4 source from the CVS
2. Checkout sources to prefered location, for example:

C:\dev\proj

3. Add projce_dll.vcproj project to gdalce_dll.sln solution
Go to File -> Add -> Existing Project, navigage and open following file:

C:\dev\proj\wince\msvc80\projce_dll\projce_dll.vcproj

4. Open Property Manager as described here, open Property Page for gdalce_common, and edit macro
named as PROJ_DIR.

Change value of the PROJ_DIR macro to:

C:\dev\proj

Don’t close the Property Manager yet.

158

GDAL for Windows CE

5.

6.
7.

Configure path to WCELIBCEX source:

* Go to View -> Property Manager to open property manager window

» Expand tree below projce_dll -> Debug -> projce_common

* Right-click on projce_common and select Properties

* In Property Pages dialog, under Common Properties, go to User Macros
¢ In macros list, double-click on macro named as WCELIBCEX_DIR

» According paths assumed in step 3, change the macro value to:

C:\dev\wcelibcex-1.0\src
* Click OK to apply changes and close the dialog
Follow instructions explained here and add projce_dll.vcproj as a dependency for gdalce_dll.veproj

Update proj_config.h file:
Go to C:\dev\proj\src and rename proj_config.h.wince to proj_config.h.

. Ready to build GDAL for Windows CE

Go to Build and select Build Solution

Similarly to explanation above in step 5 for GDAL, binaries for PROJ.4 for Windows CE can be
found here:

C:\dev\proj\wince\msvc80\projce_dll\Pocket PC 2003 (ARMV4) \Debug

There, you can find following binaries:
¢ proj.dll - dymamic-link library
* proj_i.lib - import library

Note:

PROJ .4 binaries for Windows CE do not include ’ce’ in names. This is due the fact GDAL uses
fixed proj.dll name to find and link dynamically with PROJ.4 DLL.

. After all, put proj.dll to the same directory on device where you copied gdalce.dll and your applica-

tion which uses GDAL.

34.6 How can I help?

I’d like to encourage everyone interested in using GDAL on Windows CE devices to help in its develop-

ment.

Here is a list of what you can do as a contribution to the project:

You can build GDAL for Windows CE and report problems if you will meet any
You can try to build new OGR drivers
You can test GDAL/OGR on different Windows CE devices

You can write sample applications using GDAL/OGR and announce them on the GDAL mailing
list

If you have found a bug or something is not working on the Windows CE, please report it on the
GDAL’s Bugzilla

34.6 How can I help? 159

There is also wince\TODO file where you can find list of things we are going to do.

If you have any comments or questions, please sent them to the gdal-dev@lists.maptools.org
mailing list or directly to me on mateusz@loskot .net

160 GDAL for Windows CE

Chapter 35

Deprecated List

162 Deprecated List

Page GDAL for Windows CE (p. ??) Following directories and projects are deprecated. DON’T USE
THEM!

Chapter 36

Class Index

36.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

_CPLLISt . . o
CPLODBCDriverInstaller o e
CPLODBCSESSION . . . v v vt o e e e e e s e e e e e e
CPLODBCStatemento vttt ettt e e e e
CPLXMLNode e
GDAL_GCP
GDALColortEntry
GDALColorTable o e
GDALGridInverseDistanceToAPowerOptions v
GDALGridMovingAverageOptions o e
GDALGridNearestNeighborOptions
GDALMajorObject o o e
GDALDaAtaset o i e e e e e
GDALPamDataset.
GDALDIIVEr oo
GDALDIiverManager« o v vt e e e
GDALRasterBand
GDALRasterAttributeTable L
GDALWarpKernel e e e
GDALWarpOperation i e e e
GDALWarpOptions ot e e e e e e e e e

ES
2?
??
??
7
22
2?
2?
??
??
??
2?
22
Es
43
??
2?
??
??
??
??

164 Class Index

Chapter 37

Class Ind

37.1 Class List

€X

Here are the classes, structs, unions and interfaces with brief descriptions:

_CPLList

CPLODBCDriverInstaller

CPLODBCSession

CPLODBCStatement e

CPLXMLNode .
GDAL_GCP . ..
GDALColorEntry
GDALColorTable

GDALDataset (A set of associated raster bands, usually fromonefile)
GDALDriver (Format specificdriver)
GDALDriverManager e
GDALGridInverseDistanceToAPowerOptions
GDALGridMovingAverageOptions
GDALGridNearestNeighborOptions

GDALMajorObject
GDALPamDataset

(Objectwithmetadata)

GDALRasterAttributeTable (Raster Attribute Table container)

GDALRasterBand (
GDALWarpKernel

A single raster band (orchannel)) 0oL,

GDALWarpOperation

GDALWarpOptions

ES
2?
??
??
7
22
2?
??
2?
??
??
??
??
??
??
??
ES
??
??
??
7

166 Class Index

Chapter 38

File Index

38.1 File List

Here is a list of all documented files with brief descriptions:

cpl_configh e e
cpl_conv.h e
cplesv.h . . e e e
cpl_errorh
cplhttph
cplLlisth e
cpl_minixmlh
cpl_multiproc.h
cpl_odbc.h o e
cplporth
cplstring.h
cplovsih . . e e
cplvsi_virtualLh
cpl_win32ce_apih
cplwinceh
gdal.lh e
gdal_algh
gdal_frmts.h
gdal_pam.h
gdal_privh e
gdal_rath
gdal_version.h
gdal_vrth e
gdalgrid.h e
gdaljp2metadata.h
gdalwarper.h
gvgepfith
thinplatespline.h
vrtdataseth

ES
2?
??
??
7
22
??
??
2?
??
??
??
??
??
??
??
ES
??
??
2?
7
22
??
??
2?
??
??
??
??

168 File Index

Chapter 39

Class Documentation

39.1 _CPLList Struct Reference

#include <cpl_list.h>

Public Attributes

* void * pData
* struct _CPLList * psNext

39.1.1 Detailed Description

List element structure.

39.1.2 Member Data Documentation

39.1.2.1 voidx _CPLList::pData

Pointer to the data object. Should be allocated and frred by the caller.
Referenced by CPLListAppend(), CPLListGetData(), and CPLListInsert().
39.1.2.2 struct _CPLListx _CPLList::psNext [read]

Pointer to the next element in list. NULL, if current element is the last one

Referenced by CPLListAppend(), CPLListCount(), CPLListDestroy(), CPLListGet(), CPLListGetLast(),
CPLListGetNext(), CPLListInsert(), and CPLListRemove().

The documentation for this struct was generated from the following file:

e cpl_list.h

170 Class Documentation

39.2 CPLODBCDriverlnstaller Class Reference

#include <cpl_odbc.h>

Public Member Functions

¢ int InstallDriver (const char xpszDriver, const char xpszPathIn, WORD fRequest=ODBC_-
INSTALL_COMPLETE)

* int RemoveDriver (const char #pszDriverName, int fRemoveDSN=FALSE)
* int GetUsageCount () const

¢ const char * GetPathOut () const

¢ const char x GetLastError () const

* DWORD GetLastErrorCode () const

39.2.1 Detailed Description

A class providing functions to install or remove ODBC driver.

39.2.2 Member Function Documentation

39.2.2.1 int CPLODBCDriverInstaller::InstallDriver (const char x pszDriver, const char x
pszPathIn, WORD fRequest = ODBC_INSTALL_COMPLETE)

Installs ODBC driver or updates definition of already installed driver. Interanally, it calls ODBC’s SQLIn-
stallDriverEx function.
Parameters:

pszDriver - The driver definition as a list of keyword-value pairs describing the driver (See ODBC
API Reference).

pszPathIn - Full path of the target directory of the installation, or a null pointer (for unixODBC,
NULL is passed).

JRequest - The fRequest argument must contain one of the following values: ODBC_INSTALL_-
COMPLETE - (default) complete the installation request ODBC_INSTALL_INQUIRY - inquire
about where a driver can be installed

Returns:

TRUE indicates success, FALSE if it fails.

39.2.2.2 int CPLODBCDriverInstaller::RemoveDriver (const char * pszDriverName, int
fRemoveDSN = FALSE)

Removes or changes information about the driver from the Odbcinst.ini entry in the system information.

Parameters:

pszDriverName - The name of the driver as registered in the Odbcinst.ini key of the system informa-
tion.

39.2 CPLODBCDriverInstaller Class Reference 171

JRemoveDSN - TRUE: Remove DSNs associated with the driver specified in IpszDriver. FALSE: Do
not remove DSNs associated with the driver specified in lpszDriver.
Returns:

The function returns TRUE if it is successful, FALSE if it fails. If no entry exists in the system
information when this function is called, the function returns FALSE. In order to obtain usage count
value, call GetUsageCount().

The documentation for this class was generated from the following files:

e cpl_odbc.h
* cpl_odbc.cpp

172 Class Documentation

39.3 CPLODBCSession Class Reference

#include <cpl_odbc.h>

Public Member Functions

« int EstablishSession (const char *pszDSN, const char xpszUserid, const char «xpszPassword)
e const char * GetLastError ()

¢ int CloseSession ()

¢ int Failed (int, HSTMT=NULL)

 HDBC GetConnection ()

e HENV GetEnvironment ()

39.3.1 Detailed Description

A class representing an ODBC database session.

Includes error collection services.

39.3.2 Member Function Documentation

39.3.2.1 int CPLODBCSession::EstablishSession (const char * pszDSN, const char * pszUserid,
const char x pszPassword)

Connect to database and logon.

Parameters:

pszDSN The name of the DSN being used to connect. This is not optional.
pszUserid the userid to logon as, may be NULL if not not required, or provided by the DSN.
pszPassword the password to logon with. May be NULL if not required or provided by the DSN.

Returns:

TRUE on success or FALSE on failure. Call GetLastError() (p.??) to get details on failure.

References GetLastError().

39.3.2.2 const char * CPLODBCSession::GetLastError ()

Returns the last ODBC error message.

Returns:

pointer to an internal buffer with the error message in it. Do not free or alter. Will be an empty (but
not NULL) string if there is no pending error info.

Referenced by EstablishSession(), and CPLODBCStatement::Fetch().

The documentation for this class was generated from the following files:

* cpl_odbc.h
* cpl_odbc.cpp

39.4 CPLODBCStatement Class Reference 173

39.4 CPLODBCStatement Class Reference

#include <cpl_odbc.h>

Public Member Functions

¢ CPLODBCStatement (CPLODBCSession x)

¢ HSTMT GetStatement ()

¢ void Clear ()

* void AppendEscaped (const char)

* void Append (const char *)

¢ void Append (int)

* void Append (double)

¢ int Appendf (const char x,...)

e const char * GetCommand ()

¢ int ExecuteSQL (const char *=NULL)

¢ int Fetch (int nOrientation=SQL_FETCH_NEXT, int nOffset=0)

¢ void ClearColumnData ()

¢ int GetColCount ()

¢ const char x GetColName (int)

¢ short GetColType (int)

* const char * GetColTypeName (int)

¢ short GetColSize (int)

¢ short GetColPrecision (int)

¢ short GetColNullable (int)

¢ int GetColld (const char *)

¢ const char x GetColData (int, const char *=NULL)

e const char x GetColData (const char *, const char *=NULL)

« int GetColDataLength (int)

e int GetColumns (const char xpszTable, const char xpszCatalog=NULL, const char
xpszSchema=NULL)

e int GetPrimaryKeys (const char xpszTable, const char xpszCatalog=NULL, const char
*pszSchema=NULL)

* int GetTables (const char xpszCatalog=NULL, const char *pszSchema=NULL)

* void DumpResult (FILE «fp, int bShowSchema=FALSE)

¢ int CollectResultsInfo ()

Static Public Member Functions

* static CPLString GetTypeName (int)
« static SQLSMALLINT GetTypeMapping (SQLSMALLINT)

39.4.1 Detailed Description

Abstraction for statement, and resultset.

Includes methods for executing an SQL statement, and for accessing the resultset from that statement.
Also provides for executing other ODBC requests that produce results sets such as SQLColumns() and
SQLTables() requests.

174 Class Documentation

39.4.2 Member Function Documentation
39.4.2.1 void CPLODBCStatement::Clear ()

Clear internal command text and result set definitions.

Referenced by ExecuteSQL().

39.4.2.2 void CPLODBCStatement::AppendEscaped (const char * pszText)

Append text to internal command.

The passed text is appended to the internal SQL command text after escaping any special characters so it
can be used as a character string in an SQL statement.

Parameters:

pszText text to append.

References Append().

39.4.2.3 void CPLODBCStatement::Append (const char * pszText)

Append text to internal command.

The passed text is appended to the internal SQL command text.

Parameters:

pszText text to append.

Referenced by Append(), AppendEscaped(), Appendf(), and ExecuteSQL().

39.4.2.4 void CPLODBCStatement::Append (int nValue)

Append to internal command.

The passed value is formatted and appended to the internal SQL command text.

Parameters:

nValue value to append to the command.

References Append().

39.4.2.5 void CPLODBCStatement::Append (double dfValue)

Append to internal command.

The passed value is formatted and appended to the internal SQL command text.

Parameters:

dfValue value to append to the command.

References Append().

39.4 CPLODBCStatement Class Reference 175

39.4.2.6 int CPLODBCStatement::Appendf (const char * pszFormat, ...)

Append to internal command.

The passed format is used to format other arguments and the result is appended to the internal command
text. Long results may not be formatted properly, and should be appended with the direct Append() (p. ??)
methods.

Parameters:

pszFormat printf() style format string.

Returns:

FALSE if formatting fails dueto result being too large.

References Append().

39.4.2.7 int CPLODBCStatement::ExecuteSQL (const char * pszStatement = NULL)

Execute an SQL statement.

This method will execute the passed (or stored) SQL statement, and initialize information about the result-
set if there is one. If a NULL statement is passed, the internal stored statement that has been previously set
via Append() (p. ??) or Appendf() (p. ??) calls will be used.

Parameters:

pszStatement the SQL statement to execute, or NULL if the internally saved one should be used.

Returns:

TRUE on success or FALSE if there is an error. Error details can be fetched with OGRODBCSes-
sion::GetLastError().

References Append(), and Clear().

39.4.2.8 int CPLODBCStatement::Fetch (int nOrientation = SQIL._FETCH_NEXT, int nOffset = 0)

Fetch a new record.

Requests the next row in the current resultset using the SQLFetchScroll() call. Note that many ODBC
drivers only support the default forward fetching one record at a time. Only SQL_FETCH_NEXT (the
default) should be considered reliable on all drivers.

Currently it isn’t clear how to determine whether an error or a normal out of data condition has occured if
Fetch() (p. ??) fails.
Parameters:

nOrientation One of SQL_FETCH_NEXT, SQL_FETCH_LAST, SQL_FETCH_PRIOR, SQL_-
FETCH_ABSOLUTE, or SQL_FETCH_RELATIVE (default is SQL_FETCH_NEXT).

nOffset the offset (number of records), ignored for some orientations.

Returns:

TRUE if a new row is successfully fetched, or FALSE if not.

176 Class Documentation

References CPLODBCSession::GetLastError(), and GetTypeMapping().
Referenced by DumpResult().

39.4.2.9 int CPLODBCStatement::GetColCount ()
Fetch the resultset column count.

Returns:

the column count, or zero if there is no resultset.

Referenced by DumpResult().

39.4.2.10 const char + CPLODBCStatement::GetColName (int iCol)
Fetch a column name.

Parameters:

iCol the zero based column index.

Returns:

NULL on failure (out of bounds column), or a pointer to an internal copy of the column name.

Referenced by DumpResult().

39.4.2.11 short CPLODBCStatement::GetColType (int iCol)

Fetch a column data type.

The return type code is a an ODBC SQL_ code, one of SQL_UNKNOWN_TYPE, SQL_CHAR, SQL_-
NUMERIC, SQL_DECIMAL, SQL_INTEGER, SQL_SMALLINT, SQL_FLOAT, SQL_REAL, SQL_-
DOUBLE, SQL_DATETIME, SQL_VARCHAR, SQL_TYPE_DATE, SQL_TYPE_TIME, SQL_TYPE_-
TIMESTAMPT.

Parameters:

iCol the zero based column index.

Returns:

type code or -1 if the column is illegal.

Referenced by DumpResult().

39.4.2.12 const char x« CPLODBCStatement::GetColTypeName (int iCol)

Fetch a column data type name.

Returns data source-dependent data type name; for example, "CHAR", "VARCHAR", "MONEY", "LONG
VARBINAR", or "CHAR () FOR BIT DATA".

39.4 CPLODBCStatement Class Reference 177

Parameters:

iCol the zero based column index.

Returns:

NULL on failure (out of bounds column), or a pointer to an internal copy of the column dat type name.

39.4.2.13 short CPLODBCStatement::GetColSize (int iCol)

Fetch the column width.

Parameters:

iCol the zero based column index.

Returns:

column width, zero for unknown width columns.

Referenced by DumpResult().

39.4.2.14 short CPLODBCStatement::GetColPrecision (int iCol)

Fetch the column precision.

Parameters:

iCol the zero based column index.

Returns:

column precision, may be zero or the same as column size for columns to which it does not apply.

Referenced by DumpResult().

39.4.2.15 short CPLODBCStatement::GetColNullable (int iCol)

Fetch the column nullability.

Parameters:

iCol the zero based column index.

Returns:

TRUE if the column may contains or FALSE otherwise.

Referenced by DumpResult().

178 Class Documentation

39.4.2.16 int CPLODBCStatement::GetColld (const char * pszColName)

Fetch column index.

Gets the column index corresponding with the passed name. The name comparisons are case insensitive.

Parameters:

pszColName the name to search for.

Returns:

the column index, or -1 if not found.

Referenced by GetColData().

39.4.2.17 const char x CPLODBCStatement::GetColData (int iCol, const char * pszDefault =
NULL)
Fetch column data.

Fetches the data contents of the requested column for the currently loaded row. The result is returned as a
string regardless of the column type. NULL is returned if an illegal column is given, or if the actual column
is "NULL".

Parameters:

iCol the zero based column to fetch.

pszDefault the value to return if the column does not exist, or is NULL. Defaults to NULL.

Returns:

pointer to internal column data or NULL on failure.

Referenced by DumpResult(), and GetColData().

39.4.2.18 const char « CPLODBCStatement::GetColData (const char * pszColName, const char x
pszDefault = NULL)
Fetch column data.

Fetches the data contents of the requested column for the currently loaded row. The result is returned as a
string regardless of the column type. NULL is returned if an illegal column is given, or if the actual column
is "NULL".

Parameters:

pszColName the name of the column requested.

pszDefault the value to return if the column does not exist, or is NULL. Defaults to NULL.

Returns:

pointer to internal column data or NULL on failure.

References GetColData(), and GetColld().

39.4 CPLODBCStatement Class Reference 179

39.4.2.19 int CPLODBCStatement::GetColumns (const char * pszTable, const char * pszCatalog =
NULL, const char * pszSchema = NULL)
Fetch column definitions for a table.

The SQLColumn() method is used to fetch the definitions for the columns of a table (or other queriable
object such as a view). The column definitions are digested and used to populate the CPLODBCStatement
(p- ??) column definitions essentially as if a "SELECT * FROM tablename" had been done; however, no
resultset will be available.

Parameters:

pszTable the name of the table to query information on. This should not be empty.
pszCatalog the catalog to find the table in, use NULL (the default) if no catalog is available.
pszSchema the schema to find the table in, use NULL (the default) if no schema is available.

Returns:

TRUE on success or FALSE on failure.

39.4.2.20 int CPLODBCStatement::GetPrimaryKeys (const char * pszTable, const char x
pszCatalog = NULL, const char x pszSchema = NULL)
Fetch primary keys for a table.

The SQLPrimaryKeys() function is used to fetch a list of fields forming the primary key. The result is
returned as a result set matching the SQLPrimaryKeys() function result set. The 4th column in the result
set is the column name of the key, and if the result set contains only one record then that single field will
be the complete primary key.

Parameters:

pszTable the name of the table to query information on. This should not be empty.
pszCatalog the catalog to find the table in, use NULL (the default) if no catalog is available.
pszSchema the schema to find the table in, use NULL (the default) if no schema is available.

Returns:

TRUE on success or FALSE on failure.

39.4.2.21 int CPLODBCStatement::GetTables (const char * pszCatalog = NULL, const char *
PpszSchema = NULL)
Fetch tables in database.

The SQLTables() function is used to fetch a list tables in the database. The result is returned as a result
set matching the SQLTables() function result set. The 3rd column in the result set is the table name. Only
tables of type "TABLE" are returned.

Parameters:

pszCatalog the catalog to find the table in, use NULL (the default) if no catalog is available.
pszSchema the schema to find the table in, use NULL (the default) if no schema is available.

180 Class Documentation

Returns:

TRUE on success or FALSE on failure.

39.4.2.22 void CPLODBCStatement::DumpResult (FILE = fp, int bShowSchema = FALSE)

Dump resultset to file.

The contents of the current resultset are dumped in a simply formatted form to the provided file. If re-
quested, the schema definition will be written first.

Parameters:

Jp the file to write to. stdout or stderr are acceptable.

bShowSchema TRUE to force writing schema information for the rowset before the rowset data itself.
Default is FALSE.

References Fetch(), GetColCount(), GetColData(), GetColName(), GetColNullable(), GetColPrecision(),
GetColSize(), GetColType(), and GetTypeName().

39.4.2.23 CPLString CPLODBCStatement::GetTypeName (int nTypeCode) [static]

Get name for SQL column type.

Returns a string name for the indicated type code (as returned from CPLODBCStatement::GetColType()
(p-??)).

Parameters:

nTypeCode the SQL_ code, such as SQL_CHAR.

Returns:

internal string, "UNKNOWN" if code not recognised.

Referenced by DumpResult().

39.4.2.24 SQLSMALLINT CPLODBCStatement::GetTypeMapping (SQLSMALLINT
nTypeCode) [static]

Get appropriate C data type for SQL column type.

Returns a C data type code, corresponding to the indicated SQL data type code (as returned from CPLOD-
BCStatement::GetColType() (p. ??)).

Parameters:

nTypeCode the SQL_ code, such as SQL._CHAR.

Returns:

data type code. The valid code is always returned. If SQL code is not recognised, SQL_C_BINARY
will be returned.

39.4 CPLODBCStatement Class Reference 181

Referenced by Fetch().

The documentation for this class was generated from the following files:

e cpl_odbc.h
* cpl_odbc.cpp

182 Class Documentation

39.5 CPLXMLNode Struct Reference

#include <cpl_minixml.h>

Public Attributes

CPLXMLNodeType eType
Node type.

* char * pszValue

Node value.

¢ struct CPLXMLNode * psNext
Next sibling.

struct CPLXMLNode * psChild
Child node.

39.5.1 Detailed Description

Document node structure.

This C structure is used to hold a single text fragment representing a component of the document when
parsed. It should be allocated with the appropriate CPL function, and freed with CPLDestroyXMLNode()
(p-??). The structure contents should not normally be altered by application code, but may be freely
examined by application code.

Using the psChild and psNext pointers, a heirarchical tree structure for a document can be represented as a
tree of CPLXMULNode (p. ??) structures.

39.5.2 Member Data Documentation
39.5.2.1 CPLXMLNodeType CPLXMLNode::eType

Node type.
One of CXT_Element, CXT_Text, CXT_Attribute, CXT_Comment, or CXT_Literal.

Referenced by CPLAddXMLChild(), CPLCloneXMLTree(), CPLCreateXMLNode(), CPLGetXMLN-
ode(), CPLGetXMLValue(), CPLSearchXMLNode(), CPLSetXMLValue(), and CPLStripXMLNames-

pace().

39.5.2.2 charx CPLXMLNode::pszValue

Node value.

For CXT_Element this is the name of the element, without the angle brackets. Note there is a single CXT_-
Element even when the document contains a start and end element tag. The node represents the pair. All
text or other elements between the start and end tag will appear as children nodes of this CXT_Element
node.

39.5 CPLXMLNode Struct Reference 183

For CXT_Attribute the pszValue is the attribute name. The value of the attribute will be a CXT_Text child.

For CXT_Text this is the text itself (value of an attribute, or a text fragment between an element start and
end tags.

For CXT_Literal it is all the literal text. Currently this is just used for IDOCTYPE lines, and the value
would be the entire line.

For CXT_Comment the value is all the literal text within the comment, but not including the comment
start/end indicators ("<-"and "- — "

Referenced by CPLCloneXMLTree(), CPLCreateXMLNode(), CPLDestroyXMLNode(), CPLGetXMLN-
ode(), CPLGetXMLValue(), CPLParseXMLString(), CPLSearchXMLNode(), CPLSetXMLValue(), and
CPLStripXMLNamespace().

39.5.2.3 struct CPLXMLNodex CPLXMLNode::psNext [read]

Next sibling.

Pointer to next sibling, that is the next node appearing after this one that has the same parent as this node.
NULL if this node is the last child of the parent element.

Referenced by CPLAddXMLChild(), CPLAddXMLSibling(), CPLCloneXMLTree(), CPLCreateXMLN-
ode(), CPLDestroyXMLNode(), CPLGetXMLNode(), CPLGetXMLValue(), CPLRemoveXMLChild(),
CPLSearchXMLNode(), CPLSerializeXMLTree(), CPLSetXMLValue(), and CPLStripXMLNamespace().

39.5.24 struct CPLXMLNodex CPLXMLNode::psChild [read]

Child node.

Pointer to first child node, if any. Only CXT_Element and CXT_Attribute nodes should have children.
For CXT_Attribute it should be a single CXT_Text value node, while CXT_Attribute can have any kind of
child. The full list of children for a node are identified by walking the psNext’s starting with the psChild
node.

Referenced by CPLAddXMLChild(), CPLCloneXMLTree(), CPLCreateXMLNode(), CPLDe-
stroyXMLNode(), CPLGetXMLNode(), CPLGetXMLValue(), CPLRemoveXMLChild(),
CPLSearchXMLNode(), CPLSetXMLValue(), and CPLStripXMLNamespace().

The documentation for this struct was generated from the following file:

¢ cpl_minixml.h

184 Class Documentation

39.6 GDAL_GCP Struct Reference

#include <gdal.h>

Public Attributes

e char * pszId

¢ char * pszInfo

¢ double dfGCPPixel
¢ double dfGCPLine
¢ double dfGCPX

¢ double dfGCPY

¢ double dfGCPZ

39.6.1 Detailed Description

Ground Control Point

39.6.2 Member Data Documentation
39.6.2.1 charx GDAL_GCP::pszld

Unique identifier, often numeric

39.6.2.2 charx GDAL_GCP::pszinfo

Informational message or

39.6.2.3 double GDAL_GCP::dfGCPPixel

Pixel (x) location of GCP on raster

Referenced by GDALCreateGCPTransformer(), GDALCreate TPSTransformer(), and GDALGCPsToGeo-
Transform().

39.6.2.4 double GDAL_GCP::dfGCPLine

Line (y) location of GCP on raster

Referenced by GDALCreateGCPTransformer(), GDALCreateTPSTransformer(), and GDALGCPsToGeo-
Transform().

39.6.2.5 double GDAL_GCP::dfGCPX

X position of GCP in georeferenced space

Referenced by GDALCreateGCPTransformer(), GDALCreate TPSTransformer(), and GDALGCPsToGeo-
Transform().

39.6 GDAL_GCP Struct Reference 185

39.6.2.6 double GDAL_GCP::dfGCPY

Y position of GCP in georeferenced space

Referenced by GDALCreateGCPTransformer(), GDALCreateTPSTransformer(), and GDALGCPsToGeo-
Transform().

39.6.2.7 double GDAL_GCP::dfGCPZ

Elevation of GCP, or zero if not known

The documentation for this struct was generated from the following file:

* gdal.h

186 Class Documentation

39.7 GDALColorEntry Struct Reference

#include <gdal.h>

Public Attributes

¢ short ¢l
 short c2
e short c3
e short c4

39.7.1 Detailed Description

Color tuple

39.7.2 Member Data Documentation
39.7.2.1 short GDALColorEntry::cl

gray, red, cyan or hue

Referenced by GDALColorTable::CreateColorRamp(), GDALComputeMedianCutPCT(),
GDALDitherRGB2PCT(), GDALRasterBand::GetIndexColorTranslationTo(), GDALRasterAt-
tributeTable::InitializeFromColorTable(), GDALColorTable::SetColorEntry(), and GDALRasterAt-
tributeTable:: TranslateToColorTable().

39.7.2.2 short GDALColorEntry::c2

green, magenta, or lightness

Referenced by GDALColorTable::CreateColorRamp(), GDALComputeMedianCutPCT(),
GDALDitherRGB2PCT(), GDALRasterBand::GetIndexColorTranslationTo(), GDALRasterAt-
tributeTable::InitializeFromColorTable(), GDALColorTable::SetColorEntry(), and GDALRasterAt-
tributeTable:: TranslateToColorTable().

39.7.2.3 short GDALColorEntry::c3

blue, yellow, or saturation

Referenced by GDALColorTable::CreateColorRamp(), GDALComputeMedianCutPCT(),
GDALDitherRGB2PCT(), GDALRasterBand::GetIndexColorTranslationTo(), GDALRasterAt-
tributeTable::InitializeFromColorTable(), GDALColorTable::SetColorEntry(), and GDALRasterAt-
tributeTable:: TranslateToColorTable().

39.7.2.4 short GDALColorEntry::c4

alpha or blackband

Referenced by GDALColorTable::CreateColorRamp(), GDALComputeMedianCutPCT(), GDALRaster-
AttributeTable::InitializeFromColorTable(), GDALColorTable::SetColorEntry(), and GDALRasterAt-
tributeTable:: TranslateToColorTable().

39.7 GDALColorEntry Struct Reference 187

The documentation for this struct was generated from the following file:

* gdal.h

188 Class Documentation

39.8 GDALColorTable Class Reference

#include <gdal_priv.h>

Public Member Functions

* GDALColorTable (GDALPaletteInterp=GPI_RGB)

¢ ~GDALColorTable ()

¢ GDALColorTable « Clone () const

¢ GDALPalettelnterp GetPaletteInterpretation () const

¢ int GetColorEntryCount () const

 const GDALColorEntry « GetColorEntry (int) const

¢ int GetColorEntryAsRGB (int, GDALColorEntry) const

* void SetColorEntry (int, const GDALColorEntry x)

¢ int CreateColorRamp (int, const GDALColorEntry x, int, const GDALColorEntry x)

39.8.1 Detailed Description

A color table / palette.

39.8.2 Constructor & Destructor Documentation
39.8.2.1 GDALColorTable::GDALColorTable (GDALPaletteInterp elnterpln = GPI_RGB)

Construct a new color table.

This constructor is the same as the C GDALCreateColorTable() function.

Parameters:

elnterpln the interpretation to be applied to GDALColorEntry (p. ??) values.

Referenced by Clone().

39.8.2.2 GDALColorTable::~GDALColorTable ()

Destructor.

This descructor is the same as the C GDALDestroyColorTable() function.

39.8.3 Member Function Documentation
39.8.3.1 GDALColorTable x GDALColorTable::Clone () const

Make a copy of a color table.
This method is the same as the C function GDALCloneColorTable().
References GDALColorTable().

39.8 GDALColorTable Class Reference 189

39.8.3.2 GDALPaletteInterp GDALColorTable::GetPaletteInterpretation () const

Fetch palette interpretation.
The returned value is used to interprete the values in the GDALColorEntry (p. ??).
This method is the same as the C function GDALGetPaletteInterpretation().

Returns:

palette interpretation enumeration value, usually GPI_RGB.

39.8.3.3 int GDALColorTable::GetColorEntryCount () const

Get number of color entries in table.

This method is the same as the function GDALGetColorEntryCount().

Returns:

the number of color entries.

Referenced by CreateColorRamp(), GDALRasterBand::GetIndexColorTranslationTo(), and GDALRaster-
AttributeTable::InitializeFromColorTable().

39.8.3.4 const GDALColorEntry x+ GDALColorTable::GetColorEntry (int i) const

Fetch a color entry from table.

This method is the same as the C function GDALGetColorEntry().

Parameters:

i entry offset from zero to GetColorEntryCount() (p. ??)-1.

Returns:

pointer to internal color entry, or NULL if index is out of range.

Referenced by GDALRasterBand::GetIndexColorTranslationTo().

39.8.3.5 int GDALColorTable::GetColorEntryAsRGB (int i, GDALColorEntry * poEntry) const

Fetch a table entry in RGB format.

In theory this method should support translation of color palettes in non-RGB color spaces into RGB on
the fly, but currently it only works on RGB color tables.

This method is the same as the C function GDALGetColorEntry AsSRGB().

Parameters:

i entry offset from zero to GetColorEntryCount() (p. 2?)-1.
poEntry the existing GDALColorEntry (p. ??) to be overrwritten with the RGB values.

190 Class Documentation

Returns:

TRUE on success, or FALSE if the conversion isn’t supported.

References GPI_RGB.
Referenced by GDALRasterAttributeTable::InitializeFromColorTable().

39.8.3.6 void GDALColorTable::SetColorEntry (int i, const GDALColorEntry * poEntry)

Set entry in color table.

Note that the passed in color entry is copied, and no internal reference to it is maintained. Also, the passed
in entry must match the color interpretation of the table to which it is being assigned.

The table is grown as needed to hold the supplied offset.
This function is the same as the C function GDALSetColorEntry().

Parameters:

i entry offset from zero to GetColorEntryCount() (p. ??)-1.

poEntry value to assign to table.

References GDALColorEntry::cl, GDALColorEntry::c2, GDALColorEntry::c3, and GDALColorEn-
try::c4.

Referenced by CreateColorRamp(), and GDALRasterAttributeTable:: TranslateToColorTable().

39.8.3.7 int GDALColorTable::CreateColorRamp (int nStartIndex, const GDALColorEntry *
psStartColor, int nEndIndex, const GDALColorEntry * psEndColor)
Create color ramp

Automatically creates a color ramp from one color entry to another. It can be called several times to create
multiples ramps in the same color table.

This function is the same as the C function GDALCreateColorRamp().

Parameters:

nStartIndex index to start the ramp on the color table [0..255]
psStartColor a color entry value to start the ramp
nEndIndex index to end the ramp on the color table [0..255]

psEndColor a color entry value to end the ramp

Returns:
total number of entries, -1 to report error
References GDALColorEntry::cl, GDALColorEntry::c2, GDALColorEntry::c3, GDALColorEntry::c4,
GetColorEntryCount(), and SetColorEntry().
The documentation for this class was generated from the following files:

 gdal_priv.h
* gdalcolortable.cpp

39.9 GDALDataset Class Reference 191

39.9 GDALDataset Class Reference

A set of associated raster bands, usually from one file.

#include <gdal_priv.h>

Inheritance diagram for GDALDataset::

\ GDALMgjorObject \

T

\ GDAL Dataset \

T

\ GDAL PamDataset \

Public Member Functions

virtual ~GDALDataset ()

int GetRasterXSize (void)

int GetRasterYSize (void)

int GetRasterCount (void)

GDALRasterBand x GetRasterBand (int)
virtual void FlushCache (void)

virtual const char * GetProjectionRef (void)
virtual CPLErr SetProjection (const char)
virtual CPLErr GetGeoTransform (double)
virtual CPLErr SetGeoTransform (double x)
virtual CPLErr AddBand (GDALDataType eType, char «xpapszOptions=NULL)
virtual void * GetInternalHandle (const char x)
virtual GDALDriver * GetDriver (void)

virtual char *x GetFileList (void)

virtual int GetGCPCount ()

virtual const char * GetGCPProjection ()
virtual const GDAL_GCP * GetGCPs ()

virtual CPLErr SetGCPs (int nGCPCount, const GDAL_GCP xpasGCPList, const char
xpszGCPProjection)

virtual CPLErr AdviseRead (int nXOff, int nYOff, int nXSize, int nYSize, int nBufXSize, int nBu-
fYSize, GDALDataType eDT, int nBandCount, int xpanBandList, char *xpapszOptions)

virtual CPLErr CreateMaskBand (int nFlags)

CPLErr RasterIO (GDALRWTFlag, int, int, int, int, void *, int, int, GDALDataType, int, int *, int,
int, int)

int Reference ()

int Dereference ()

GDALACccess GetAccess ()

int GetShared ()

void MarkAsShared ()

CPLErr BuildOverviews (const char , int, int *, int, int %, GDALProgressFunc, void *)

192

Class Documentation

Static Public Member Functions

« static GDALDataset «+ GetOpenDatasets (int xpnDatasetCount)

Protected Member Functions

void RasterlInitialize (int, int)
void SetBand (int, GDALRasterBand x)

virtual CPLErr IBuildOverviews (const char , int, int %, int, int x, GDALProgressFunc, void *)
virtual CPLErr IRasterIO (GDALRWFlag, int, int, int, int, void %, int, int, GDALDataType, int,

int *, int, int, int)

CPLErr BlockBasedRasterIO (GDALRWFlag, int, int, int, int, void *, int, int, GDALDataType,

int, int *, int, int, int)
void BlockBasedFlushCache ()

Protected Attributes

GDALDriver * poDriver
GDALACccess eAccess

int nRasterXSize

int nRasterY Size

int nBands

GDALRasterBand *x papoBands

int bForceCachedlO

int nRefCount

int bShared

GDALDefaultOverviews oOvManager

Friends

class GDALDriver

class GDALDefaultOverviews

class GDALRasterBand

GDALDatasetH GDALOpen (const char x, GDALAccess)

GDALDatasetH GDALOpenShared (const char *, GDALAccess)

39.9.1 Detailed Description

A set of associated raster bands, usually from one file.

A dataset encapsulating one or more raster bands.

Model.

Use GDALOpen() (p. ??) or GDALOpenShared() (p. 2?) to create a GDALDataset (p. ??) for a named
file, or GDALDriver::Create() (p. ??) or GDALDriver::CreateCopy() (p. ??) to create a new dataset.

Details are further discussed in the GDAL Data

39.9 GDALDataset Class Reference 193

39.9.2 Constructor & Destructor Documentation
39.9.2.1 GDALDataset::~GDALDataset () [virtual]

Destroy an open GDALDataset (p. ??).
This is the accepted method of closing a GDAL dataset and deallocating all resources associated with it.

Equivelent of the C callable GDALClose() (p. 2?). Except that GDALClose() (p. ??) first decrements the
reference count, and then closes only if it has dropped to zero.

References GDALMajorObject::GetDescription().

39.9.3 Member Function Documentation
39.9.3.1 int GDALDataset::GetRasterXSize (void)

Fetch raster width in pixels.

Equivelent of the C function GDALGetRasterXSize() (p. ??).

Returns:

the width in pixels of raster bands in this GDALDataset (p. ??).

Referenced by GDALDatasetCopy WholeRaster(), GDALDumpOpenDatasets(), and GDALRasterizeGe-
ometries().

39.9.3.2 int GDALDataset::GetRasterYSize (void)

Fetch raster height in pixels.
Equivelent of the C function GDALGetRasterYSize() (p. ??).

Returns:

the height in pixels of raster bands in this GDALDataset (p. ??).

Referenced by GDALDatasetCopyWholeRaster(), GDALDumpOpenDatasets(), and GDALRasterizeGe-
ometries().

39.9.3.3 int GDALDataset::GetRasterCount (void)

Fetch the number of raster bands on this dataset.

Same as the C function GDALGetRasterCount() (p. ??).

Returns:

the number of raster bands.

Referenced by BuildOverviews(), GDALDatasetCopyWholeRaster(), GDALDumpOpenDatasets(),
GDALGetRasterCount(), and RasterIO().

194 Class Documentation

39.9.3.4 GDALRasterBand x GDALDataset::GetRasterBand (int nBandld)

Fetch a band object for a dataset.
Equivelent of the C function GDALGetRasterBand() (p. ??).

Parameters:

nBandld the index number of the band to fetch, from 1 to GetRasterCount() (p. 2?).

Returns:

the height in pixels of raster bands in this GDALDataset (p. 2?).

Referenced by AdviseRead(), GDALDatasetCopyWholeRaster(), GDALGetRasterBand(), GDALRaster-
izeGeometries(), and RasterIO().

39.9.3.5 void GDALDataset::FlushCache (void) [virtual]

Flush all write cached data to disk.

Any raster (or other GDAL) data written via GDAL calls, but buffered internally will be written to disk.
This method is the same as the C function GDALFlushCache() (p. ??).

Reimplemented in GDALPamDataset (p. ??).

References GDALRasterBand::FlushCache().

Referenced by GDALPamDataset::FlushCache().

39.9.3.6 const char + GDALDataset::GetProjectionRef (void) [virtual]

Fetch the projection definition string for this dataset.
Same as the C function GDALGetProjectionRef() (p. 2?).

The returned string defines the projection coordinate system of the image in OpenGIS WKT format. It
should be suitable for use with the OGRSpatialReference class.

When a projection definition is not available an empty (but not NULL) string is returned.

Returns:

a pointer to an internal projection reference string. It should not be altered, freed or expected to last
for long.

See also:

http://www.gdal.org/ogr/osr_tutorial.html

Reimplemented in GDALPamDataset (p.2?).
Referenced by GDALGetProjectionRef(), and GDALPamDataset::GetProjectionRef().

39.9.3.7 CPLErr GDALDataset::SetProjection (const char x) [virtual]

Set the projection reference string for this dataset.

39.9 GDALDataset Class Reference 195

The string should be in OGC WKT or PROJ.4 format. An error may occur because of incorrectly specified
projection strings, because the dataset is not writable, or because the dataset does not support the indicated
projection. Many formats do not support writing projections.

This method is the same as the C GDALSetProjection() (p. ??) function.

Parameters:

pszProjection projection reference string.

Returns:

CE_Failure if an error occurs, otherwise CE_None.

Reimplemented in GDALPamDataset (p.??).
Referenced by GDALSetProjection(), and GDALPamDataset::SetProjection().

39.9.3.8 CPLErr GDALDataset::GetGeoTransform (double * padfTransform) [virtual]

Fetch the affine transformation coefficients.
Fetches the coefficients for transforming between pixel/line (P,L) raster space, and projection coordinates

(Xp,Yp) space.

padfTransform[0] + PxpadfTransform[l] + LxpadfTransform[2];
padfTransform[3] + PxpadfTransform[4] + LxpadfTransform[5];

Xp
Yp

In a north up image, padfTransform[1] is the pixel width, and padfTransform[5] is the pixel height. The
upper left corner of the upper left pixel is at position (padfTransform[0],padfTransform[3]).

The default transform is (0,1,0,0,0,1) and should be returned even when a CE_Failure error is returned,
such as for formats that don’t support transformation to projection coordinates.

NOTE: GetGeoTransform() (p. ??) isn’t expressive enough to handle the variety of OGC Grid Coverages
pixel/line to projection transformation schemes. Eventually this method will be depreciated in favour of a
more general scheme.

This method does the same thing as the C GDALGetGeoTransform() (p. ??) function.

Parameters:

padfTransform an existing six double buffer into which the transformation will be placed.

Returns:

CE_None on success, or CE_Failure if no transform can be fetched.

Reimplemented in GDALPamDataset (p.??).
Referenced by GDALGetGeoTransform(), and GDALPamDataset::GetGeoTransform().

39.9.3.9 CPLErr GDALDataset::SetGeoTransform (double x) [virtual]

Set the affine transformation coefficients.
See GetGeoTransform() (p. ??) for details on the meaning of the padfTransform coefficients.

This method does the same thing as the C GDALSetGeoTransform() (p. ??) function.

196 Class Documentation

Parameters:

padfTransform a six double buffer containing the transformation coefficients to be written with the
dataset.

Returns:

CE_None on success, or CE_Failure if this transform cannot be written.

Reimplemented in GDALPamDataset (p. ??).
Referenced by GDALSetGeoTransform(), and GDALPamDataset::SetGeoTransform().

39.9.3.10 CPLErr GDALDataset::AddBand (GDALDataType eType, char xx papszOptions =
NULL) [virtual]
Add a band to a dataset.

This method will add a new band to the dataset if the underlying format supports this action. Most formats
do not.

Note that the new GDALRasterBand (p. ??) is not returned. It may be fetched after successful comple-
tion of the method by calling GDALDataset::GetRasterBand (p. ??)(GDALDataset::GetRasterCount()
(p- ?2?)-1) as the newest band will always be the last band.

Parameters:

eType the data type of the pixels in the new band.

papszOptions a list of NAME=VALUE option strings. The supported options are format specific.
NULL may be passed by default.

Returns:

CE_None on success or CE_Failure on failure.

39.9.3.11 void * GDALDataset::GetInternalHandle (const char x) [virtual]

Fetch a format specific internally meaningful handle.

This method is the same as the C GDALGetInternalHandle() (p. ??) method.

Parameters:

pszHandleName the handle name desired. The meaningful names will be specific to the file format.

Returns:

the desired handle value, or NULL if not recognised/supported.

Referenced by GDALGetInternalHandle().

39.9.3.12 GDALDriver * GDALDataset::GetDriver (void) [virtual]

Fetch the driver to which this dataset relates.

This method is the same as the C GDALGetDatasetDriver() (p. ??) function.

39.9 GDALDataset Class Reference 197

Returns:

the driver on which the dataset was created with GDALOpen() (p. ??) or GDALCreate() (p. ??).

Referenced by GDALDumpOpenDatasets().

39.9.3.13 char xx GDALDataset::GetFileList (void) [virtual]

Fetch files forming dataset.

Returns a list of files believed to be part of this dataset. If it returns an empty list of files it means there
is believed to be no local file system files associated with the dataset (for instance a virtual dataset). The
returned file list is owned by the caller and should be deallocated with CSLDestroy() (p. 2?).

The returned filenames will normally be relative or absolute paths depending on the path used to originally
open the dataset.

This method is the same as the C GDALGetFileList() (p. ??) function.

Returns:

NULL or a NULL terminated array of file names.

Reimplemented in GDALPamDataset (p. ??).
References GDALMajorObject::GetDescription(), and VSIStatL().
Referenced by GDALPamDataset::GetFileList().

39.9.3.14 int GDALDataset::GetGCPCount () [virtual]

Get number of GCPs.
This method is the same as the C function GDALGetGCPCount() (p. ??).

Returns:

number of GCPs for this dataset. Zero if there are none.

Reimplemented in GDALPamDataset (p. 2?).
Referenced by GDALPamDataset::GetGCPCount().

39.9.3.15 const char x« GDALDataset::GetGCPProjection () [virtual]

Get output projection for GCPs.
This method is the same as the C function GDALGetGCPProjection() (p. ??).

The projection string follows the normal rules from GetProjectionRef() (p. ??).

Returns:

internal projection string or "" if there are no GCPs.

Reimplemented in GDALPamDataset (p. ??).
Referenced by GDALPamDataset:: GetGCPProjection().

198 Class Documentation

39.9.3.16 const GDAL_GCP x GDALDataset::GetGCPs () [virtual]

Fetch GCPs.
This method is the same as the C function GDALGetGCPs() (p. ??).

Returns:

pointer to internal GCP structure list. It should not be modified, and may change on the next GDAL
call.

Reimplemented in GDALPamDataset (p. ??).
Referenced by GDALPamDataset::GetGCPs().

39.9.3.17 CPLErr GDALDataset::SetGCPs (int ntGCPCount, const GDAL_GCP x pasGCPList,
const char * pszGCPProjection) [virtual]

Assign GCPs.

This method is the same as the C function GDALSetGCPs() (p. ??).

This method assigns the passed set of GCPs to this dataset, as well as setting their coordinate system.
Internally copies are made of the coordinate system and list of points, so the caller remains resposible for
deallocating these arguments if appropriate.

Most formats do not support setting of GCPs, even foramts that can handle GCPs. These formats will
return CE_Failure.

Parameters:
nGCPCount number of GCPs being assigned.
pasGCPList array of GCP structures being assign (nGCPCount in array).

pszGCPProjection the new OGC WKT coordinate system to assign for the GCP output coordinates.
This parameter should be "" if no output coordinate system is known.

Returns:

CE_None on success, CE_Failure on failure (including if action is not supported for this format).

Reimplemented in GDALPamDataset (p.2?).
Referenced by GDALPamDataset::SetGCPs().

39.9.3.18 CPLErr GDALDataset::AdviseRead (int nXOff, int nYOff, int nXSize, int nYSize, int
nBufXSize, int nBufYSize, GDALDataType eDT, int nBandCount, int «+ panBandMap,
char xx papszOptions) [virtuall]

Advise driver of upcoming read requests.

Some GDAL drivers operate more efficiently if they know in advance what set of upcoming read requests
will be made. The AdviseRead() (p. ??) method allows an application to notify the driver of the region and
bands of interest, and at what resolution the region will be read.

Many drivers just ignore the AdviseRead() (p. ??) call, but it can dramatically accelerate access via some
drivers.

39.9 GDALDataset Class Reference 199

Parameters:

nXOff The pixel offset to the top left corner of the region of the band to be accessed. This would be
zero to start from the left side.

nYOff The line offset to the top left corner of the region of the band to be accessed. This would be
zero to start from the top.

nXSize The width of the region of the band to be accessed in pixels.
nYSize The height of the region of the band to be accessed in lines.

nBufXSize the width of the buffer image into which the desired region is to be read, or from which it
is to be written.

nBufYSize the height of the buffer image into which the desired region is to be read, or from which it
is to be written.

eBufType the type of the pixel values in the pData data buffer. The pixel values will automatically be
translated to/from the GDALRasterBand (p. ??) data type as needed.

nBandCount the number of bands being read or written.

panBandMap the list of nBandCount band numbers being read/written. Note band numbers are 1
based. This may be NULL to select the first nBandCount bands.

papszOptions a list of name=value strings with special control options. Normally this is NULL.

Returns:

CE_Failure if the request is invalid and CE_None if it works or is ignored.

References GDALRasterBand::AdviseRead(), and GetRasterBand().

39.9.3.19 CPLErr GDALDataset::RasterlO (GDALRWFlag eRWFlag, int nXOff, int nYOff, int
nXSize, int nYSize, void x pData, int nBufXSize, int nBufYSize, GDALDataType
eBufType, int nBandCount, int x panBandMap, int nPixelSpace, int nLineSpace, int
nBandSpace)

Read/write a region of image data from multiple bands.

This method allows reading a region of one or more GDALRasterBands from this dataset into a buffer, or
writing data from a buffer into a region of the GDALRasterBands. It automatically takes care of data type
translation if the data type (eBufType) of the buffer is different than that of the GDALRasterBand (p. ??).
The method also takes care of image decimation / replication if the buffer size (nBufXSize x nBufY Size)
is different than the size of the region being accessed (nXSize x nYSize).

The nPixelSpace, nLineSpace and nBandSpace parameters allow reading into or writing from various
organization of buffers.

For highest performance full resolution data access, read and write on "block boundaries" as returned by
GetBlockSize(), or use the ReadBlock() and WriteBlock() methods.

This method is the same as the C GDALDatasetRasterIO() (p. ??) function.

Parameters:

eRWFlag Either GF_Read to read a region of data, or GF_Write to write a region of data.

nXOff The pixel offset to the top left corner of the region of the band to be accessed. This would be
zero to start from the left side.

nYOff The line offset to the top left corner of the region of the band to be accessed. This would be
zero to start from the top.

200 Class Documentation

nXSize The width of the region of the band to be accessed in pixels.
nYSize The height of the region of the band to be accessed in lines.

pData The buffer into which the data should be read, or from which it should be written. This buffer
must contain at least nBufXSize * nBufYSize * nBandCount words of type eBufType. It is
organized in left to right,top to bottom pixel order. Spacing is controlled by the nPixelSpace, and
nLineSpace parameters.

nBufXSize the width of the buffer image into which the desired region is to be read, or from which it
is to be written.

nBufYSize the height of the buffer image into which the desired region is to be read, or from which it
is to be written.

eBufType the type of the pixel values in the pData data buffer. The pixel values will automatically be
translated to/from the GDALRasterBand (p. ??) data type as needed.

nBandCount the number of bands being read or written.

panBandMap the list of nBandCount band numbers being read/written. Note band numbers are 1
based. This may be NULL to select the first nBandCount bands.

nPixelSpace The byte offset from the start of one pixel value in pData to the start of the next pixel
value within a scanline. If defaulted (0) the size of the datatype eBufType is used.

nLineSpace The byte offset from the start of one scanline in pData to the start of the next. If defaulted
the size of the datatype eBufType * nBufXSize is used.

nBandSpace the byte offset from the start of one bands data to the start of the next. If defaulted (zero)
the value will be nLineSpace * nBufYSize implying band sequential organization of the data
buffer.

Returns:

CE_Failure if the access fails, otherwise CE_None.

References GDALGetDataTypeSize(), GetRasterBand(), GetRasterCount(), GF_Read, and GF_Write.

Referenced by GDALDatasetCopyWholeRaster(), GDALDatasetRasterIO(), and GDALRasterizeGeome-
tries().

39.9.3.20 int GDALDataset::Reference ()

Add one to dataset reference count.
The reference is one after instantiation.

This method is the same as the C GDALReferenceDataset() (p. ??) function.

Returns:

the post-increment reference count.

Referenced by GDALDumpOpenDatasets(), and GDALOpenShared().

39.9.3.21 int GDALDataset::Dereference ()

Subtract one from dataset reference count.

The reference is one after instantiation. Generally when the reference count has dropped to zero the dataset
may be safely deleted (closed).

This method is the same as the C GDALDereferenceDataset() (p. ??) function.

39.9 GDALDataset Class Reference 201

Returns:

the post-decrement reference count.

Referenced by GDALClose(), and GDALDumpOpenDatasets().

39.9.3.22 int GDALDataset::GetShared ()
Returns shared flag.

Returns:

TRUE if the GDALDataset (p. ??) is available for sharing, or FALSE if not.

Referenced by GDALDumpOpenDatasets().

39.9.3.23 void GDALDataset::MarkAsShared ()

Mark this dataset as available for sharing.

Referenced by GDALOpenShared().

39.9.3.24 GDALDataset +x GDALDataset::GetOpenDatasets (int « pnCount) [static]

Fetch all open GDAL dataset handles.
This method is the same as the C function GDALGetOpenDatasets() (p. ??).

NOTE: This method is not thread safe. The returned list may changed at any time.

Parameters:

pnCount integer into which to place the count of dataset pointers being returned.

Returns:

a pointer to an array of dataset handles.

Referenced by GDALGetOpenDatasets().

39.9.3.25 CPLErr GDALDataset::BuildOverviews (const char * pszResampling, int nOverviews,
int x panOverviewlList, int nListBands, int x panBandList, GDALProgressFunc
pfnProgress, void x pProgressData)

Build raster overview(s)

If the operation is unsupported for the indicated dataset, then CE_Failure is returned, and CPLGetLastEr-
rorNo() (p. ??) will return CPLE_NotSupported.

This method is the same as the C function GDALBuildOverviews() (p. ??).

Parameters:

pszResampling one of "NEAREST", "AVERAGE" or "MODE" controlling the downsampling
method applied.

202 Class Documentation

nOverviews number of overviews to build.

panOverviewList the list of overview decimation factors to build.

nBand number of bands to build overviews for in panBandList. Build for all bands if this is 0.
panBandList list of band numbers.

pfnProgress a function to call to report progress, or NULL.

pProgressData application data to pass to the progress function.

Returns:

CE_None on success or CE_Failure if the operation doesn’t work.

For example, to build overview level 2, 4 and 8 on all bands the following call could be made:
int anOverviewList[3] = { 2, 4, 8 };

poDataset—->BuildOverviews ("NEAREST", 3, anOverviewList, 0, NULL,
GDALDummyProgress, NULL);

References GetRasterCount().

39.9.4 Friends And Related Function Documentation

39.9.4.1 GDALDatasetH GDALOpen (const char * pszFilename, GDALAccess eAccess)
[friend]

Open a raster file as a GDALDataset (p. 2?).

This function will try to open the passed file, or virtual dataset name by invoking the Open method of each
registered GDALDriver (p. ??) in turn. The first successful open will result in a returned dataset. If all
drivers fail then NULL is returned.

See also:

GDALOpenShared() (p.??)

Parameters:

pszFilename the name of the file to access. In the case of exotic drivers this may not refer to a physical
file, but instead contain information for the driver on how to access a dataset.

eAccess the desired access, either GA_Update or GA_ReadOnly. Many drivers support only read only
access.

Returns:

A GDALDatasetH handle or NULL on failure. For C++ applications this handle can be cast to a
GDALDataset (p. ??) *.

Referenced by GDALOpenShared().

39.9 GDALDataset Class Reference 203

39.9.4.2 GDALDatasetH GDALOpenShared (const char * pszFilename, GDALAccess eAccess)
[friend]

Open a raster file as a GDALDataset (p. 2?).

This function works the same as GDALOpen() (p. ??), but allows the sharing of GDALDataset (p.??)
handles for a dataset with other callers to GDALOpenShared() (p. 2?).

In particular, GDALOpenShared() (p. ??) will first consult it’s list of currently open and shared GDAL-
Dataset’s, and if the GetDescription() (p. ??) name for one exactly matches the pszFilename passed to
GDALOpenShared() (p. ??) it will be referenced and returned.

See also:

GDALOpen() (p.??)

Parameters:

pszFilename the name of the file to access. In the case of exotic drivers this may not refer to a physical
file, but instead contain information for the driver on how to access a dataset.

eAccess the desired access, either GA_Update or GA_ReadOnly. Many drivers support only read only
access.
Returns:

A GDALDatasetH handle or NULL on failure. For C++ applications this handle can be cast to a
GDALDataset (p. ??) x*.

The documentation for this class was generated from the following files:

» gdal_priv.h
* gdaldataset.cpp
* rasterio.cpp

204 Class Documentation

39.10 GDALDriver Class Reference

Format specific driver.
#include <gdal_priv.h>

Inheritance diagram for GDALDriver::

\ GDALMajorObject \

T

\ GDALDriver \

Public Member Functions

¢ GDALDataset « Create (const char xpszName, int nXSize, int nYSize, int nBands, GDAL-
DataType eType, char *xpapszOptions)

e CPLExr Delete (const char xpszName)
* CPLErr Rename (const char xpszNewName, const char *pszOldName)
* CPLErr CopyFiles (const char spszNewName, const char *pszOldName)

¢ GDALDataset * CreateCopy (const char x, GDALDataset *, int, char *x, GDALProgressFunc
pfnProgress, void spProgressData)

¢ GDALDataset « DefaultCreateCopy (const char %, GDALDataset *, int, char xx, GDALProgress-
Func pfnProgress, void xpProgressData)

Static Public Member Functions

« static CPLErr DefaultCopyMasks (GDALDataset xpoSrcDS, GDALDataset spoDstDS, int
bStrict)

* static CPLErr QuietDelete (const char xpszName)

Public Attributes

¢ GDALDataset (+x pfnOpen)(GDALOpenInfo *)

¢ GDALDataset +(+ pfnCreate)(const char xpszName, int nXSize, int nYSize, int nBands, GDAL-
DataType eType, char *xpapszOptions)

e CPLErr(x pfnDelete)(const char *pszName)

* GDALDataset «(x pfnCreateCopy)(const char x, GDALDataset *, int, char **x, GDALProgress-
Func pfnProgress, void *pProgressData)

¢ void * pDriverData

¢ void(x pfnUnloadDriver)(GDALDriver x)

* int(x pfnldentify)(GDALOpenInfo)

* CPLErr(+ pfnRename)(const char ¥pszNewName, const char pszOldName)

e CPLErr(+ pfnCopyFiles)(const char xpszNewName, const char *xpszOldName)

39.10 GDALDriver Class Reference 205

39.10.1 Detailed Description

Format specific driver.
An instance of this class is created for each supported format, and manages information about the format.

This roughly corresponds to a file format, though some drivers may be gateways to many formats through
a secondary multi-library.

39.10.2 Member Function Documentation

39.10.2.1 GDALDataset + GDALDriver::Create (const char * pszFilename, int nXSize, int nYSize,
int nBands, GDALDataType eType, char xx papszParmlList)
Create a new dataset with this driver.

What argument values are legal for particular drivers is driver specific, and there is no way to query in
advance to establish legal values.

Equivelent of the C function GDALCreate() (p. 2?).

Parameters:
pszFilename the name of the dataset to create.
nXSize width of created raster in pixels.
nYSize height of created raster in pixels.
nBands number of bands.
eType type of raster.

papszParmlList list of driver specific control parameters.

Returns:

NULL on failure, or a new GDALDataset (p. ??).

References GDALGetDataTypeName(), GDALMajorObject::GetDescription(), GDALDataset::poDriver,
QuietDelete(), and GDALMajorObject::SetDescription().

Referenced by GDALCreate().

39.10.2.2 CPLErr GDALDriver::Delete (const char x pszFilename)

Delete named dataset.

The driver will attempt to delete the named dataset in a driver specific fashion. Full featured drivers will
delete all associated files, database objects, or whatever is appropriate. The default behaviour when no
driver specific behaviour is provided is to attempt to delete the passed name as a single file.

It is unwise to have open dataset handles on this dataset when it is deleted.

Equivelent of the C function GDALDeleteDataset() (p. ??).

Parameters:

pszFilename name of dataset to delete.

206 Class Documentation

Returns:

CE_None on success, or CE_Failure if the operation fails.

References GA_ReadOnly, GDALClose(), GDALGetFileList(), GDALOpen(), and VSIUnlink().
Referenced by QuietDelete().

39.10.2.3 CPLErr GDALDriver::Rename (const char * pszNewName, const char * pszOldName)

Rename a dataset.
Rename a dataset. This may including moving the dataset to a new directory or even a new filesystem.
It is unwise to have open dataset handles on this dataset when it is being renamed.

Equivelent of the C function GDALRenameDataset() (p.??).

Parameters:

pszNewName new name for the dataset.

pszOldName old name for the dataset.

Returns:

CE_None on success, or CE_Failure if the operation fails.

References CPLCorrespondingPaths(), GA_ReadOnly, GDALClose(), GDALGetFileList(), and
GDALOpen().

39.10.2.4 CPLErr GDALDriver::CopyFiles (const char x pszNewName, const char x pszOldName)

Copy the files of a dataset.
Copy all the files associated with a dataset.
Equivelent of the C function GDALCopyDatasetFiles() (p. 2?).

Parameters:

pszNewName new name for the dataset.

pszOldName old name for the dataset.

Returns:

CE_None on success, or CE_Failure if the operation fails.

References CPLCorrespondingPaths(), GA_ReadOnly, GDALClose(), GDALGetFileList(), GDALOpen(),
and VSIUnlink().

39.10.2.5 GDALDataset «+ GDALDriver::CreateCopy (const char * pszFilename, GDALDataset *
poSrcDS, int bStrict, char xx papszOptions, GDALProgressFunc pfnProgress, void x
pProgressData)

Create a copy of a dataset.

39.10 GDALDriver Class Reference 207

This method will attempt to create a copy of a raster dataset with the indicated filename, and in this drivers
format. Band number, size, type, projection, geotransform and so forth are all to be copied from the
provided template dataset.

Note that many sequential write once formats (such as JPEG and PNG) don’t implement the Create()
(p. ??) method but do implement this CreateCopy() (p. ??) method. If the driver doesn’t implement Cre-
ateCopy() (p. ??), but does implement Create() (p. ??) then the default CreateCopy() (p. ??) mechanism
built on calling Create() (p. ??) will be used.

It is intended that CreateCopy() (p. ??) would often be used with a source dataset which is a virtual dataset
allowing configuration of band types, and other information without actually duplicating raster data. This
virtual dataset format hasn’t yet been implemented at the time of this documentation being written.

Parameters:

pszFilename the name for the new dataset.
poSrcDS the dataset being duplicated.

bStrict TRUE if the copy must be strictly equivelent, or more normally FALSE indicating that the
copy may adapt as needed for the output format.

papszOptions additional format dependent options controlling creation of the output file.
pfnProgress a function to be used to report progress of the copy.
pProgressData application data passed into progress function.

Returns:

a pointer to the newly created dataset (may be read-only access).

References GDALMajorObject::GetDescription(), GDALDataset::poDriver, QuietDelete(), and GDAL-
MajorObject::SetDescription().

Referenced by GDALCreateCopy().

39.10.2.6 CPLErr GDALDriver::QuietDelete (const char * pszName) [static]

Delete dataset if found.

This is a helper method primarily used by Create() (p.??) and CreateCopy() (p.??) to predelete any
dataset of the name soon to be created. It will attempt to delete the named dataset if one is found, otherwise
it does nothing. An error is only returned if the dataset is found but the delete fails.

This is a static method and it doesn’t matter what driver instance it is invoked on. It will attempt to discover
the correct driver using Identify().

Parameters:
pszName the dataset name to try and delete.

Returns:

CE_None if the dataset does not exist, or is deleted without issues.

References Delete().
Referenced by Create(), and CreateCopy().
The documentation for this class was generated from the following files:

e gdal_priv.h
e gdaldriver.cpp

208 Class Documentation

39.11 GDALDriverManager Class Reference

#include <gdal_priv.h>

Inheritance diagram for GDALDriverManager::

\ GDALMgjorObject \

T

‘ GDAL DriverManager ‘

Public Member Functions

¢ int GetDriverCount (void)

* GDALDriver * GetDriver (int)

¢ GDALDriver * GetDriverByName (const char *)
* int RegisterDriver (GDALDriver x)

¢ void MoveDriver (GDALDriver x, int)

¢ void DeregisterDriver (GDALDriver *)

¢ void AutoLoadDrivers ()

* void AutoSKipDrivers ()

¢ const char * GetHome ()

¢ void SetHome (const char)

39.11.1 Detailed Description

Class for managing the registration of file format drivers.

Use GetGDALDriverManager() to fetch the global singleton instance of this class.
39.11.2 Member Function Documentation

39.11.2.1 int GDALDriverManager::GetDriverCount (void)

Fetch the number of registered drivers.

This C analog to this is GDALGetDriverCount() (p. ??).

Returns:

the number of registered drivers.

Referenced by GDALGetDriverCount(), and GDALOpen().

39.11.2.2 GDALDriver x GDALDriverManager::GetDriver (int iDriver)

Fetch driver by index.
This C analog to this is GDALGetDriver() (p. ??).

39.11 GDALDriverManager Class Reference 209

Parameters:

iDriver the driver index from 0 to GetDriverCount() (p. ??)-1.

Returns:

the number of registered drivers.

Referenced by GDALGetDriver(), and GDALOpen().

39.11.2.3 GDALDriver x* GDALDriverManager::GetDriverByName (const char * pszName)

Fetch a driver based on the short name.

The C analog is the GDALGetDriverByName() (p. ??) function.

Parameters:

pszName the short name, such as GTiff, being searched for.

Returns:

the identified driver, or NULL if no match is found.

References GDALMajorObject::GetDescription().
Referenced by AutoSkipDrivers(), GDALGetDriverByName(), and RegisterDriver().

39.11.2.4 int GDALDriverManager::RegisterDriver (GDALDriver * poDriver)

Register a driver for use.
The C analog is GDALRegisterDriver() (p. ??).

Normally this method is used by format specific C callable registration entry points such as
GDALRegister_GTiff() rather than being called directly by application level code.

If this driver (based on the object pointer, not short name) is already registered, then no change is made,
and the index of the existing driver is returned. Otherwise the driver list is extended, and the new driver is
added at the end.

Parameters:

poDriver the driver to register.

Returns:

the index of the new installed driver.

References GDALMajorObject::GetDescription(), = GetDriverByName(), = GDALDriver::pfnCreate,
GDALDiriver::pfnCreateCopy, and GDALMajorObject::SetMetadataltem().

Referenced by GDALRegisterDriver().

39.11.2.5 void GDALDriverManager::DeregisterDriver (GDALDriver * poDriver)

Deregister the passed driver.

210 Class Documentation

If the driver isn’t found no change is made.

The C analog is GDALDeregisterDriver() (p. ??).

Parameters:

poDriver the driver to deregister.

Referenced by AutoSkipDrivers(), and GDALDeregisterDriver().

39.11.2.6 void GDALDriverManager::AutoLoadDrivers ()

Auto-load GDAL drivers from shared libraries.

This function will automatically load drivers from shared libraries. It searches the "driver path" for .so (or
.dll) files that start with the prefix "gdal_X.so". It then tries to load them and then tries to call a function
within them called GDALRegister_X() where the "X’ is the same as the remainder of the shared library
basename, or failing that to call GDALRegisterMe().

There are a few rules for the driver path. If the GDAL_DRIVER_PATH environment variable it set, it
is taken to be a list of directories to search separated by colons on unix, or semi-colons on Windows.
Otherwise the /usr/local/lib/gdalplugins directory, and (if known) the lib/gdalplugins subdirectory of the
gdal home directory are searched.

References CPLFormFilename(), CPLGetBasename(), CPLGetDirname(), CPLGetExecPath(), CPLGe-
tExtension(), and CPLGetSymbol().

Referenced by GDALAIIRegister().

39.11.2.7 void GDALDriverManager::AutoSkipDrivers ()

This method unload undesirable drivers.

All drivers specified in the space delimited list in the GDAL_SKIP environmentvariable) will be deregis-
tered and destroyed. This method should normally be called after registration of standard drivers to allow
the user a way of unloading undesired drivers. The GDALAIIRegister() (p. ??) function already invokes
AutoSkipDrivers() (p.??) at the end, so if that functions is called, it should not be necessary to call this
method from application code.

References DeregisterDriver(), and GetDriverByName().
Referenced by GDALAIIRegister().

The documentation for this class was generated from the following files:

» gdal_priv.h
* gdaldrivermanager.cpp

39.12 GDALGridInverseDistanceToAPowerOptions Struct Reference 211

39.12 GDALGridInverseDistanceToAPowerOptions Struct Refer-
ence

#include <gdal_alg.h>

Public Attributes

¢ double dfPower

* double dfSmoothing

¢ double dfAnisotropyRatio
¢ double dfAnisotropyAngle
¢ double dfRadius1

¢ double dfRadius2

* double dfAngle

¢ GUInt32 nMaxPoints

¢ GUInt32 nMinPoints

¢ double dfNoDataValue

39.12.1 Detailed Description

Inverse distance to a power method control options

39.12.2 Member Data Documentation
39.12.2.1 double GDALGridInverseDistanceToAPowerOptions::dfPower

Weighting power.

39.12.2.2 double GDALGridInverseDistanceToAPowerOptions::dfSmoothing

Smoothing parameter.

39.12.2.3 double GDALGridInverseDistanceToAPowerOptions::dfAnisotropyRatio

Reserved for future use.

39.12.2.4 double GDALGridInverseDistanceToAPowerOptions::dfAnisotropyAngle

Reserved for future use.

39.12.2.5 double GDALGridInverseDistanceToAPowerOptions::dfRadius1

The first radius (X axis if rotation angle is 0) of search ellipse.

39.12.2.6 double GDALGridInverseDistanceToAPowerOptions::dfRadius2

The second radius (Y axis if rotation angle is 0) of search ellipse.

212 Class Documentation

39.12.2.7 double GDALGridInverseDistanceToAPowerOptions::dfAngle
Angle of ellipse rotation in degrees.

Ellipse rotated counter clockwise.

39.12.2.8 GUInt32 GDALGridInverseDistanceToAPowerOptions::nMaxPoints

Maximum number of data points to use.

Do not search for more points than this number. If less amount of points found the grid node considered
empty and will be filled with NODATA marker.

39.12.2.9 GUlInt32 GDALGridInverseDistanceToAPowerOptions::nMinPoints

Minimum number of data points to use.

If less amount of points found the grid node considered empty and will be filled with NODATA marker.

39.12.2.10 double GDALGridInverseDistanceToAPowerOptions::dfNoDataValue

No data marker to fill empty points.

The documentation for this struct was generated from the following file:

* gdal_alg.h

39.13 GDALGridMovingAverageOptions Struct Reference 213

39.13 GDALGridMovingAverageOptions Struct Reference

#include <gdal_alg.h>

Public Attributes

¢ double dfRadius1

¢ double dfRadius2
double dfAngle
GUInt32 nMinPoints
double dfNoDataValue

39.13.1 Detailed Description

Moving average method control options

39.13.2 Member Data Documentation
39.13.2.1 double GDALGridMovingAverageOptions::dfRadius1

The first radius (X axis if rotation angle is 0) of search ellipse.

39.13.2.2 double GDALGridMovingAverageOptions::dfRadius2

The second radius (Y axis if rotation angle is 0) of search ellipse.

39.13.2.3 double GDALGridMovingAverageOptions::dfAngle

Angle of ellipse rotation in degrees.

Ellipse rotated counter clockwise.

39.13.2.4 GUlInt32 GDALGridMovingAverageOptions::nMinPoints

Minimum number of data points to average.

If less amount of points found the grid node considered empty and will be filled with NODATA marker.

39.13.2.5 double GDALGridMovingAverageOptions::dfNoDataValue

No data marker to fill empty points.

The documentation for this struct was generated from the following file:

* gdal_alg.h

214 Class Documentation

39.14 GDALGridNearestNeighborOptions Struct Reference

#include <gdal_alg.h>

Public Attributes

¢ double dfRadius1

¢ double dfRadius2

e double dfAngle

¢ double dfNoDataValue

39.14.1 Detailed Description

Nearest neighbor method control options

39.14.2 Member Data Documentation
39.14.2.1 double GDALGridNearestNeighborOptions::dfRadius1

The first radius (X axis if rotation angle is 0) of search ellipse.

39.14.2.2 double GDALGridNearestNeighborOptions::dfRadius2

The second radius (Y axis if rotation angle is 0) of search ellipse.

39.14.2.3 double GDALGridNearestNeighborOptions::dfAngle

Angle of ellipse rotation in degrees.

Ellipse rotated counter clockwise.

39.14.2.4 double GDALGridNearestNeighborOptions::dfNoDataValue

No data marker to fill empty points.

The documentation for this struct was generated from the following file:

* gdal_alg.h

39.15 GDALMajorObject Class Reference 215

39.15 GDALMajorObject Class Reference

Object with metadata.
#include <gdal_priv.h>
Inheritance diagram for GDALMajorObject::

| GDALMgjorObject |

i
[N N |

‘ GDAL Dataset || GDALDriver ||GDALDriverManager|| GDALRasterBand

T

‘ GDAL PamDataset |

Public Member Functions

¢ int GetMOFlags ()

* void SetMOFlags (int nFlags)

* virtual const char * GetDescription () const

* virtual void SetDescription (const char x)

e virtual char *x* GetMetadata (const char *pszDomain="")

« virtual CPLErr SetMetadata (char sxpapszMetadata, const char xpszDomain="")

* virtual const char * GetMetadataltem (const char xpszName, const char *pszDomain="")

e virtual CPLErr SetMetadataltem (const char spszName, const char xpszValue, const char
*pszDomain="")

Protected Attributes
¢ int nFlags

* CPLString sDescription
* GDALMultiDomainMetadata oMDMD

39.15.1 Detailed Description

Object with metadata.

39.15.2 Member Function Documentation
39.15.2.1 const char x« GDALMajorObject::GetDescription () const [virtual]

Fetch object description.

The semantics of the returned description are specific to the derived type. For GDALDatasets it is the
dataset name. For GDALRasterBands it is actually a description (if supported) or "".

This method is the same as the C function GDALGetDescription() (p. 2?).

Returns:

pointer to internal description string.

216 Class Documentation

Referenced by GDALDiriver::Create(), GDALDiriver::CreateCopy(), GDALDumpOpen-
Datasets(), GDALOpen(), GDALOpenShared(), GDALDriverManager::GetDriverByName(),
GDALDataset::GetFileList(), GDALRasterBand::GetLockedBlockRef(), GDALDriverMan-
ager::RegisterDriver(), GDALDataset::~GDALDataset(), and GDALRasterBand::~GDALRasterBand().

39.15.2.2 void GDALMajorObject::SetDescription (const char x pszNewDesc) [virtual]

Set object description.

The semantics of the description are specific to the derived type. For GDALDatasets it is the dataset name.

For GDALRasterBands it is actually a description (if supported) or "".

Normally application code should not set the "description" for GDALDatasets. It is handled internally.
This method is the same as the C function GDALSetDescription() (p. ??).

Referenced by GDALDriver::Create(), GDALDriver::CreateCopy(), and GDALOpen().

39.15.2.3 char +x GDALMajorObject::GetMetadata (const char x pszDomain ="") [virtual]

Fetch metadata.

The returned string list is owned by the object, and may change at any time. It is formated as a
"Name=value" list with the last pointer value being NULL. Use the the CPL StringList functions such
as CSLFetchNameValue() to manipulate it.

Note that relatively few formats return any metadata at this time.

This method does the same thing as the C function GDALGetMetadata() (p. ??).

Parameters:

pszDomain the domain of interest. Use "" or NULL for the default domain.

Returns:

NULL or a string list.

39.15.2.4 CPLErr GDALMajorObject::SetMetadata (char *xx papszMetadataln, const char x
pszDomain ="") [virtuall]
Set metadata.

The C function GDALSetMetadata() (p. ??) does the same thing as this method.

Parameters:
papszMetadata the metadata in name=value string list format to apply.
pszDomain the domain of interest. Use "" or NULL for the default domain.
Returns:

CE_None on success, CE_Failure on failure and CE_Warning if the metadata has been accepted, but
is likely not maintained persistently by the underlying object between sessions.

Reimplemented in GDALPamDataset (p. ??).
Referenced by GDALPamDataset::SetMetadata().

39.15 GDALMajorObject Class Reference 217

39.15.2.5 const char x GDALMajorObject::GetMetadataltem (const char * pszName, const char
* pszDomain = "") [virtuall
Fetch single metadata item.

The C function GDALGetMetadataltem() (p. ??) does the same thing as this method.

Parameters:

pszName the key for the metadata item to fetch.
pszDomain the domain to fetch for, use NULL for the default domain.

Returns:

NULL on failure to find the key, or a pointer to an internal copy of the value string on success.

Referenced by GDALDatasetCopyWholeRaster(), GDALRasterBand::GetMaximum(), GDALRaster-
Band::GetMinimum(), and GDALRasterBand::GetStatistics().

39.15.2.6 CPLErr GDALMajorObject::SetMetadataltem (const char x pszName, const char x
pszValue, const char x pszDomain ="") [virtual]
Set single metadata item.

The C function GDALSetMetadataltem() (p. ??) does the same thing as this method.

Parameters:

pszName the key for the metadata item to fetch.
pszValue the value to assign to the key.

pszDomain the domain to set within, use NULL for the default domain.

Returns:

CE_None on success, or an error code on failure.

Reimplemented in GDALPamDataset (p. ??).

Referenced by GDALDriverManager::RegisterDriver(), GDALPamDataset::SetMetadataltem(), and
GDALRasterBand::SetStatistics().

The documentation for this class was generated from the following files:

 gdal_priv.h
* gdalmajorobject.cpp

218 Class Documentation

39.16 GDALPamDataset Class Reference

#include <gdal_pam.h>

Inheritance diagram for GDALPamDataset::

\ GDALMgjorObject \

T

\ GDAL Dataset \

T

\ GDAL PamDataset \

Public Member Functions

« virtual void FlushCache (void)

* virtual const char * GetProjectionRef (void)

* virtual CPLErr SetProjection (const char x)

e virtual CPLErr GetGeoTransform (double)

e virtual CPLErr SetGeoTransform (double)

« virtual int GetGCPCount ()

« virtual const char * GetGCPProjection ()

e virtual const GDAL_GCP x GetGCPs ()

e virtual CPLErr SetGCPs (int nGCPCount, const GDAL_GCP xpasGCPList, const char
*pszGCPProjection)

« virtual CPLErr SetMetadata (char xxpapszMetadata, const char *pszDomain="")

e virtual CPLErr SetMetadataltem (const char spszName, const char xpszValue, const char
xpszDomain="")

e virtual char x* GetFileList (void)

* virtual CPLErr Clonelnfo (GDALDataset «poSrcDS, int nCloneInfoFlags)

¢ void MarkPamDirty ()

¢ GDALDatasetPamInfo * GetPamlInfo ()

¢ int GetPamFlags ()

* void SetPamFlags (int nValue)

Protected Member Functions

e virtual CPLXMLNode * SerializeToXML (const char *)
e virtual CPLErr XMLInit (CPLXMLNode *, const char)
¢ virtual CPLErr TryLoadXML ()

¢ virtual CPLErr TrySaveXML ()

¢ CPLErr TryLoadAux ()

¢ CPLErr TrySaveAux ()

e virtual const char x BuildPamFilename ()

¢ void Pamlnitialize ()

¢ void PamClear ()

« void SetPhysicalFilename (const char)

¢ void SetSubdatasetName (const char x)

39.16 GDALPamDataset Class Reference 219

Protected Attributes

* int nPamFlags
¢ GDALDatasetPamInfo * psPam

Friends

¢ class GDALPamRasterBand

39.16.1 Detailed Description

A subclass of GDALDataset (p. ??) which introduces the ability to save and restore auxilary information
(coordinate system, gcps, metadata, etc) not supported by a file format via an "auxilary metadata” file with
the .aux.xml extension.

Enabling PAM PAM support can be enabled in GDAL by setting the GDAL_PAM_ENABLED config-
uration option (via CPLSetConfigOption(), or the environment) to the value of YES.

PAM Proxy Files In order to be able to record auxilary information about files on read-only media such
as CDROMs or in directories where the user does not have write permissions, it is possible to enable the
"PAM Proxy Database". When enabled the .aux.xml files are kept in a different directory, writable by the
user.

To enable this, set the GDAL_PAM_PROXY_DIR configuration open to be the name of the directory
where the proxies should be kept.

Adding PAM to Drivers Drivers for physical file formats that wish to support persistent auxilary meta-
data in addition to that for the format itself should derive their dataset class from GDALPamDataset
(p- ??) instead of directly from GDALDataset (p. ??). The raster band classes should also be derived from
GDALPamRasterBand.

They should also call something like this near the end of the Open() method:

poDS->SetDescription(poOpenInfo->pszFilename);
poDS->TryLoadXML () ;

The SetDescription() (p. ??) is necessary so that the dataset will have a valid filename set as the description
before TryLoadXML() is called. TryLoadXML() will look for an .aux.xml file with the same basename as
the dataset and in the same directory. If found the contents will be loaded and kept track of in the GDAL-
PamDataset (p. ??) and GDALPamRasterBand objects. When a call like GetProjectionRef() (p. ??) is
not implemented by the format specific class, it will fall through to the PAM implementation which will
return information if it was in the .aux.xml file.

Drivers should also try to call the GDALPamDataset/GDALPamRasterBand methods as a fallback if their
implementation does not find information. This allows using the .aux.xml for variations that can’t be stored
in the format. For instance, the GeoTIFF driver GetProjectionRef() (p. ??) looks like this:

if (EQUAL (pszProjection,""))

return GDALPamDataset::GetProjectionRef ();
else

return(pszProjection);

220 Class Documentation

So if the geotiff header is missing, the .aux.xml file will be consulted.

Similarly, if SetProjection() (p.??) were called with a coordinate system not supported by GeoTIFF,
the SetProjection() (p. ??) method should pass it on to the GDALPamDataset::SetProjection() (p.??)
method after issuing a warning that the information can’t be represented within the file itself.

Drivers for subdataset based formats will also need to declare the name of the physical file they are related
to, and the name of their subdataset before calling TryLoadXML().

poDS—>SetDescription(poOpenInfo->pszFilename);
poDS->SetPhysicalFilename (poDS->pszFilename);
poDS—->SetSubdatasetName (osSubdatasetName);

poDS->TryLoadXML () ;

39.16.2 Member Function Documentation
39.16.2.1 void GDALPamDataset::FlushCache (void) [virtual]

Flush all write cached data to disk.

Any raster (or other GDAL) data written via GDAL calls, but buffered internally will be written to disk.
This method is the same as the C function GDALFlushCache() (p. ??).

Reimplemented from GDALDataset (p.??).

References GDALDataset::FlushCache().

39.16.2.2 const char x« GDALPamDataset::GetProjectionRef (void) [virtual]

Fetch the projection definition string for this dataset.
Same as the C function GDALGetProjectionRef() (p. 2?).

The returned string defines the projection coordinate system of the image in OpenGIS WKT format. It
should be suitable for use with the OGRSpatialReference class.

When a projection definition is not available an empty (but not NULL) string is returned.

Returns:

a pointer to an internal projection reference string. It should not be altered, freed or expected to last
for long.

See also:

http://www.gdal.org/ogr/osr_tutorial.html

Reimplemented from GDALDataset (p.??).
References GDALDataset::GetProjectionRef().

39.16.2.3 CPLErr GDALPamDataset::SetProjection (const char x) [virtual]

Set the projection reference string for this dataset.

The string should be in OGC WKT or PROJ.4 format. An error may occur because of incorrectly specified
projection strings, because the dataset is not writable, or because the dataset does not support the indicated
projection. Many formats do not support writing projections.

39.16 GDALPamDataset Class Reference 221

This method is the same as the C GDALSetProjection() (p. ??) function.

Parameters:

pszProjection projection reference string.

Returns:

CE_Failure if an error occurs, otherwise CE_None.

Reimplemented from GDALDataset (p.??).
References GDALDataset::SetProjection().

39.16.2.4 CPLErr GDALPamDataset::GetGeoTransform (double x padfTransform) [virtual]

Fetch the affine transformation coefficients.
Fetches the coefficients for transforming between pixel/line (P,L) raster space, and projection coordinates
(Xp,Yp) space.

padfTransform[0] + PxpadfTransform[l] + LxpadfTransform[2];
padfTransform[3] + PxpadfTransform[4] + LxpadfTransform[5];

Xp
Yp

In a north up image, padfTransform[1] is the pixel width, and padfTransform[5] is the pixel height. The
upper left corner of the upper left pixel is at position (padfTransform[0],padfTransform[3]).

The default transform is (0,1,0,0,0,1) and should be returned even when a CE_Failure error is returned,
such as for formats that don’t support transformation to projection coordinates.

NOTE: GetGeoTransform() (p. ??) isn’t expressive enough to handle the variety of OGC Grid Coverages
pixel/line to projection transformation schemes. Eventually this method will be depreciated in favour of a
more general scheme.

This method does the same thing as the C GDALGetGeoTransform() (p. ??) function.

Parameters:

padfTransform an existing six double buffer into which the transformation will be placed.

Returns:

CE_None on success, or CE_Failure if no transform can be fetched.

Reimplemented from GDALDataset (p. ??).
References GDALDataset::GetGeoTransform().

39.16.2.5 CPLErr GDALPamDataset::SetGeoTransform (double x) [virtual]

Set the affine transformation coefficients.
See GetGeoTransform() (p. ??) for details on the meaning of the padfTransform coefficients.

This method does the same thing as the C GDALSetGeoTransform() (p. ??) function.

Parameters:

padfTransform a six double buffer containing the transformation coefficients to be written with the
dataset.

222 Class Documentation

Returns:

CE_None on success, or CE_Failure if this transform cannot be written.

Reimplemented from GDALDataset (p.??).
References GDALDataset::SetGeoTransform().

39.16.2.6 int GDALPamDataset::GetGCPCount () [virtual]

Get number of GCPs.
This method is the same as the C function GDALGetGCPCount() (p. ??).

Returns:

number of GCPs for this dataset. Zero if there are none.

Reimplemented from GDALDataset (p.??).
References GDALDataset::GetGCPCount().

39.16.2.7 const char x« GDALPamDataset::GetGCPProjection () [virtuall]

Get output projection for GCPs.
This method is the same as the C function GDALGetGCPProjection() (p. ??).

The projection string follows the normal rules from GetProjectionRef() (p. ??).

Returns:

internal projection string or "" if there are no GCPs.

Reimplemented from GDALDataset (p. ??).
References GDALDataset::GetGCPProjection().

39.16.2.8 const GDAL_GCP x GDALPamDataset::GetGCPs () [virtual]

Fetch GCPs.
This method is the same as the C function GDALGetGCPs() (p. ??).

Returns:

pointer to internal GCP structure list. It should not be modified, and may change on the next GDAL
call.

Reimplemented from GDALDataset (p. ??).
References GDALDataset::GetGCPs().

39.16.2.9 CPLErr GDALPamDataset::SetGCPs (int nGCPCount, const GDAL_GCP %
pasGCPList, const char x pszGCPProjection) [virtual]

Assign GCPs.

39.16 GDALPamDataset Class Reference 223

This method is the same as the C function GDALSetGCPs() (p. ??).

This method assigns the passed set of GCPs to this dataset, as well as setting their coordinate system.
Internally copies are made of the coordinate system and list of points, so the caller remains resposible for
deallocating these arguments if appropriate.

Most formats do not support setting of GCPs, even foramts that can handle GCPs. These formats will
return CE_Failure.
Parameters:

nGCPCount number of GCPs being assigned.
pasGCPList array of GCP structures being assign (nGCPCount in array).
pszGCPProjection the new OGC WKT coordinate system to assign for the GCP output coordinates.

This parameter should be "" if no output coordinate system is known.
Returns:

CE_None on success, CE_Failure on failure (including if action is not supported for this format).

Reimplemented from GDALDataset (p.??).
References GDALDataset::SetGCPs().

39.16.2.10 CPLErr GDALPamDataset::SetMetadata (char xx papszMetadataln, const char x
pszDomain = "") [virtual]
Set metadata.

The C function GDALSetMetadata() (p. ??) does the same thing as this method.

Parameters:

papszMetadata the metadata in name=value string list format to apply.

pszDomain the domain of interest. Use "" or NULL for the default domain.

Returns:

CE_None on success, CE_Failure on failure and CE_Warning if the metadata has been accepted, but
is likely not maintained persistently by the underlying object between sessions.

Reimplemented from GDALMajorObject (p.??).
References GDALMajorObject::SetMetadata().

39.16.2.11 CPLErr GDALPamDataset::SetMetadataltem (const char * pszName, const char x
pszValue, const char x pszDomain ="") [virtual]

Set single metadata item.

The C function GDALSetMetadataltem() (p. ??) does the same thing as this method.

Parameters:

pszName the key for the metadata item to fetch.
pszValue the value to assign to the key.

224 Class Documentation

pszDomain the domain to set within, use NULL for the default domain.

Returns:

CE_None on success, or an error code on failure.

Reimplemented from GDALMajorObject (p.??).
References GDALMajorObject::SetMetadataltem().

39.16.2.12 char xx GDALPamDataset::GetFileList (void) [virtual]

Fetch files forming dataset.

Returns a list of files believed to be part of this dataset. If it returns an empty list of files it means there
is believed to be no local file system files associated with the dataset (for instance a virtual dataset). The
returned file list is owned by the caller and should be deallocated with CSLDestroy() (p. ??).

The returned filenames will normally be relative or absolute paths depending on the path used to originally
open the dataset.

This method is the same as the C GDALGetFileList() (p. ??) function.

Returns:

NULL or a NULL terminated array of file names.

Reimplemented from GDALDataset (p.??).
References GDALDataset::GetFileList(), and VSIStatL().
The documentation for this class was generated from the following files:

e gdal_pam.h
* gdalpamdataset.cpp

39.17 GDALRasterAttributeTable Class Reference

225

39.17 GDALRasterAttributeTable Class Reference

Raster Attribute Table container.

#include <gdal_rat.h>

Public Member Functions

¢ GDALRasterAttributeTable ()

Construct empty table.

¢ GDALRasterAttributeTable (const GDALRasterAttributeTable &)

Copy constructor.

¢ GDALRasterAttributeTable x Clone () const
Copy Raster Attribute Table.

¢ int GetColumnCount () const

Fetch table column count.

¢ const char x GetNameOfCol (int) const

Fetch name of indicated column.

* GDALRATFieldUsage GetUsageOfCol (int) const

Fetch column usage value.

¢ GDALRATFieldType GetTypeOfCol (int) const

Fetch color type.

¢ int GetColOfUsage (GDALRATFieldUsage) const

Fetch column index for given usage.

¢ int GetRowCount () const

Fetch row count.

¢ const char x GetValueAsString (int iRow, int iField) const

Fetch field value as a string.

¢ int GetValueAsInt (int iRow, int iField) const

Fetch field value as a integer.

¢ double GetValueAsDouble (int iRow, int iField) const

Fetch field value as a double.

* void SetValue (int iRow, int iField, const char xpszValue)

Set field value from string.

¢ void SetValue (int iRow, int iField, double dfValue)

Set field value from double.

226

Class Documentation

void SetValue (int iRow, int iField, int nValue)

Set field value from integer.

void SetRowCount (int iCount)

Set row count.

int GetRowOfValue (double dfValue) const

Get row for pixel value.

int GetRowOfValue (int nValue) const

int GetColorOfValue (double dfValue, GDALColorEntry xpsEntry) const
double GetRowMin (int iRow) const

double GetRowMax (int iRow) const

CPLErr CreateColumn (const char spszFieldName, GDALRATFieldType eFieldType, GDAL-
RATFieldUsage eFieldUsage)

Create new column.

CPLErr SetLinearBinning (double dfRowOMin, double dfBinSize)

Set linear binning information.

int GetLinearBinning (double «pdfRowOMin, double *pdfBinSize) const

Get linear binning information.

CPLXMLNode * Serialize () const
CPLErr XMLInit (CPLXMLNode *, const char)
CPLEir InitializeFromColorTable (const GDALColorTable)

Initialize from color table.

GDALColorTable * TranslateToColorTable (int nEntryCount=-1)

Translate to a color table.

void DumpReadable (FILE x=NULL)
Dump RAT in readable form.

Friends

¢ const char ¥+ GDALRATGetNameOfCol (GDALRasterAttributeTableH, int)
* const char x GDALRATGetValueAsString (GDALRasterAttributeTableH, int, int)

39.17.1 Detailed Description

Raster Attribute Table container.

The GDALRasterAttributeTable (p.??) (or RAT) class is used to encapsulate a table used to provide
attribute information about pixel values. Each row in the table applies to a range of pixel values (or a single
value in some cases), and might have attributes such as the histogram count for that range, the color pixels
of that range should be drawn names of classes or any other generic information.

Raster attribute tables can be used to represent histograms, color tables, and classification information.

39.17 GDALRasterAttributeTable Class Reference 227

Each column in a raster attribute table has a name, a type (integer, floating point or string), and a GDAL-
RATFieldUsage. The usage distinguishes columns with particular understood purposes (such as color,
histogram count, name) and columns that have specific purposes not understood by the library (long label,
suitability_for_growing_wheat, etc).

In the general case each row has a column indicating the minimum pixel values falling into that category,
and a column indicating the maximum pixel value. These are indicated with usage values of GFU_Min, and
GFU_Max. In other cases where each row is a discrete pixel value, one column of usage GFU_MinMax
can be used.

In other cases all the categories are of equal size and regularly spaced and the categorization information
can be determine just by knowing the value at which the categories start, and the size of a category. This is
called "Linear Binning" and the information is kept specially on the raster attribute table as a whole.

RATs are normally associated with GDALRasterBands and be be queried using the GDALRaster-
Band::GetDefaultRAT() (p. ??) method.

39.17.2 Member Function Documentation
39.17.2.1 GDALRasterAttributeTable x GDALRasterAttributeTable::Clone () const

Copy Raster Attribute Table.

Creates a new copy of an existing raster attribute table. The new copy becomes the responsibility of the
caller to destroy.

This method is the same as the C function GDALRATClone().

Returns:

new copy of the RAT.

References GDALRasterAttributeTable().

39.17.2.2 int GDALRasterAttributeTable::GetColumnCount () const

Fetch table column count.

This method is the same as the C function GDALRATGetColumnCount().

Returns:

the number of columns.

Referenced by InitializeFromColorTable().

39.17.2.3 const char x GDALRasterAttributeTable::GetNameOfCol (int iCol) const

Fetch name of indicated column.

This method is the same as the C function GDALRATGetNameOfCol(), except that the C function returns
"const char *".

Parameters:

iCol the column index (zero based).

228 Class Documentation

Returns:

the column name or an empty string for invalid column numbers.

39.17.2.4 GDALRATFieldUsage GDALRasterAttributeTable::GetUsageOfCol (int iCol) const

Fetch column usage value.

This method is the same as the C function GDALRATGetUsageOfCol().

Parameters:

iCol the column index (zero based).

Returns:

the column usage, or GFU_Generic for improper column numbers.

References GFU_Generic.

39.17.2.5 GDALRATFieldType GDALRasterAttributeTable::GetTypeOfCol (int iCol) const

Fetch color type.
This method is the same as the C function GDALRATGetTypeOfCol().

Parameters:

iCol the column index (zero based).

Returns:

color type or GFT_Integer if the column index is illegal.

References GFT_Integer.

39.17.2.6 int GDALRasterAttributeTable::GetColOfUsage (GDALRATFieldUsage eUsage) const

Fetch column index for given usage.
Returns the index of the first column of the requested usage type, or -1 if no match is found.

This method is the same as the C function GDALRATGetUsageOfCol().

Parameters:

eUsage usage type to search for.

Returns:

column index, or -1 on failure.

Referenced by TranslateToColorTable().

39.17 GDALRasterAttributeTable Class Reference 229

39.17.2.7 int GDALRasterAttributeTable::GetRowCount () const

Fetch row count.

This method is the same as the C function GDALRATGetRowCount().

Returns:

the number of rows.

Referenced by InitializeFromColorTable().

39.17.2.8 const char x« GDALRasterAttributeTable::GetValueAsString (int iRow, int iField) const

Fetch field value as a string.

The value of the requested column in the requested row is returned as a string. If the field is numeric, it is
formatted as a string using default rules, so some precision may be lost.

This method is the same as the C function GDALRATGetValueAsString(), except it returns a "const char
*" result.
Parameters:

iRow row to fetch (zero based).

iField column to fetch (zero based).

Returns:

field value

References GFT_Integer, GFT_Real, and GFT_String.

39.17.2.9 int GDALRasterAttributeTable::GetValueAsInt (int iRow, int iField) const

Fetch field value as a integer.

The value of the requested column in the requested row is returned as an integer. Non-integer fields will be
converted to integer with the possibility of data loss.

This method is the same as the C function GDALRATGetValueAsInt().

Parameters:
iRow row to fetch (zero based).

iField column to fetch (zero based).

Returns:

field value

References GFT_Integer, GFT_Real, and GFT_String.
Referenced by TranslateToColorTable().

230 Class Documentation

39.17.2.10 double GDALRasterAttributeTable::GetValueAsDouble (int iRow, int iField) const

Fetch field value as a double.

The value of the requested column in the requested row is returned as a double. Non double fields will be
converted to double with the possibility of data loss.

This method is the same as the C function GDALRATGetValueAsDouble().

Parameters:

iRow row to fetch (zero based).

iField column to fetch (zero based).

Returns:

field value

References GFT_Integer, GFT_Real, and GFT_String.

39.17.2.11 void GDALRasterAttributeTable::SetValue (int iRow, int iField, const char * pszValue)

Set field value from string.

The indicated field (column) on the indicated row is set from the passed value. The value will be automat-
ically converted for other field types, with a possible loss of precision.

This method is the same as the C function GDALRATSetValue AsString().

Parameters:

iRow row to fetch (zero based).
iField column to fetch (zero based).

pszValue the value to assign.

References GFT_Integer, GFT_Real, GFT_String, and SetRowCount().
Referenced by InitializeFromColorTable().

39.17.2.12 void GDALRasterAttributeTable::SetValue (int iRow, int iField, double dfValue)

Set field value from double.

The indicated field (column) on the indicated row is set from the passed value. The value will be automat-
ically converted for other field types, with a possible loss of precision.

This method is the same as the C function GDALRATSetValueAsDouble().

Parameters:

iRow row to fetch (zero based).
iField column to fetch (zero based).

dfValue the value to assign.

References GFT_Integer, GFT_Real, GFT_String, and SetRowCount().

39.17 GDALRasterAttributeTable Class Reference 231

39.17.2.13 void GDALRasterAttributeTable::SetValue (int iRow, int iField, int nValue)

Set field value from integer.

The indicated field (column) on the indicated row is set from the passed value. The value will be automat-
ically converted for other field types, with a possible loss of precision.

This method is the same as the C function GDALRATSetValueAsInteger().

Parameters:
iRow row to fetch (zero based).
iField column to fetch (zero based).

nValue the value to assign.

References GFT_Integer, GFT_Real, GFT_String, and SetRowCount().

39.17.2.14 void GDALRasterAttributeTable::SetRowCount (int nNewCount)

Set row count.

Resizes the table to include the indicated number of rows. Newly created rows will be initialized to their
default values - "" for strings, and zero for numeric fields.

This method is the same as the C function GDALRATSetRowCount().

Parameters:

nNewCount the new number of rows.

References GFT_Integer, GFT_Real, and GFT_String.
Referenced by InitializeFromColorTable(), and SetValue().

39.17.2.15 int GDALRasterAttributeTable::GetRowOfValue (double dfValue) const

Get row for pixel value.

Given a raw pixel value, the raster attribute table is scanned to determine which row in the table applies to
the pixel value. The row index is returned.

This method is the same as the C function GDALRATGetRowOfValue().

Parameters:

dfValue the pixel value.

Returns:

the row index or -1 if no row is appropriate.

References GFT_Integer, and GFT_Real.
Referenced by TranslateToColorTable().

232 Class Documentation

39.17.2.16 CPLErr GDALRasterAttributeTable::CreateColumn (const char * pszFieldName,
GDALRATFieldType eFieldType, GDALRATFieldUsage eFieldUsage)
Create new column.

If the table already has rows, all row values for the new column will be initialized to the default
value ("", or zero). The new column is always created as the last column, can will be column (field)
"GetColumnCount()-1" after CreateColumn() (p. ??) has completed successfully.

This method is the same as the C function GDALRATCreateColumn().

Parameters:

pszFieldName the name of the field to create.
eFieldType the field type (integer, double or string).
eFieldUsage the field usage, GFU_Generic if not known.

Returns:

CE_None on success or CE_Failure if something goes wrong.

References GFT_Integer, GFT_Real, and GFT_String.

Referenced by InitializeFromColorTable().

39.17.2.17 CPLErr GDALRasterAttributeTable::SetLinearBinning (double dfRow0MinIn, double
dfBinSizeln)
Set linear binning information.

For RATs with equal sized categories (in pixel value space) that are evenly spaced, this method may be
used to associate the linear binning information with the table.

This method is the same as the C function GDALRATSetLinearBinning().

Parameters:
dfRowOMinIn the lower bound (pixel value) of the first category.
dfBinSizeln the width of each category (in pixel value units).
Returns:

CE_None on success or CE_Failure on failure.

Referenced by InitializeFromColorTable().

39.17.2.18 int GDALRasterAttributeTable::GetLinearBinning (double « pdfRow0OMin, double x
pdfBinSize) const

Get linear binning information.

Returns linear binning information if any is associated with the RAT.

This method is the same as the C function GDALRATGetLinearBinning().

Parameters:

pdfRowOMinln (out) the lower bound (pixel value) of the first category.

39.17 GDALRasterAttributeTable Class Reference 233

pdfBinSizeln (out) the width of each category (in pixel value units).

Returns:

TRUE if linear binning information exists or FALSE if there is none.

39.17.2.19 CPLErr GDALRasterAttributeTable::InitializeFromColorTable (const
GDALColorTable x poTable)

Initialize from color table.

This method will setup a whole raster attribute table based on the contents of the passed color table. The
Value (GFU_MinMax), Red (GFU_Red), Green (GFU_Green), Blue (GFU_Blue), and Alpha (GFU_-
Alpha) fields are created, and a row is set for each entry in the color table.

The raster attribute table must be empty before calling InitializeFromColorTable() (p. ??).

The Value fields are set based on the implicit assumption with color tables that entry 0 applies to pixel
value O, 1 to 1, etc.

This method is the same as the C function GDALR AT InitializeFromColorTable().

Parameters:

poTable the color table to copy from.

CE_None on success or CE_Failure if something goes wrong.

References GDALColorEntry::cl, GDALColorEntry::c2, GDALColorEntry::c3, GDALColorEntry::c4,
CreateColumn(), GDALColorTable::GetColorEntryAsRGB(), GDALColorTable::GetColorEntryCount(),
GetColumnCount(), GetRowCount(), GFT_Integer, GFU_Alpha, GFU_Blue, GFU_Green, GFU_-
MinMax, GFU_Red, SetLinearBinning(), SetRowCount(), and SetValue().

39.17.2.20 GDALColorTable x GDALRasterAttributeTable::TranslateToColorTable (int
nEntryCount = -1)
Translate to a color table.

This method will attempt to create a corresponding GDALColorTable (p.??) from this raster attribute
table.

This method is the same as the C function GDALRAT TranslateToColorTable().

Parameters:
nEntryCount The number of entries to produce (0 to nEntryCount-1), or -1 to auto-determine the
number of entries.
Returns:

the generated color table or NULL on failure.

References GDALColorEntry::cl, GDALColorEntry::c2, GDALColorEntry::c3, GDALColorEntry::c4,
GetColOfUsage(), GetRowOfValue(), GetValueAsInt(), GFU_Alpha, GFU_Blue, GFU_Green, GFU_-
Max, GFU_MinMax, GFU_Red, and GDALColorTable::SetColorEntry().

234 Class Documentation

39.17.2.21 void GDALRasterAttributeTable::DumpReadable (FILE x fp = NULL)

Dump RAT in readable form.
Currently the readable form is the XML encoding ... only barely readable.
This method is the same as the C function GDALRATDumpReadable().

Parameters:

Jp file to dump to or NULL for stdout.

The documentation for this class was generated from the following files:

e gdal_rat.h
 gdal_rat.cpp

39.18 GDALRasterBand Class Reference 235

39.18 GDALRasterBand Class Reference

A single raster band (or channel).
#include <gdal_priv.h>
Inheritance diagram for GDALRasterBand::

\ GDALMgjorObject \

T

\ GDAL RasterBand \

Public Member Functions

¢ GDALRasterBand ()

e virtual ~GDALRasterBand ()

¢ int GetXSize ()

¢ int GetYSize ()

¢ int GetBand ()

¢ GDALDataset x GetDataset ()

¢ GDALDataType GetRasterDataType (void)

¢ void GetBlockSize (int *, int *)

¢ GDALAccess GetAccess ()

e CPLErr RasterIO (GDALRWFlag, int, int, int, int, void x, int, int, GDALDataType, int, int)

¢ CPLErr ReadBlock (int, int, void x*)

¢ CPLErr WriteBlock (int, int, void *)

¢ GDALRasterBlock * GetLockedBlockRef (int nXBlockOff, int nYBlockOff, int blustlnitial-
ize=FALSE)

¢ CPLErr FlushBlock (int=-1, int=-1)

* unsigned char * GetIndexColorTranslationTo (GDALRasterBand xpoReferenceBand, unsigned
char xpTranslationTable=NULL, int xpApproximateMatching=NULL)

e virtual CPLErr FlushCache ()

e virtual char ** GetCategoryNames ()

* virtual double GetNoDataValue (int xpbSuccess=NULL)

¢ virtual double GetMinimum (int spbSuccess=NULL)

« virtual double GetMaximum (int xpbSuccess=NULL)

* virtual double GetOffset (int +pbSuccess=NULL)

* virtual double GetScale (int xpbSuccess=NULL)

e virtual const char * GetUnitType ()

« virtual GDALColorInterp GetColorInterpretation ()

e virtual GDALColorTable x GetColorTable ()

* virtual CPLErr Fill (double dfRealValue, double dfImaginary Value=0)

« virtual CPLErr SetCategoryNames (char)

e virtual CPLErr SetNoDataValue (double)

e virtual CPLErr SetColorTable (GDALColorTable x)

« virtual CPLErr SetColorInterpretation (GDALColorInterp)

« virtual CPLErr SetOffset (double)

e virtual CPLErr SetScale (double)

236

Class Documentation

virtual CPLErr SetUnitType (const char)

virtual CPLErr GetStatistics (int bApproxOK, int bForce, double *pdfMin, double *pdfMax, double
xpdfMean, double xpadfStdDev)

virtual CPLErr ComputeStatistics (int bApproxOK, double xpdfMin, double xpdfMax, double
xpdfMean, double xpdfStdDev, GDALProgressFunc, void s«pProgressData)

virtual CPLErr SetStatistics (double dfMin, double dfMax, double dfMean, double dfStdDev)
virtual int HasArbitraryOverviews ()

virtual int GetOverviewCount ()

virtual GDALRasterBand * GetOverview (int)

virtual CPLErr BuildOverviews (const char *, int, int x, GDALProgressFunc, void *)

virtual CPLErr AdviseRead (int nXOff, int nYOff, int nXSize, int nYSize, int nBufXSize, int nBu-
fYSize, GDALDataType eDT, char *xpapszOptions)

virtual CPLErr GetHistogram (double dfMin, double dfMax, int nBuckets, int xpanHistogram, int
bIncludeOutOfRange, int bApproxOK, GDALProgressFunc, void *pProgressData)

virtual CPLErr GetDefaultHistogram (double spdfMin, double spdfMax, int xpnBuckets, int
s«ppanHistogram, int bForce, GDALProgressFunc, void xpProgressData)

virtual CPLErr SetDefaultHistogram (double dfMin, double dfMax, int nBuckets, int
xpanHistogram)

virtual const GDALRasterAttributeTable x GetDefaultRAT ()

virtual CPLErr SetDefaultRAT (const GDALRasterAttributeTable x)

virtual GDALRasterBand *x GetMaskBand ()

virtual int GetMaskFlags ()

virtual CPLErr CreateMaskBand (int nFlags)

Protected Member Functions

virtual CPLErr IReadBlock (int, int, void *)=0

virtual CPLErr IWriteBlock (int, int, void *)

virtual CPLErr IRasterIO (GDALRWFlag, int, int, int, int, void *, int, int, GDALDataType, int,
int)

CPLErr OverviewRasterIO (GDALRWFlag, int, int, int, int, void *, int, int, GDALDataType, int,
int)

int InitBlockInfo ()

CPLErr AdoptBlock (int, int, GDALRasterBlock)

GDALRasterBlock * TryGetLockedBlockRef (int nXBlockOff, int nYBlock YOff)

Protected Attributes

GDALDataset x poDS
int nBand

int nRasterXSize

int nRasterYSize
GDALDataType eDataType
GDALACccess eAccess
int nBlockXSize

int nBlockYSize

int nBlocksPerRow

int nBlocksPerColumn
int bSubBlockingActive
int nSubBlocksPerRow

39.18 GDALRasterBand Class Reference 237

¢ int nSubBlocksPerColumn

¢ GDALRasterBlock *x papoBlocks
¢ int nBlockReads

¢ int bForceCachedlO

¢ GDALRasterBand x poMask

¢ bool bOwnMask

* int nMaskFlags

Friends

¢ class GDALDataset
¢ class GDALRasterBlock

39.18.1 Detailed Description

A single raster band (or channel).

39.18.2 Constructor & Destructor Documentation
39.18.2.1 GDALRasterBand::GDALRasterBand ()

Constructor. Applications should never create GDALRasterBands directly.
References GA_ReadOnly, and GDT_Byte.

39.18.2.2 GDALRasterBand::~GDALRasterBand () [virtual]

Destructor. Applications should never destroy GDALRasterBands directly, instead destroy the GDAL-
Dataset (p. 2?).

References FlushCache(), and GDALMajorObject::GetDescription().

39.18.3 Member Function Documentation

39.18.3.1 GDALRasterBlock « GDALRasterBand::TryGetLockedBlockRef (int nXBlockOff, int
nYBlockOff) [protected]

Try fetching block ref.

This method will returned the requested block (locked) if it is already in the block cache for the layer. If
not, NULL is returned.

If a non-NULL value is returned, then a lock for the block will have been acquired on behalf of the caller.
It is absolutely imperative that the caller release this lock (with GDALRasterBlock::DropLock()) or else
severe problems may result.

Parameters:

nBlockXOff the horizontal block offset, with zero indicating the left most block, 1 the next block and
so forth.

238 Class Documentation

nYBlockOff the vertical block offset, with zero indicating the top most block, 1 the next block and so
forth.

Returns:

NULL if block not available, or locked block pointer.

Referenced by GetLockedBlockRef().

39.18.3.2 int GDALRasterBand::GetXSize ()

Fetch XSize of raster.
This method is the same as the C function GDALGetRasterBandXSize() (p. ??).

Returns:

the width in pixels of this band.

Referenced by ComputeStatistics(), GDALComputeRasterMinMax(), GDALRasterizeGeometries(),
GetHistogram(), and WriteBlock().

39.18.3.3 int GDALRasterBand::GetYSize ()

Fetch YSize of raster.
This method is the same as the C function GDALGetRasterBandYSize() (p. ??).

Returns:

the height in pixels of this band.

Referenced by ComputeStatistics(), GDALComputeRasterMinMax(), GDALRasterizeGeometries(),
GetHistogram(), and WriteBlock().

39.18.3.4 int GDALRasterBand::GetBand ()

Fetch the band number.

This method returns the band that this GDALRasterBand (p. ??) objects represents within it’s dataset.
This method may return a value of 0 to indicate GDALRasterBand (p. ??) objects without an apparently
relationship to a dataset, such as GDALRasterBands serving as overviews.

This method is the same as the C function GDALGetBandNumber() (p. ??).

Returns:

band number (1+) or O if the band number isn’t known.

39.18.3.5 GDALDataset + GDALRasterBand::GetDataset ()

Fetch the owning dataset handle.

39.18 GDALRasterBand Class Reference 239

Note that some GDALRasterBands are not considered to be a part of a dataset, such as overviews or other
"freestanding" bands.

There is currently no C analog to this method.

Returns:

the pointer to the GDALDataset (p. ??) to which this band belongs, or NULL if this cannot be deter-
mined.

39.18.3.6 GDALDataType GDALRasterBand::GetRasterDataType (void)
Fetch the pixel data type for this band.

Returns:

the data type of pixels for this band.

Referenced by GDALCreateWarpedVRT(), GDALDatasetCopyWholeRaster(), GDALGetRaster-
DataType(), GDALRasterizeGeometries(), GetDefaultHistogram(), and GetlndexColorTranslationTo().

39.18.3.7 void GDALRasterBand::GetBlockSize (int « pnXSize, int x pnYSize)

Fetch the "natural" block size of this band.

GDAL contains a concept of the natural block size of rasters so that applications can organized data access
efficiently for some file formats. The natural block size is the block size that is most efficient for accessing
the format. For many formats this is simple a whole scanline in which case «pnXSize is set to GetXSize()
(p.??), and xpnYSize is set to 1.

However, for tiled images this will typically be the tile size.

Note that the X and Y block sizes don’t have to divide the image size evenly, meaning that right and bottom
edge blocks may be incomplete. See ReadBlock() (p. ??) for an example of code dealing with these issues.
Parameters:

pnXSize integer to put the X block size into or NULL.
pnYSize integer to put the Y block size into or NULL.

Referenced by GDALComputeRasterMinMax (), GDALDatasetCopyWholeRaster(), and GDALGetBlock-
Size().

39.18.3.8 GDALAccess GDALRasterBand::GetAccess ()

Find out if we have update permission for this band.

This method is the same as the C function GDALGetRasterAccess() (p. 2?).

Returns:

Either GA_Update or GA_ReadOnly.

240 Class Documentation

39.18.3.9 CPLErr GDALRasterBand::RasterlO (GDALRWFlag eRWFlag, int nXOff, int nYOff,
int nXSize, int nYSize, void * pData, int nBufXSize, int nBufYSize, GDALDataType
eBufType, int nPixelSpace, int nLineSpace)

Read/write a region of image data for this band.

This method allows reading a region of a GDALRasterBand (p. ??) into a buffer, or writing data from a
buffer into a region of a GDALRasterBand (p. ??). It automatically takes care of data type translation if
the data type (eBufType) of the buffer is different than that of the GDALRasterBand (p. ??). The method
also takes care of image decimation / replication if the buffer size (nBufXSize x nBufYSize) is different
than the size of the region being accessed (nXSize x nYSize).

The nPixelSpace and nLineSpace parameters allow reading into or writing from unusually organized
buffers. This is primarily used for buffers containing more than one bands raster data in interleaved format.

Some formats may efficiently implement decimation into a buffer by reading from lower resolution
overview images.

For highest performance full resolution data access, read and write on "block boundaries" as returned by
GetBlockSize() (p. ??), or use the ReadBlock() (p. ??) and WriteBlock() (p. ??) methods.

This method is the same as the C GDALRasterIO() (p. ??) function.

Parameters:

eRWFlag Either GF_Read to read a region of data, or GF_Write to write a region of data.

nXOff The pixel offset to the top left corner of the region of the band to be accessed. This would be
zero to start from the left side.

nYOff The line offset to the top left corner of the region of the band to be accessed. This would be
zero to start from the top.

nXSize The width of the region of the band to be accessed in pixels.
nYSize The height of the region of the band to be accessed in lines.

pData The buffer into which the data should be read, or from which it should be written. This buffer
must contain at least nBufXSize * nBufYSize words of type eBufType. It is organized in left
to right, top to bottom pixel order. Spacing is controlled by the nPixelSpace, and nLineSpace
parameters.

nBufXSize the width of the buffer image into which the desired region is to be read, or from which it
is to be written.

nBufYSize the height of the buffer image into which the desired region is to be read, or from which it
is to be written.

eBufType the type of the pixel values in the pData data buffer. The pixel values will automatically be
translated to/from the GDALRasterBand (p. ??) data type as needed.

nPixelSpace The byte offset from the start of one pixel value in pData to the start of the next pixel
value within a scanline. If defaulted (0) the size of the datatype eBufType is used.

nLineSpace The byte offset from the start of one scanline in pData to the start of the next. If defaulted
the size of the datatype eBufType * nBufXSize is used.

Returns:

CE_Failure if the access fails, otherwise CE_None.

References GDALGetDataTypeSize(), GF_Read, and GF_Write.
Referenced by GDALRasterIO().

39.18 GDALRasterBand Class Reference 241

39.18.3.10 CPLErr GDALRasterBand::ReadBlock (int nXBlockOff, int nYBlockOff, void x
plmage)
Read a block of image data efficiently.

This method accesses a "natural” block from the raster band without resampling, or data type conversion.
For a more generalized, but potentially less efficient access use RasterIO() (p. ??).

This method is the same as the C GDALReadBlock() (p. ??) function.

See the GetLockedBlockRef() (p. ??) method for a way of accessing internally cached block oriented data
without an extra copy into an application buffer.

Parameters:

nXBlockOff the horizontal block offset, with zero indicating the left most block, 1 the next block and
so forth.

nYBlockOff the vertical block offset, with zero indicating the left most block, 1 the next block and so
forth.

pImage the buffer into which the data will be read. The buffer must be large enough to hold
GetBlockXSize()*GetBlockYSize() words of type GetRasterDataType() (p. ??).

Returns:

CE_None on success or CE_Failure on an error.

The following code would efficiently compute a histogram of eight bit raster data. Note that the final
block may be partial ... data beyond the edge of the underlying raster band in these edge blocks is of an
undermined value.

CPLErr GetHistogram(GDALRasterBand xpoBand, int xpanHistogram)

int nXBlocks, nYBlocks, nXBlockSize, nYBlockSize;
int iXBlock, iYBlock;
GByte *pabyData;

memset (panHistogram, 0, sizeof (int) * 256);

CPLAssert (poBand->GetRasterDataType() (p.??) == GDT_Byte);

poBand->GetBlockSize (&nXBlockSize, &n¥YBlockSize);

nXBlocks = (poBand->GetXSize() (p.??) + nXBlockSize - 1) / nXBlockSize;
nYBlocks = (poBand->Get¥Size() (p.??) + nYBlockSize - 1) / nYBlockSize;
pabyData = (GByte %) CPLMalloc (nXBlockSize » nYBlockSize);

for(iYBlock = 0; iYBlock < nYBlocks; iYBlock++)

{
for(iXBlock = 0; iXBlock < nXBlocks; iXBlock++)

{
int nXValid, nYValid;

poBand->ReadBlock (iXBlock, iYBlock, pabyData);

242 Class Documentation

// Compute the portion of the block that is valid
// for partial edge blocks.
if ((iXBlock+l) * nXBlockSize > poBand->GetXSize() (p.??))
nXValid = poBand->GetXSize () (p.??) - iXBlock * nXBlockSize;
else
nXValid = nXBlockSize;

if((iYBlock+l) * nYBlockSize > poBand->Get¥YSize() (p.??))
nYvValid = poBand->Get¥Size() (p.??) - iYBlock % nYBlockSize;
else
nYValid = nYBlockSize;

// Collect the histogram counts.
for(int iY = 0; iY < nYValid; iY++)
{
for(int iX = 0; iX < nXValid; iX++)
{
panHistogram|[pabyData[iX + 1Y x nXBlockSize]] += 1;
}

Referenced by GDALReadBlock().

39.18.3.11 CPLErr GDALRasterBand::WriteBlock (int nXBlockOff, int nYBlockOff, void *
plmage)

Write a block of image data efficiently.

This method accesses a "natural” block from the raster band without resampling, or data type conversion.
For a more generalized, but potentially less efficient access use RasterIO() (p. ??).

This method is the same as the C GDALWriteBlock() (p. ??) function.

See ReadBlock() (p. ??) for an example of block oriented data access.

Parameters:
nXBlockOff the horizontal block offset, with zero indicating the left most block, 1 the next block and
so forth.

nYBlockOff the vertical block offset, with zero indicating the left most block, 1 the next block and so
forth.

pImage the buffer from which the data will be written. The buffer must be large enough to hold
GetBlockXSize()+GetBlockYSize() words of type GetRasterDataType() (p. 2?).
Returns:
CE_None on success or CE_Failure on an error.
The following code would efficiently compute a histogram of eight bit raster data. Note that the final

block may be partial ... data beyond the edge of the underlying raster band in these edge blocks is of an
undermined value.

39.18 GDALRasterBand Class Reference 243

References GA_ReadOnly, GetXSize(), and GetY Size().
Referenced by GDALWriteBlock().

39.18.3.12 GDALRasterBlock + GDALRasterBand::GetLockedBlockRef (int nXBlockOff, int
nYBlockOff, int bJustlInitialize = FALSE)

Fetch a pointer to an internally cached raster block.

This method will returned the requested block (locked) if it is already in the block cache for the layer. If
not, the block will be read from the driver, and placed in the layer block cached, then returned. If an error
occurs reading the block from the driver, a NULL value will be returned.

If a non-NULL value is returned, then a lock for the block will have been acquired on behalf of the caller.
It is absolutely imperative that the caller release this lock (with GDALRasterBlock::DropLock()) or else
severe problems may result.

Note that calling GetLockedBlockRef() (p. ??) on a previously uncached band will enable caching.

Parameters:

nBlockXOff the horizontal block offset, with zero indicating the left most block, 1 the next block and
so forth.

nYBlockOff the vertical block offset, with zero indicating the top most block, 1 the next block and so
forth.

bJustInitialize 1f TRUE the block will be allocated and initialized, but not actually read from the
source. This is useful when it will just be completely set and written back.

Returns:

pointer to the block object, or NULL on failure.

References GDALMajorObject::GetDescription(), and TryGetLockedBlockRef().
Referenced by ComputeStatistics(), Fill(), GDALComputeRasterMinMax(), and GetHistogram().

39.18.3.13 unsigned char « GDALRasterBand::GetIndexColorTranslationTo (GDALRasterBand
* poReferenceBand, unsigned char x pTranslationTable = NULL, int %
PpApproximateMatching = NULL)

When the raster band has a palette index, it may be usefull to compute the "translation" of this palette to
the palette of another band. The translation tries to do exact matching first, and then approximate matching
if no exact matching is possible. This method returns a table such that table[i] = j where i is an index of the
’this’ rasterband and j the corresponding index for the reference rasterband.

This method is thought as internal to GDAL and is used for drivers like RPFTOC.

The implementation only supports 1-byte palette rasterbands.

Parameters:

PpoReferenceBand the raster band

pTranslationTable an already allocated translation table (at least 256 bytes), or NULL to let the
method allocate it

poApproximateMatching a pointer to a flag that is set if the matching is approximate. May be NULL.

244 Class Documentation

Returns:
a translation table if the two bands are palette index and that they do not match or NULL in other cases.
The table must be freed with CPLFree if NULL was passed for pTranslationTable.

References GDALColorEntry::cl, GDALColorEntry::c2, GDALColorEntry::c3, GCI_PaletteIndex,
GDT_Byte, GDALColorTable::GetColorEntry(), GDALColorTable::GetColorEntryCount(), GetColorIn-
terpretation(), GetColorTable(), GetNoDataValue(), and GetRasterDataType().

39.18.3.14 CPLErr GDALRasterBand::FlushCache (void) [virtual]

Flush raster data cache.

This call will recover memory used to cache data blocks for this raster band, and ensure that new requests
are referred to the underlying driver.

This method is the same as the C function GDALFlushRasterCache() (p. ??).

Returns:

CE_None on success.

Referenced by GDALDataset::FlushCache(), and ~GDALRasterBand().

39.18.3.15 char xx GDALRasterBand::GetCategoryNames () [virtual]

Fetch the list of category names for this raster.

The return list is a "StringList" in the sense of the CPL functions. That is a NULL terminated array of
strings. Raster values without associated names will have an empty string in the returned list. The first
entry in the list is for raster values of zero, and so on.

The returned stringlist should not be altered or freed by the application. It may change on the next GDAL
call, so please copy it if it is needed for any period of time.
Returns:

list of names, or NULL if none.

39.18.3.16 double GDALRasterBand::GetNoDataValue (int * pbSuccess = NULL) [virtual]

Fetch the no data value for this band.

If there is no out of data value, an out of range value will generally be returned. The no data value for a
band is generally a special marker value used to mark pixels that are not valid data. Such pixels should
generally not be displayed, nor contribute to analysis operations.

This method is the same as the C function GDALGetRasterNoDataValue() (p. ??).

Parameters:

pbSuccess pointer to a boolean to use to indicate if a value is actually associated with this layer. May
be NULL (default).

Returns:

the nodata value for this band.

39.18 GDALRasterBand Class Reference 245

Referenced by ComputeStatistics(), GDALComputeRasterMinMax(), and GetIndexColorTranslationTo().

39.18.3.17 double GDALRasterBand::GetMinimum (int * pbSuccess = NULL) [virtual]

Fetch the minimum value for this band.

For file formats that don’t know this intrinsically, the minimum supported value for the data type will
generally be returned.

This method is the same as the C function GDALGetRasterMinimum() (p. ??).

Parameters:
pbSuccess pointer to a boolean to use to indicate if the returned value is a tight minimum or not. May
be NULL (default).
Returns:

the minimum raster value (excluding no data pixels)

References CPLAtofM(), GDT_Byte, GDT_Float32, GDT_Float64, GDT_Int16, GDT_Int32, GDT_-
Ulnt16, GDT_UInt32, and GDALMajorObject::GetMetadataltem().

Referenced by GetStatistics().

39.18.3.18 double GDALRasterBand::GetMaximum (int x pbSuccess = NULL) [virtual]

Fetch the maximum value for this band.

For file formats that don’t know this intrinsically, the maximum supported value for the data type will
generally be returned.

This method is the same as the C function GDALGetRasterMaximum() (p. ??).

Parameters:
pbSuccess pointer to a boolean to use to indicate if the returned value is a tight maximum or not. May
be NULL (default).
Returns:

the maximum raster value (excluding no data pixels)

References CPLAtofM(), GDT_Byte, GDT_CFloat32, GDT_CFloat64, GDT_CIntl6, GDT_CInt32,
GDT_Float32, GDT_Float64, GDT_Int16, GDT_Int32, GDT_Ulnt16, GDT_UInt32, and GDALMajorOb-
ject::GetMetadataltem().

Referenced by GetStatistics().

39.18.3.19 double GDALRasterBand::GetOffset (int x pbSuccess = NULL) [virtual]

Fetch the raster value offset.

This value (in combination with the GetScale() (p. ??) value) is used to transform raw pixel values into the
units returned by GetUnits(). For example this might be used to store elevations in GUInt16 bands with a
precision of 0.1, and starting from -100.

246 Class Documentation

Units value = (raw value * scale) + offset
For file formats that don’t know this intrinsically a value of zero is returned.

This method is the same as the C function GDALGetRasterOffset().

Parameters:

pbSuccess pointer to a boolean to use to indicate if the returned value is meaningful or not. May be
NULL (default).

Returns:

the raster offset.

39.18.3.20 double GDALRasterBand::GetScale (int x« ppSuccess = NULL) [virtuall]

Fetch the raster value scale.

This value (in combination with the GetOffset() (p. ??) value) is used to transform raw pixel values into
the units returned by GetUnits(). For example this might be used to store elevations in GUInt16 bands with
a precision of 0.1, and starting from -100.

Units value = (raw value * scale) + offset
For file formats that don’t know this intrinsically a value of one is returned.

This method is the same as the C function GDALGetRasterScale().

Parameters:

pbSuccess pointer to a boolean to use to indicate if the returned value is meaningful or not. May be
NULL (default).

Returns:

the raster scale.

39.18.3.21 const char x GDALRasterBand::GetUnitType () [virtuall

Return raster unit type.

Return a name for the units of this raster’s values. For instance, it might be "m" for an elevation model in
meters, or "ft" for feet. If no units are available, a value of "" will be returned. The returned string should
not be modified, nor freed by the calling application.

This method is the same as the C function GDALGetRasterUnitType() (p. 2?).

Returns:

unit name string.

39.18.3.22 GDALColorInterp GDALRasterBand::GetColorInterpretation () [virtual]

How should this band be interpreted as color?
CV_Undefined is returned when the format doesn’t know anything about the color interpretation.

This method is the same as the C function GDALGetRasterColorInterpretation() (p. 2?).

39.18 GDALRasterBand Class Reference 247

Returns:

color interpretation value for band.

Referenced by GetlndexColorTranslationTo().

39.18.3.23 GDALColorTable «+ GDALRasterBand::GetColorTable () [virtual]

Fetch the color table associated with band.

If there is no associated color table, the return result is NULL. The returned color table remains owned by
the GDALRasterBand (p. ??), and can’t be depended on for long, nor should it ever be modified by the
caller.

This method is the same as the C function GDALGetRaster ColorTable() (p. ??).

Returns:

internal color table, or NULL.

Referenced by GetIndexColorTranslationTo().

39.18.3.24 CPLErr GDALRasterBand::Fill (double dfRealValue, double dflmaginaryValue = 0)

[virtual]

Fill this band with a constant value. GDAL makes no guarantees about what values pixels in newly created
files are set to, so this method can be used to clear a band to a specified "default" value. The fill value is
passed in as a double but this will be converted to the underlying type before writing to the file. An optional
second argument allows the imaginary component of a complex constant value to be specified.

Parameters:

dfRealvalue Real component of fill value

dfImaginaryValue Imaginary component of fill value, defaults to zero

Returns:

CE_Failure if the write fails, otherwise CE_None

References GA_ReadOnly, GDALCopyWords(), GDALGetDataTypeSize(), GDT_CFloat64, and Get-
LockedBlockRef().

39.18.3.25 CPLErr GDALRasterBand::SetCategoryNames (char xx) [virtual]

Set the category names for this band.
See the GetCategoryNames() (p. ??) method for more on the interpretation of category names.

This method is the same as the C function GDALSetRasterCategoryNames() (p. ??).

Parameters:

papszNames the NULL terminated StringList of category names. May be NULL to just clear the
existing list.

248 Class Documentation

Returns:

CE_None on success of CE_Failure on failure. If unsupported by the driver CE_Failure is returned,
but no error message is reported.

39.18.3.26 CPLErr GDALRasterBand::SetNoDataValue (double) [virtual]

Set the no data value for this band.

To clear the nodata value, just set it with an "out of range" value. Complex band no data values must have
an imagery component of zero.

This method is the same as the C function GDALSetRasterNoDataValue() (p. 2?).

Parameters:

dfNoData the value to set.

Returns:

CE_None on success, or CE_Failure on failure. If unsupported by the driver, CE_Failure is returned
by no error message will have been emitted.

39.18.3.27 CPLErr GDALRasterBand::SetColorTable (GDALColorTable x poCT) [virtual]

Set the raster color table.

The driver will make a copy of all desired data in the colortable. It remains owned by the caller after the
call.

This method is the same as the C function GDALSetRasterColorTable() (p. ??).

Parameters:

poCT the color table to apply.

Returns:

CE_None on success, or CE_Failure on failure. If the action is unsupported by the driver, a value of
CE_Failure is returned, but no error is issued.

39.18.3.28 CPLErr GDALRasterBand::SetColorInterpretation (GDALColorInterp eColorInterp)
[virtual]

Set color interpretation of a band.

Parameters:

eColorInterp the new color interpretation to apply to this band.

Returns:

CE_None on success or CE_Failure if method is unsupported by format.

39.18 GDALRasterBand Class Reference 249

39.18.3.29 CPLErr GDALRasterBand::SetOffset (double dfNewOffset) [virtuall

Set scaling offset.

Very few formats implement this method. When not implemented it will issue a CPLE_NotSupported error
and return CE_Failure.

Parameters:

dfNewOffset the new offset.

Returns:

CE_None or success or CE_Failure on failure.

39.18.3.30 CPLErr GDALRasterBand::SetScale (double dfNewScale) [virtual]

Set scaling ratio.

Very few formats implement this method. When not implemented it will issue a CPLE_NotSupported error
and return CE_Failure.

Parameters:

dfNewScale the new scale.

Returns:

CE_None or success or CE_Failure on failure.

39.18.3.31 CPLErr GDALRasterBand::SetUnitType (const char * pszNewValue) [virtuall

Set unit type.

Set the unit type for a raster band. Values should be one of "" (the default indicating it is unknown), "m"
indicating meters, or "ft" indicating feet, though other nonstandard values are allowed.

Parameters:

pszNewValue the new unit type value.

Returns:

CE_None on success or CE_Failure if not succuessful, or unsupported.

39.18.3.32 CPLErr GDALRasterBand::GetStatistics (int bApproxOK, int bForce, double x
pdfMin, double x pdfMax, double x pdfMean, double x pdfStdDev) [virtual]

Fetch image statistics.

Returns the minimum, maximum, mean and standard deviation of all pixel values in this band. If approxi-
mate statistics are sufficient, the bApproxOK flag can be set to true in which case overviews, or a subset of
image tiles may be used in computing the statistics.

250 Class Documentation

If bForce is FALSE results will only be returned if it can be done quickly (ie. without scanning the data).
If bForce is FALSE and results cannot be returned efficiently, the method will return CE_Warning but no
warning will have been issued. This is a non-standard use of the CE_Warning return value to indicate
"nothing done".

Note that file formats using PAM (Persistent Auxilary Metadata) services will generally cache statistics in
the .pam file allowing fast fetch after the first request.

This method is the same as the C function GDALGetRasterStatistics().

Parameters:
bApproxOK 1If TRUE statistics may be computed based on overviews or a subset of all tiles.
bForce If FALSE statistics will only be returned if it can be done without rescanning the image.
pdfMin Location into which to load image minimum (may be NULL).
pdfMax Location into which to load image maximum (may be NULL).-
pdfMean Location into which to load image mean (may be NULL).
pdfStdDev Location into which to load image standard deviation (may be NULL).

Returns:

CE_None on success, CE_Warning if no values returned, CE_Failure if an error occurs.

References ComputeStatistics(), GetMaximum(), GDALMajorObject::GetMetadataltem(), and GetMini-
mum().

Referenced by GetDefaultHistogram().

39.18.3.33 CPLErr GDALRasterBand::ComputeStatistics (int bApproxOK, double *« pdfMin,
double x pdfMax, double x pdfMean, double * pdfStdDev, GDALProgressFunc
pfnProgress, void x pProgressData) [virtual]

Compute image statistics.

Returns the minimum, maximum, mean and standard deviation of all pixel values in this band. If approxi-
mate statistics are sufficient, the bApproxOK flag can be set to true in which case overviews, or a subset of
image tiles may be used in computing the statistics.

Once computed, the statistics will generally be "set" back on the raster band using SetStatistics() (p. ??).

This method is the same as the C function GDALComputeRasterStatistics().

Parameters:
bApproxOK If TRUE statistics may be computed based on overviews or a subset of all tiles.
pdfMin Location into which to load image minimum (may be NULL).
pdfMax Location into which to load image maximum (may be NULL).-
pdfMean Location into which to load image mean (may be NULL).
pdfStdDev Location into which to load image standard deviation (may be NULL).
pfnProgress a function to call to report progress, or NULL.

pProgressData application data to pass to the progress function.

Returns:

CE_None on success, or CE_Failure if an error occurs or processing is terminated by the user.

39.18 GDALRasterBand Class Reference 251

References ComputeStatistics(), GDALGetRasterSampleOverview(), GDT_Byte, GDT_CFloat32, GDT_-
CFloat64, GDT_CInt16, GDT_CInt32, GDT_Float32, GDT_Float64, GDT_Int16, GDT_Int32, GDT_-
Ulnt16, GDT_UInt32, GetLockedBlockRef(), GetNoDataValue(), GetXSize(), GetYSize(), and SetStatis-
tics().

Referenced by ComputeStatistics(), and GetStatistics().

39.18.3.34 CPLErr GDALRasterBand::SetStatistics (double dfMin, double dfMax, double
dfMean, double dfStdDev) [virtual]

Set statistics on band.

This method can be used to store min/max/mean/standard deviation statistics on a raster band.

The default implementation stores them as metadata, and will only work on formats that can save arbitrary
metadata. This method cannot detect whether metadata will be properly saved and so may return CE_None
even if the statistics will never be saved.

This method is the same as the C function GDALSetRasterStatistics().

Parameters:

dfMin minimum pixel value.

dfMax maximum pixel value.

dfMean mean (average) of all pixel values.
dfStdDev Standard deviation of all pixel values.

Returns:

CE_None on success or CE_Failure on failure.

References GDALMajorObject::SetMetadataltem().
Referenced by ComputeStatistics().

39.18.3.35 int GDALRasterBand::HasArbitraryOverviews () [virtual]

Check for arbitrary overviews.

This returns TRUE if the underlying datastore can compute arbitrary overviews efficiently, such as is the
case with OGDI over a network. Datastores with arbitrary overviews don’t generally have any fixed
overviews, but the RasterIO() (p.??) method can be used in downsampling mode to get overview data
efficiently.

This method is the same as the C function GDALHasArbitraryOverviews() (p. ??),

Returns:

TRUE if arbitrary overviews available (efficiently), otherwise FALSE.

39.18.3.36 int GDALRasterBand::GetOverviewCount () [virtual]

Return the number of overview layers available.

This method is the same as the C function GDALGetOverviewCount() (p. ??);

252 Class Documentation

Returns:

overview count, zero if none.

References GDALDataset::o0OvManager.
Referenced by GetHistogram().

39.18.3.37 GDALRasterBand x GDALRasterBand::GetOverview (inti) [virtual]

Fetch overview raster band object.

This method is the same as the C function GDALGetOverview() (p. ??).

Parameters:

i overview index between 0 and GetOverviewCount() (p. ??)-1.

Returns:

overview GDALRasterBand (p. ??).

References GDALDataset::00vManager.
Referenced by GetHistogram().

39.18.3.38 CPLErr GDALRasterBand::BuildOverviews (const char * pszResampling, int
nOverviews, int x panOverviewList, GDALProgressFunc pfnProgress, void x
pProgressData) [virtual]

Build raster overview(s)

If the operation is unsupported for the indicated dataset, then CE_Failure is returned, and CPLGetLastEr-
rorNo() (p. ??) will return CPLE_NotSupported.

WARNING: It is not possible to build overviews for a single band in TIFF format, and thus this method does
not work for TIFF format, or any formats that use the default overview building in TIFF format. Instead it
is necessary to build overviews on the dataset as a whole using GDALDataset::BuildOverviews() (p. 2?).
That makes this method pretty useless from a practical point of view.

Parameters:

pszResampling one of "NEAREST", "AVERAGE" or "MODE" controlling the downsampling
method applied.

nOverviews number of overviews to build.
panOverviewList the list of overview decimation factors to build.
pfnProgress a function to call to report progress, or NULL.

pProgressData application data to pass to the progress function.

Returns:

CE_None on success or CE_Failure if the operation doesn’t work.

39.18 GDALRasterBand Class Reference 253

39.18.3.39 CPLErr GDALRasterBand::AdviseRead (int nXOff, int nYOff, int nXSize, int
nYSize, int nBufXSize, int nBufYSize, GDALDataType eDT, char xx papszOptions)
[virtual]

Advise driver of upcoming read requests.

Some GDAL drivers operate more efficiently if they know in advance what set of upcoming read requests
will be made. The AdviseRead() (p. ??) method allows an application to notify the driver of the region of
interest, and at what resolution the region will be read.

Many drivers just ignore the AdviseRead() (p. ??) call, but it can dramatically accelerate access via some
drivers.

Parameters:
nXOff The pixel offset to the top left corner of the region of the band to be accessed. This would be
zero to start from the left side.

nYOff The line offset to the top left corner of the region of the band to be accessed. This would be
zero to start from the top.

nXSize The width of the region of the band to be accessed in pixels.
nYSize The height of the region of the band to be accessed in lines.

nBufXSize the width of the buffer image into which the desired region is to be read, or from which it
is to be written.

nBufYSize the height of the buffer image into which the desired region is to be read, or from which it
is to be written.

eBufType the type of the pixel values in the pData data buffer. The pixel values will automatically be
translated to/from the GDALRasterBand (p. ??) data type as needed.

papszOptions a list of name=value strings with special control options. Normally this is NULL.

Returns:

CE_Failure if the request is invalid and CE_None if it works or is ignored.

Referenced by GDALDataset:: AdviseRead().

39.18.3.40 CPLErr GDALRasterBand::GetHistogram (double dfMin, double dfMax,
int nBuckets, int x panHistogram, int bIncludeOutOfRange, int bApproxOK,
GDALProgressFunc pfnProgress, void x pProgressData) [virtual]

Compute raster histogram.
Note that the bucket size is (dfMax-dfMin) / nBuckets.

For example to compute a simple 256 entry histogram of eight bit data, the following would be suitable.
The unusual bounds are to ensure that bucket boundaries don’t fall right on integer values causing possible
errors due to rounding after scaling.

int anHistogram[256];

poBand->GetHistogram(-0.5, 255.5, 256, anHistogram, FALSE, FALSE,
GDALDummyProgress, NULL);

Note that setting bApproxOK will generally result in a subsampling of the file, and will utilize overviews
if available. It should generally produce a representative histogram for the data that is suitable for use
in generating histogram based luts for instance. Generally bApproxOK is much faster than an exactly
computed histogram.

254 Class Documentation

Parameters:
dfMin the lower bound of the histogram.
dfMax the upper bound of the histogram.
nBuckets the number of buckets in panHistogram.
panHistogram array into which the histogram totals are placed.

bIncludeOutOfRange if TRUE values below the histogram range will mapped into panHistogram[0],
and values above will be mapped into panHistogram[nBuckets-1] otherwise out of range values
are discarded.

bApproxOK TRUE if an approximate, or incomplete histogram OK.
pfnProgress function to report progress to completion.

pProgressData application data to pass to pfnProgress.

Returns:

CE_None on success, or CE_Failure if something goes wrong.

References GDT_Byte, GDT_CFloat32, GDT_CFloat64, GDT_CIntl6, GDT_CInt32, GDT_-
Float32, GDT_Float64, GDT_Int16, GDT_Int32, GDT_UInt16, GDT_UlInt32, GetLockedBlockRef(),
GetOverview(), GetOverviewCount(), GetXSize(), and GetY Size().

Referenced by GDALGetRasterHistogram(), and GetDefaultHistogram().

39.18.3.41 CPLErr GDALRasterBand::GetDefaultHistogram (double x pdfMin, double x
pdfMax, int x pnBuckets, int xx ppanHistogram, int bForce, GDALProgressFunc
pfnProgress, void x pProgressData) [virtual]

Fetch default raster histogram.
Note that the bucket size is (dfMax-dfMin) / nBuckets.

For example to compute a simple 256 entry histogram of eight bit data, the following would be suitable.
The unusual bounds are to ensure that bucket boundaries don’t fall right on integer values causing possible
errors due to rounding after scaling.

int anHistogram[256];

poBand->GetHistogram(-0.5, 255.5, 256, anHistogram, FALSE, FALSE,
GDALDummyProgress, NULL);

Note that setting bApproxOK will generally result in a subsampling of the file, and will utilize overviews
if available. It should generally produce a representative histogram for the data that is suitable for use
in generating histogram based luts for instance. Generally bApproxOK is much faster than an exactly
computed histogram.

Parameters:
dfMin the lower bound of the histogram.
dfMax the upper bound of the histogram.
nBuckets the number of buckets in panHistogram.

panHistogram array into which the histogram totals are placed.

39.18 GDALRasterBand Class Reference 255

bIncludeOutOfRange if TRUE values below the histogram range will mapped into panHistogram[0],
and values above will be mapped into panHistogram[nBuckets-1] otherwise out of range values
are discarded.

bApproxOK TRUE if an approximate, or incomplete histogram OK.
pfnProgress function to report progress to completion.

pProgressData application data to pass to pfnProgress.

Returns:

CE_None on success, CE_Failure if something goes wrong, or CE_Warning if no default histogram is
available.

References GDT_Byte, GetHistogram(), GetRasterDataType(), and GetStatistics().

39.18.3.42 const GDALRasterAttributeTable + GDALRasterBand::GetDefaultRAT ()
[virtual]

Fetch default Raster Attribute Table.

A RAT will be returned if there is a default one associated with the band, otherwise NULL is returned. The

returned RAT is owned by the band and should not be deleted, or altered by the application.

Returns:

NULL, or a pointer to an internal RAT owned by the band.

39.18.3.43 CPLErr GDALRasterBand::SetDefaultRAT (const GDALRasterAttributeTable x
PORAT) [virtuall]

Set default Raster Attribute Table.

Associates a default RAT with the band. If not implemented for the format a CPLE_NotSupported error

will be issued. If successful a copy of the RAT is made, the original remains owned by the caller.

Parameters:

POoRAT the RAT to assign to the band.

Returns:

CE_None on success or CE_Failure if unsupported or otherwise failing.

The documentation for this class was generated from the following files:

¢ gdal_priv.h
¢ gdalrasterband.cpp
* rasterio.cpp

256 Class Documentation

39.19 GDALWarpKernel Class Reference

#include <gdalwarper.h>

Public Member Functions

¢ CPLErr Validate ()
* CPLErr PerformWarp ()

Public Attributes

e char xx papszWarpOptions

¢ GDALResampleAlg eResample
* GDALDataType eWorkingDataType
* int nBands

¢ int nSrcXSize

¢ int nSrcYSize

¢ GByte *x papabySrcImage

¢ GUInt32 ** papanBandSrcValid
¢ GUInt32 * panUnifiedSrcValid

¢ float * pafUnifiedSrcDensity

¢ int nDstXSize

* int nDstYSize

* GByte *x papabyDstImage

* GUInt32 * panDstValid

¢ float * pafDstDensity

¢ double dfXScale

* double dfYScale

¢ double dfXFilter

¢ double dfYFilter

« int nXRadius

* int nYRadius

¢ int nSrcXOff

¢ int nSrcYOff

¢ int nDstXOff

¢ int nDstYOff

¢ GDALTransformerFunc pfnTransformer
* void * pTransformerArg

* GDALProgressFunc pfnProgress
* void * pProgress

¢ double dfProgressBase

¢ double dfProgressScale

39.19 GDALWarpKernel Class Reference 257

39.19.1 Detailed Description

Low level image warping class.

This class is responsible for low level image warping for one "chunk" of imagery. The class is essentially a
structure with all data members public - primarily so that new special-case functions can be added without
changing the class declaration.

Applications are normally intended to interactive with warping facilities through the GDALWarpOpera-
tion (p. ??) class, though the GDALWarpKernel (p. ??) can in theory be used directly if great care is taken
in setting up the control data.

Design Issues My intention is that PerformWarp() (p.??) would analyse the setup in terms of the
datatype, resampling type, and validity/density mask usage and pick one of many specific implementa-
tions of the warping algorithm over a continuim of optimization vs. generality. At one end there will be a
reference general purpose implementation of the algorithm that supports any data type (working internally
in double precision complex), all three resampling types, and any or all of the validity/density masks. At
the other end would be highly optimized algorithms for common cases like nearest neighbour resampling
on GDT_Byte data with no masks.

The full set of optimized versions have not been decided but we should expect to have at least:
* One for each resampling algorithm for 8bit data with no masks.
* One for each resampling algorithm for float data with no masks.

* One for each resampling algorithm for float data with any/all masks (essentially the generic case for
just float data).

* One for each resampling algorithm for 8bit data with support for input validity masks (per band or
per pixel). This handles the common case of nodata masking.

* One for each resampling algorithm for float data with support for input validity masks (per band or
per pixel). This handles the common case of nodata masking.

Some of the specializations would operate on all bands in one pass (especially the ones without masking
would do this), while others might process each band individually to reduce code complexity.

Masking Semantics A detailed explanation of the semantics of the validity and density masks, and their
effects on resampling kernels is needed here.

39.19.2 Member Function Documentation

39.19.2.1 CPLErr GDALWarpKernel::Validate ()

Check the settings in the GDALWarpKernel (p. ??), and issue a CPLError() (p.??) (and return CE_-
Failure) if the configuration is considered to be invalid for some reason.

This method will also do some standard defaulting such as setting pfnProgress to GDALDummyProgress()
if it is NULL.
Returns:

CE_None on success or CE_Failure if an error is detected.

258 Class Documentation

References eResample.

Referenced by PerformWarp().

39.19.2.2 CPLErr GDALWarpKernel::PerformWarp ()

This method performs the warp described in the GDALWarpKernel (p. ??).

Returns:

CE_None on success or CE_Failure if an error occurs.

References eResample, eWorkingDataType, GDT_Byte, GDT_Float32, GDT_Intl6, GDT_UIntl6,
GRA_Bilinear, GRA_Cubic, GRA_CubicSpline, GRA_NearestNeighbour, nDstXSize, nDstYSize, nSr-
cXSize, nSrcYSize, pafDstDensity, pafUnifiedSrcDensity, panDstValid, panUnifiedSrcValid, papanBand-
SrcValid, and Validate().

39.19.3 Member Data Documentation
39.19.3.1 GDALResampleAlg GDALWarpKernel::eResample

Resampling algorithm.

The resampling algorithm to use. One of GRA_NearestNeighbour, GRA_Bilinear, or GRA_Cubic.
This field is required. GDT_NearestNeighbour may be used as a default value.

Referenced by PerformWarp(), Validate(), and GDALWarpOperation:: WarpRegionToBuffer().

39.19.3.2 GDALDataType GDALWarpKernel::eWorkingDataType

Working pixel data type.

The datatype of pixels in the source image (papabySrcimage) and destination image (papabyDstImage)
buffers. Note that operations on some data types (such as GDT_Byte) may be much better optimized than
other less common cases.

This field is required. It may not be GDT_Unknown.
Referenced by PerformWarp(), and GDALWarpOperation::WarpRegionToBuffer().

39.19.3.3 int GDALWarpKernel::nBands

Number of bands.

The number of bands (layers) of imagery being warped. Determines the number of entries in the pa-
pabySrclmage, papanBandSrcValid, and papabyDstImage arrays.

This field is required.
Referenced by GDALWarpOperation::WarpRegionToBuffer().

39.19.3.4 int GDALWarpKernel::nSrcXSize

Source image width in pixels.

39.19 GDALWarpKernel Class Reference 259

This field is required.
Referenced by PerformWarp(), and GDALWarpOperation::WarpRegionToBuffer().

39.19.3.5 int GDALWarpKernel::nSrcYSize

Source image height in pixels.
This field is required.
Referenced by PerformWarp(), and GDALWarpOperation:: WarpRegionToBuffer().

39.19.3.6 int GDALWarpKernel::papabySrcImage

Array of source image band data.

This is an array of pointers (of size GDALWarpKernel::nBands (p. ??)) pointers to image data. Each
individual band of image data is organized as a single block of image data in left to right, then bottom to
top order. The actual type of the image data is determined by GDALWarpKernel::eWorkingDataType

P.72.
To access the the pixel value for the (x=3,y=4) pixel (zero based) of the second band with eWorking-
DataType set to GDT_Float32 use code like this:

float dfPixelValue;

int nBand = 1; // band indexes are zero based.
int nPixel = 3; // zero based
int nlLine = 4; // zero based

assert (nPixel >= 0 && nPixel < poKern->nSrcXSize);
assert (nLine >= 0 && nLine < poKern->nSrcYSize);
assert (nBand >= 0 && nBand < poKern->nBands);
dfPixelValue = ((float x) poKern->papabySrcImage[nBand-1])
[nPixel + nLine * poKern->nSrcXSize];

This field is required.
Referenced by GDALWarpOperation:: WarpRegionToBuffer().

39.19.3.7 GUInt32 =+ GDALWarpKernel::papanBandSrcValid

Per band validity mask for source pixels.

Array of pixel validity mask layers for each source band. Each of the mask layers is the same size (in
pixels) as the source image with one bit per pixel. Note that it is legal (and common) for this to be NULL
indicating that none of the pixels are invalidated, or for some band validity masks to be NULL in which
case all pixels of the band are valid. The following code can be used to test the validity of a particular pixel.

int bIsValid = TRUE;

int nBand = 1; // band indexes are zero based.
int nPixel = 3; // zero based
int nLine = 4; // zero based

assert (nPixel >= 0 && nPixel < poKern->nSrcXSize);
assert (nLine >= 0 && nLine < poKern->nSrcYSize);
assert (nBand >= 0 && nBand < poKern->nBands);

if (poKern->papanBandSrcValid != NULL
&& poKern—->papanBandSrcValid[nBand] != NULL)

260 Class Documentation

GUInt32 *panBandMask = poKern->papanBandSrcValid[nBand];
int iPixelOffset = nPixel + nLine * poKern->nSrcXSize;

bIsValid = panBandMask[iPixelOffset>>5]
& (0x01 << (iPixelOffset & 0x1f));

Referenced by PerformWarp(), and GDALWarpOperation::WarpRegionToBuffer().

39.19.3.8 GUInt32 x GDALWarpKernel::panUnifiedSrcValid

Per pixel validity mask for source pixels.

A single validity mask layer that applies to the pixels of all source bands. It is accessed similarly to
papanBandSrcValid, but without the extra level of band indirection.

This pointer may be NULL indicating that all pixels are valid.

Note that if both panUnifiedSrcValid, and papanBandSrcValid are available, the pixel isn’t considered to
be valid unless both arrays indicate it is valid.

Referenced by PerformWarp(), and GDALWarpOperation::WarpRegionToBuffer().

39.19.3.9 float x GDALWarpKernel::pafUnifiedSrcDensity

Per pixel density mask for source pixels.

A single density mask layer that applies to the pixels of all source bands. It contains values between 0.0
and 1.0 indicating the degree to which this pixel should be allowed to contribute to the output result.

This pointer may be NULL indicating that all pixels have a density of 1.0.

The density for a pixel may be accessed like this:

float fDensity = 1.0;
int nPixel = 3; // zero based
int nLine = 4; // zero based

assert (nPixel >= 0 && nPixel < poKern->nSrcXSize);
assert (nLine >= 0 && nLine < poKern->nSrcYSize);
if (poKern->pafUnifiedSrcDensity != NULL)
fDensity = poKern->pafUnifiedSrcDensity
[nPixel + nLine *» poKern->nSrcXSize];

Referenced by PerformWarp(), and GDALWarpOperation:: WarpRegionToBuffer().

39.19.3.10 int GDALWarpKernel::nDstXSize

Width of destination image in pixels.
This field is required.
Referenced by PerformWarp(), and GDALWarpOperation::WarpRegionToBuffer().

39.19.3.11 int GDALWarpKernel::nDstYSize

Height of destination image in pixels.

39.19 GDALWarpKernel Class Reference 261

This field is required.
Referenced by PerformWarp(), and GDALWarpOperation::WarpRegionToBuffer().

39.19.3.12 GByte xx GDALWarpKernel::papabyDstImage

Array of destination image band data.

This is an array of pointers (of size GDALWarpKernel::nBands (p. ??)) pointers to image data. Each
individual band of image data is organized as a single block of image data in left to right, then bottom to
top order. The actual type of the image data is determined by GDALWarpKernel::eWorkingDataType

(P-?7).

To access the the pixel value for the (x=3,y=4) pixel (zero based) of the second band with eWorking-
DataType set to GDT_Float32 use code like this:

float dfPixelValue;

int nBand = 1; // band indexes are zero based.
int nPixel = 3; // zero based
int nLine = 4; // zero based

assert (nPixel >= 0 && nPixel < poKern->nDstXSize);
assert (nLine >= 0 && nLine < poKern->nDstYSize);
assert (nBand >= 0 && nBand < poKern->nBands);
dfPixelValue = ((float) poKern->papabyDstImage[nBand-1])
[nPixel + nLine * poKern->nSrcYSize];

This field is required.
Referenced by GDALWarpOperation:: WarpRegionToBuffer().

39.19.3.13 GUInt32 *+ GDALWarpKernel::panDstValid

Per pixel validity mask for destination pixels.

A single validity mask layer that applies to the pixels of all destination bands. It is accessed similarly to
papanUnitifiedSrcValid, but based on the size of the destination image.

This pointer may be NULL indicating that all pixels are valid.
Referenced by PerformWarp(), and GDALWarpOperation:: WarpRegionToBuffer().

39.19.3.14 float + GDALWarpKernel::pafDstDensity

Per pixel density mask for destination pixels.

A single density mask layer that applies to the pixels of all destination bands. It contains values between
0.0 and 1.0.

This pointer may be NULL indicating that all pixels have a density of 1.0.

The density for a pixel may be accessed like this:

1.0;

float fDensity =
= 3; // zero based
7

int nPixel
int nLine = 4 // zero based
assert (nPixel >= 0 && nPixel < poKern->nDstXSize);
assert (nLine >= 0 && nLine < poKern->nDstYSize);
if (poKern->pafDstDensity != NULL)
fDensity = poKern->pafDstDensity[nPixel + nLine % poKern->nDstXSize];

262

Class Documentation

Referenced by PerformWarp(), and GDALWarpOperation:: WarpRegionToBuffer().

39.19.3.15 int GDALWarpKernel::nSrcXOff

X offset to source pixel coordinates for transformation.
See pfnTransformer.

This field is required.

Referenced by GDALWarpOperation:: WarpRegionToBuffer().

39.19.3.16 int GDALWarpKernel::nSrcYOff

Y offset to source pixel coordinates for transformation.
See pfnTransformer.

This field is required.

Referenced by GDALWarpOperation:: WarpRegionToBuffer().

39.19.3.17 int GDALWarpKernel::nDstXOff

X offset to destination pixel coordinates for transformation.
See pfnTransformer.

This field is required.

Referenced by GDALWarpOperation:: WarpRegionToBuffer().

39.19.3.18 int GDALWarpKernel::nDstYOff

Y offset to destination pixel coordinates for transformation.
See pfnTransformer.

This field is required.

Referenced by GDALWarpOperation::WarpRegionToBuffer().

39.19.3.19 GDALTransformerFunc GDALWarpKernel::pfnTransformer

Source/destination location transformer.

The function to call to transform coordinates between source image pixel/line coordinates and destination
image pixel/line coordinates. See GDALTransformerFunc() (p.??) for details of the semantics of this

function.

The GDALWarpKern algorithm will only ever use this transformer in "destination to source" mode (bD-
stToSrc=TRUE), and will always pass partial or complete scanlines of points in the destination image as
input. This means, amoung other things, that it is safe to the the approximating transform GDALApprox-

Transform() (p. ??) as the transformation function.

Source and destination images may be subsets of a larger overall image. The transformation algorithms will
expect and return pixel/line coordinates in terms of this larger image, so coordinates need to be offset by

39.19 GDALWarpKernel Class Reference 263

the offsets specified in nSrcXOff, nSrcYOff, nDstXOff, and nDstYOff before passing to pfnTransformer,
and after return from it.

The GDALWarpKernel::pfnTransformerArg value will be passed as the callback data to this function when
it is called.

This field is required.
Referenced by GDALWarpOperation::WarpRegionToBuffer().

39.19.3.20 void * GDALWarpKernel::pTransformerArg

Callback data for pfnTransformer.
This field may be NULL if not required for the pfnTransformer being used.
Referenced by GDALWarpOperation:: WarpRegionToBuffer().

39.19.3.21 GDALProgressFunc GDALWarpKernel::pfnProgress
The function to call to report progress of the algorithm, and to check for a requested termination of the
operation. It operates according to GDALProgressFunc() semantics.

Generally speaking the progress function will be invoked for each scanline of the destination buffer that
has been processed.

This field may be NULL (internally set to GDALDummyProgress()).
Referenced by GDALWarpOperation::WarpRegionToBuffer().

39.19.3.22 void x* GDALWarpKernel::pProgress

Callback data for pfnProgress.
This field may be NULL if not required for the pfnProgress being used.
Referenced by GDALWarpOperation:: WarpRegionToBuffer().

The documentation for this class was generated from the following files:

* gdalwarper.h
» gdalwarpkernel.cpp

264

Class Documentation

39.20 GDALWarpOperation Class Reference

#include <gdalwarper.h>

Public Member Functions

CPLEr Initialize (const GDALWarpOptions xpsNewOptions)

const GDALWarpOptions * GetOptions ()

CPLErr ChunkAndWarpImage (int nDstXOff, int nDstYOff, int nDstXSize, int nDstY Size)
CPLErr ChunkAndWarpMulti (int nDstXOff, int nDstYOff, int nDstXSize, int nDstY Size)
CPLErr WarpRegion (int nDstXOff, int nDstYOff, int nDstXSize, int nDstY Size, int nSrcXOff=0,
int nSrc YOff=0, int nSrcXSize=0, int nSrcY Size=0)

CPLErr WarpRegionToBuffer (int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, void
xpDataBuf, GDALDataType eBufDataType, int nSrcXOff=0, int nSrc YOff=0, int nSrcXSize=0, int
nSrcY Size=0)

39.20.1 Detailed Description

High level image warping class.

Warper Design

The overall GDAL high performance image warper is split into a few components.

* The transformation between input and output file coordinates is handled via GDALTransformer-

Func() (p.??) implementations such as the one returned by GDALCreateGenlmgProjTrans-
former() (p.??). The transformers are ultimately responsible for translating pixel/line locations
on the destination image to pixel/line locations on the source image.

In order to handle images too large to hold in RAM, the warper needs to segment large images.
This is the responsibility of the GDALWarpOperation (p.??) class. The GDALWarpOpera-
tion::ChunkAndWarpImage() (p. ??) invokes GDALWarpOperation:: WarpRegion() (p.??) on
chunks of output and input image that are small enough to hold in the amount of memory allowed
by the application. This process is described in greater detail in the Image Chunking section.

The GDALWarpOperation::WarpRegion() (p.??) function creates and loads an output image
buffer, and then calls WarpRegionToBuffer() (p. ??).

GDALWarpOperation::WarpRegionToBuffer() (p. ??) is responsible for loading the source im-
agery corresponding to a particular output region, and generating masks and density masks from
the source and destination imagery using the generator functions found in the GDALWarpOptions
(p. ??) structure. Binds this all into an instance of GDALWarpKernel (p. ??) on which the GDAL-
WarpKernel::PerformWarp() (p. ??) method is called.

GDALWarpKernel (p. ??) does the actual image warping, but is given an input image and an output
image to operate on. The GDALWarpKernel (p. ??) does no 10, and in fact knows nothing about
GDAL. It invokes the transformation function to get sample locations, builds output values based on
the resampling algorithm in use. It also takes any validity and density masks into account during this
operation.

39.20 GDALWarpOperation Class Reference 265

Chunk Size Selection The GDALWarpOptions (p. ??) ChunkAndWarpImage() (p. ??) method is re-
sponsible for invoking the WarpRegion() (p. ??) method on appropriate sized output chunks such that the
memory required for the output image buffer, input image buffer and any required density and validity
buffers is less than or equal to the application defined maximum memory available for use.

It checks the memory requrired by walking the edges of the output region, transforming the locations
back into source pixel/line coordinates and establishing a bounding rectangle of source imagery that
would be required for the output area. This is actually accomplished by the private GDALWarpOpera-
tion::ComputeSource Window() method.

Then memory requirements are used by totaling the memory required for all output bands, input bands,
validity masks and density masks. If this is greater than the GDALWarpOptions::dfWarpMemoryLimit
(p- ??) then the destination region is divided in two (splitting the longest dimension), and ChunkAnd-
WarplImage() (p. ??) recursively invoked on each destination subregion.

Validity and Density Masks Generation Fill in ways in which the validity and density masks may be
generated here. Note that detailed semantics of the masks should be found in GDALWarpKernel (p. ??).

39.20.2 Member Function Documentation
39.20.2.1 CPLErr GDALWarpOperation::Initialize (const GDALWarpOptions * psNewOptions)

This method initializes the GDALWarpOperation’s concept of the warp options in effect. It creates an
internal copy of the GDALWarpOptions (p. ??) structure and defaults a variety of additional fields in the
internal copy if not set in the provides warp options.

Defaulting operations include:

¢ If the nBandCount is 0, it will be set to the number of bands in the source image (which must match
the output image) and the panSrcBands and panDstBands will be populated.

Parameters:

psNewOptions input set of warp options. These are copied and may be destroyed after this call by the
application.

Returns:

CE_None on success or CE_Failure if an error occurs.

References GDALWarpOptions::dfWarpMemoryLimit, GDALWarpOptions::eWorkingDataType, GDAL-
DataTypelsComplex(), GDALDataTypeUnion(), GDALGetRasterBand(), GDALGetRasterCount(),
GDALGetRasterDataType(), GDT_Byte, GDT_Int16, GDT_Int32, GDT_UInt16, GDT_UInt32, GDAL-
WarpOptions::hDstDS, GDALWarpOptions::hSrcDS, GDALWarpOptions::nBandCount, GDALWarpOp-
tions::padfSrcNoDatalmag, GDALWarpOptions::padfSrcNoDataReal, GDALWarpOptions::panDstBands,
GDALWarpOptions::panSrcBands, and GDALWarpOptions::papszWarpOptions.

Referenced by GDALCreateWarpOperation(), and GDALReprojectImage().

39.20.2.2 CPLErr GDALWarpOperation::ChunkAndWarpImage (int nDstXOff, int nDstYOff,
int nDstXSize, int nDstYSize)

This method does a complete warp of the source image to the destination image for the indicated region
with the current warp options in effect. Progress is reported to the installed progress monitor, if any.

266 Class Documentation

This function will subdivide the region and recursively call itself until the total memory required to process
a region chunk will all fit in the memory pool defined by GDALWarpOptions::dfWarpMemoryLimit
(P-??7).

Once an appropriate region is selected GDALWarpOperation::WarpRegion() (p. ??) is invoked to do the
actual work.
Parameters:

nDstXOff X offset to window of destination data to be produced.
nDstYOff Y offset to window of destination data to be produced.
nDstXSize Width of output window on destination file to be produced.
nDstYSize Height of output window on destination file to be produced.

Returns:

CE_None on success or CE_Failure if an error occurs.

References GDALWarpOptions::pfnProgress, GDALWarpOptions::pProgressArg, and WarpRegion().
Referenced by GDALChunkAndWarpImage(), and GDALReprojectlmage().

39.20.2.3 CPLErr GDALWarpOperation:: ChunkAndWarpMulti (int nDstXOff, int nDstYOff, int
nDstXSize, int nDstYSize)

This method does a complete warp of the source image to the destination image for the indicated region
with the current warp options in effect. Progress is reported to the installed progress monitor, if any.

Externally this method operates the same as ChunkAndWarpImage() (p. ??), but internally this method
uses multiple threads to interleave input/output for one region while the processing is being done for an-
other.

Parameters:

nDstXOff X offset to window of destination data to be produced.
nDstYOff Y offset to window of destination data to be produced.
nDstXSize Width of output window on destination file to be produced.

nDstYSize Height of output window on destination file to be produced.

Returns:

CE_None on success or CE_Failure if an error occurs.

Referenced by GDALChunkAndWarpMulti().

39.20.2.4 CPLErr GDALWarpOperation::WarpRegion (int nDstXOff, int nDstYOff, int
nDstXSize, int nDstYSize, int nSrcXOff = 0, int nSrcYOff = 0, int nSrcXSize = 0, int
nSrcYSize = 0)

This method requests the indicated region of the output file be generated.

Note that WarpRegion() (p. ??) will produce the requested area in one low level warp operation without
verifying that this does not exceed the stated memory limits for the warp operation. Applications should
take care not to call WarpRegion() (p.??) on too large a region! This function is normally called by

39.20 GDALWarpOperation Class Reference 267

ChunkAndWarpImage() (p. ??), the normal entry point for applications. Use it instead if staying within
memory constraints is desired.

Progress is reported from 0.0 to 1.0 for the indicated region.

Parameters:

nDstXOff X offset to window of destination data to be produced.
nDstYOff Y offset to window of destination data to be produced.
nDstXSize Width of output window on destination file to be produced.
nDstYSize Height of output window on destination file to be produced.

Returns:

CE_None on success or CE_Failure if an error occurs.

References =~ GDALWarpOptions::eWorkingDataType, = GDALCopyWords(), = GDALDatasetRaste-
rIO(), GDALFlushCache(), GDALGetDataTypeSize(), GDT_Byte, GDT_CFloat64, GDT_Float64,
GF_Read, GF_Write, GDALWarpOptions::hDstDS, GDALWarpOptions::nBandCount, =~ GDAL-
WarpOptions::padfDstNoDatalmag, GDALWarpOptions::padfDstNoDataReal, GDALWarpOp-
tions::panDstBands, GDALWarpOptions::papszWarpOptions, and WarpRegionToBuffer().

Referenced by ChunkAndWarplmage(), and GDALWarpRegion().

39.20.2.5 CPLErr GDALWarpOperation::WarpRegionToBuffer (int nDstXOff, int nDstYOff,
int nDstXSize, int nDstYSize, void x pDataBuf, GDALDataType eBufDataType, int
nSrcXOff = 0, int nSrcYOff = 0, int nSrcXSize = 0, int nSrcYSize = 0)

This method requests that a particular window of the output dataset be warped and the result put into the
provided data buffer. The output dataset doesn’t even really have to exist to use this method as long as the
transformation function in the GDALWarpOptions (p. ??) is setup to map to a virtual pixel/line space.

This method will do the whole region in one chunk, so be wary of the amount of memory that might be
used.

Parameters:

nDstXOff X offset to window of destination data to be produced.
nDstYOff Y offset to window of destination data to be produced.
nDstXSize Width of output window on destination file to be produced.
nDstYSize Height of output window on destination file to be produced.
pDataBuf the data buffer to place result in, of type eBufDataType.

eBufDataType the type of the output data buffer. For now this must match GDALWarpOp-
tions::eWorkingDataType (p. 2?).

nSrcXOff source window X offset (computed if window all zero)
nSrcYOff source window Y offset (computed if window all zero)
nSrcXSize source window X size (computed if window all zero)

nSrcYSize source window Y size (computed if window all zero)

Returns:

CE_None on success or CE_Failure if an error occurs.

268 Class Documentation

References GDALWarpKernel::dfProgressBase, GDALWarpKernel::dfProgressScale, GDALWarp-
Kernel::eResample, GDALWarpOptions::eResampleAlg, GDALWarpKernel::eWorkingDataType,
GDALWarpOptions::eWorkingDataType, GDALDatasetRasterIO(), GDALGetDataTypeSize(), GF_Read,
GDALWarpOptions::hSrcDS, GDALWarpOptions::nBandCount, GDALWarpKernel::nBands, GDAL-
WarpOptions::nDstAlphaBand, GDALWarpKernel::nDstXOff, GDALWarpKernel::nDstXSize, GDAL-
WarpKernel::nDstYOff, GDALWarpKernel::nDstYSize, GDALWarpOptions::nSrcAlphaBand, GDAL-
WarpKernel::nSrcXOff, GDALWarpKernel::nSrcXSize, GDALWarpKernel::nSrcYOff, GDALWarpKer-
nel::nSrcYSize, GDALWarpOptions::padfDstNoDatalmag, GDALWarpOptions::padfDstNoDataReal,
GDALWarpOptions::padfSrcNoDatalmag, = GDALWarpOptions::padfSrcNoDataReal, = GDALWarp-
Kernel::pafDstDensity, =~ GDALWarpKernel::pafUnifiedSrcDensity, = GDALWarpKernel::panDstValid,
GDALWarpOptions::panSrcBands, GDALWarpKernel::panUnifiedSrcValid, GDALWarpKer-
nel::papabyDstImage, GDALWarpKernel::papabySrclmage, GDALWarpKernel::papanBandSrcValid,
GDALWarpOptions::papszWarpOptions, GDALWarpKernel::papszWarpOptions, GDALWarpOp-
tions::pfnPostWarpChunkProcessor, GDALWarpOptions::pfnPreWarpChunkProcessor, GDAL-
WarpOptions::pfnProgress, = GDALWarpKernel::pfnProgress, =~ GDALWarpOptions::pfnTransformer,
GDALWarpKernel::pfnTransformer, =~ GDALWarpOptions::pPostWarpProcessorArg, = GDALWarpOp-
tions::pPreWarpProcessorArg, GDALWarpKernel::pProgress, GDALWarpOptions::pProgressArg,
GDALWarpOptions::pTransformerArg, and GDALWarpKernel::pTransformerArg.

Referenced by GDALWarpRegionToBuffer(), and WarpRegion().
The documentation for this class was generated from the following files:

* gdalwarper.h
* gdalwarpoperation.cpp

39.21 GDALWarpOptions Struct Reference

269

39.21 GDALWarpOptions Struct Reference

#include <gdalwarper.h>

Public Attributes

e char xx papszWarpOptions

¢ double dfWarpMemoryLimit

¢ GDALResampleAlg eResampleAlg

¢ GDALDataType eWorkingDataType

¢ GDALDatasetH hSrcDS

¢ GDALDatasetH hDstDS

¢ int nBandCount

* int * panSrcBands

* int * panDstBands

¢ int nSrcAlphaBand

¢ int nDstAlphaBand

* double x padfSrcNoDataReal

¢ double x padfSrcNoDatalmag

* double x padfDstNoDataReal

¢ double x padfDstNoDatalmag

¢ GDALProgressFunc pfnProgress

¢ void * pProgressArg

* GDALTransformerFunc pfnTransformer

¢ void * pTransformerArg

* GDALMaskFunc * papfnSrcPerBand ValidityMaskFunc
* void ** papSrcPerBandValidityMaskFuncArg
¢ GDALMaskFunc pfnSrcValidityMaskFunc

¢ void * pSrcValidityMaskFuncArg

¢ GDALMaskFunc pfnSrcDensityMaskFunc

¢ void * pSrcDensityMaskFuncArg

¢ GDALMaskFunc pfnDstDensityMaskFunc

¢ void * pDstDensityMaskFuncArg

* GDALMaskFunc pfnDstValidityMaskFunc

¢ void * pDstValidityMaskFuncArg

e CPLErr(x pfnPreWarpChunkProcessor)(void #pKern, void *pArg)
* void * pPreWarpProcessorArg

e CPLErr(+ pfnPostWarpChunkProcessor)(void *pKern, void *pArg)
¢ void * pPostWarpProcessorArg

39.21.1 Detailed Description

Warp control options for use with GDALWarpOperation::Initialize() (p. ??)

270 Class Documentation

39.21.2 Member Data Documentation
39.21.2.1 char xx GDALWarpOptions::papszWarpOptions

A string list of additional options controlling the warp operation in name=value format. A suitable string
list can be prepared with CSLSetName Value() (p. ??).

The following values are currently supported:

e INIT_DEST=[value] or INIT_DEST=NO_DATA: This option forces the destination image to be
initialized to the indicated value (for all bands) or indicates that it should be initialized to the NO_-
DATA value in padfDstNoDataReal/padfDstNoDatalmag. If this value isn’t set the destination image
will be read and overlayed.

» WRITE_FLUSH=YES/NO: This option forces a flush to disk of data after each chunk is processed.
In some cases this helps ensure a serial writing of the output data otherwise a block of data may be
written to disk each time a block of data is read for the input buffer resulting in alot of extra seeking
around the disk, and reduced IO throughput. The default at this time is NO.

e SKIP_NOSOURCE=YES/NO: Skip all processing for chunks for which there is no corresponding
input data. This will disable initializing the destination (INIT_DEST) and all other processing, and
so should be used careful. Mostly useful to short circuit a lot of extra work in mosaicing situations.

Normally when computing the source raster data to load to generate a particular output area, the warper
samples transforms 21 points along each edge of the destination region back onto the source file, and uses
this to compute a bounding window on the source image that is sufficient. Depending on the transformation
in effect, the source window may be a bit too small, or even missing large areas. Problem situations
are those where the transformation is very non-linear or "inside out". Examples are transforming from
WGS84 to Polar Steregraphic for areas around the pole, or transformations where some of the image is
untransformable. The following options provide some additional control to deal with errors in computing
the source window:

* SAMPLE GRID=YES/NO: Setting this option to YES will force the sampling to include internal
points as well as edge points which can be important if the transformation is esoteric inside out, or if
large sections of the destination image are not transformable into the source coordinate system.

 SAMPLE_STEPS: Modifies the density of the sampling grid. The default number of steps is 21.
Increasing this can increase the computational cost, but improves the accuracy with which the source
region is computed.

* SOURCE_EXTRA: This is a number of extra pixels added around the source window for a given
request, and by default it is 1 to take care of rounding error. Setting this larger will incease the
amount of data that needs to be read, but can avoid missing source data.

Referenced by GDALWarpOperation::Initialize(), GDALWarpOperation::WarpRegion(), and GDALWarp-
Operation::WarpRegionToBuffer().

39.21.2.2 double GDALWarpOptions::dfWarpMemoryLimit

In bytes, 0.0 for internal default
Referenced by GDALWarpOperation::Initialize().

39.21 GDALWarpOptions Struct Reference 271

39.21.2.3 GDALResampleAlg GDALWarpOptions::eResampleAlg

Resampling algorithm to use

Referenced by GDALAutoCreateWarpedVRT(), GDALReprojectlmage(), and GDALWarpOpera-
tion:: WarpRegionToBuffer().

39.21.2.4 GDALDataType GDALWarpOptions::eWorkingDataType

data type to use during warp operation, GDT_Unknown lets the algorithm select the type

Referenced by GDALWarpOperation::Initialize(), GDALWarpOperation:: WarpRegion(), and GDALWarp-
Operation::WarpRegionToBuffer().

39.21.2.5 GDALDatasetH GDALWarpOptions::hSrcDS

Source image dataset.

Referenced by GDALAutoCreateWarpedVRT(), = GDALReprojectimage(), = GDALWarpOpera-
tion::Initialize(), and GDALWarpOperation:: WarpRegionToBuffer().

39.21.2.6 GDALDatasetH GDALWarpOptions::hDstDS

Destination image dataset - may be NULL if only using GDALWarpOperation::WarpRegionToBuffer()
(P-??7).

Referenced by GDALCreateWarpedVRT(), GDALReprojectlmage(), GDALWarpOperation::Initialize(),
and GDALWarpOperation::WarpRegion().

39.21.2.7 int GDALWarpOptions::nBandCount

Number of bands to process, may be 0 to select all bands.

Referenced by GDALAutoCreateWarpedVRT(), GDALCreateWarpedVRT(), GDALReprojectlm-
age(), GDALWarpOperation::Initialize(), GDALWarpOperation::WarpRegion(), and GDALWarpOpera-
tion::WarpRegionToBuffer().

39.21.2.8 intx GDALWarpOptions::panSrcBands

The band numbers for the source bands to process (1 based)

Referenced by GDALAutoCreateWarpedVRT(), = GDALReprojectlmage(), =~ GDALWarpOpera-
tion::Initialize(), and GDALWarpOperation:: WarpRegionToBuffer().

39.21.2.9 intx GDALWarpOptions::panDstBands

The band numbers for the destination bands to process (1 based)

Referenced by GDALAutoCreateWarpedVRT(), = GDALReprojectlmage(), = GDALWarpOpera-
tion::Initialize(), and GDALWarpOperation:: WarpRegion().

272 Class Documentation

39.21.2.10 int GDALWarpOptions::nSrcAlphaBand

The source band so use as an alpha (transparency) value, O=disabled

Referenced by GDALWarpOperation:: WarpRegionToBuffer().

39.21.2.11 int GDALWarpOptions::nDstAlphaBand

The dest. band so use as an alpha (transparency) value, O=disabled

Referenced by GDALWarpOperation:: WarpRegionToBuffer().

39.21.2.12 doublex GDALWarpOptions::padfSrcNoDataReal

The "nodata" value real component for each input band, if NULL there isn’t one

Referenced by GDALReprojectimage(), GDALWarpOperation::Initialize(), and GDALWarpOpera-
tion::WarpRegionToBuffer().

39.21.2.13 doublex GDALWarpOptions::padfSrcNoDatalmag

The "nodata" value imaginary component - may be NULL even if real component is provided.

Referenced by GDALReprojectimage(), GDALWarpOperation::Initialize(), and GDALWarpOpera-
tion::WarpRegionToBuffer().

39.21.2.14 doublex GDALWarpOptions::padfDstNoDataReal

The "nodata" value real component for each output band, if NULL there isn’t one

Referenced by GDALWarpOperation::WarpRegion(), and GDALWarpOperation:: WarpRegionToBuffer().

39.21.2.15 doublex GDALWarpOptions::padfDstNoDatalmag

The "nodata" value imaginary component - may be NULL even if real component is provided.

Referenced by GDALWarpOperation:: WarpRegion(), and GDALWarpOperation:: WarpRegionToBuffer().

39.21.2.16 GDALProgressFunc GDALWarpOptions::pfnProgress

GDALProgressFunc() compatible progress reporting function, or NULL if there isn’t one.

Referenced by GDALWarpOperation::ChunkAndWarpIlmage(), GDALReprojectImage(), and GDALWar-
pOperation:: WarpRegionToBuffer().

39.21.2.17 void+ GDALWarpOptions::pProgressArg

Callback argument to be passed to pfnProgress.

Referenced by GDALWarpOperation::ChunkAndWarpImage(), GDALReprojectlmage(), and GDALWar-
pOperation:: WarpRegionToBuffer().

39.21 GDALWarpOptions Struct Reference 273

39.21.2.18 GDALTransformerFunc GDALWarpOptions::pfnTransformer

Type of spatial point transformer function

Referenced by GDALAutoCreateWarpedVRT(), GDALReprojectimage(), and GDALWarpOpera-
tion::WarpRegionToBuffer().

39.21.2.19 void+* GDALWarpOptions::pTransformerArg

Handle to image transformer setup structure

Referenced by GDALAutoCreateWarpedVRT(), GDALReprojectlmage(), and GDALWarpOpera-
tion:: WarpRegionToBuffer().

The documentation for this struct was generated from the following files:

* gdalwarper.h
 gdalwarper.cpp

274 Class Documentation

Chapter 40

File Documentation

40.1 cpl_conv.h File Reference

#include "cpl_port.h"
#include "cpl_vsi.h"

#include "cpl_error.h"

Classes

¢ struct CPLSharedFileInfo
¢ class CPLLocaleC

Defines

¢ #define CPLFree VSIFree

Typedefs

* typedef const char x(x CPLFileFinder)(const char *, const char *)

Functions

 void CPLVerifyConfiguration (void)

« const char * CPLGetConfigOption (const char *, const char)

 void CPLSetConfigOption (const char *, const char *)
* void CPLFreeConfig (void)

¢ void * CPLMalloc (size_t)

¢ void * CPLCalloc (size_t, size_t)

¢ void * CPLRealloc (void *, size_t)

¢ char * CPLStrdup (const char)

e char x CPLStrlwr (char x)

¢ char * CPLFGets (char *, int, FILE %)

* const char x CPLReadLine (FILE x)

276

File Documentation

const char x CPLReadLineL (FILE x)

double CPLAtof (const char *)

double CPLAtofDelim (const char *, char)

double CPLStrtod (const char *, char xx)

double CPLStrtodDelim (const char *, char *x, char)

float CPLStrtof (const char %, char *x)

float CPLStrtofDelim (const char %, char *x, char)

double CPLAtofM (const char)

char x CPLScanString (const char x, int, int, int)

double CPLScanDouble (const char x, int)

long CPLScanLong (const char *, int)

unsigned long CPLScanULong (const char , int)

GUIntBig CPLScanUIntBig (const char x, int)

void * CPLScanPointer (const char x, int)

int CPLPrintString (char *, const char x, int)

int CPLPrintStringFill (char *, const char , int)

int CPLPrintInt32 (char *, GInt32, int)

int CPLPrintUIntBig (char *, GUIntBig, int)

int CPLPrintDouble (char *, const char x, double, const char *)

int CPLPrintTime (char %, int, const char %, const struct tm *, const char)

int CPLPrintPointer (char *, void *, int)

void x CPLGetSymbol (const char *, const char)

int CPLGetExecPath (char xpszPathBuf, int nMaxLength)

const char x CPLGetPath (const char x)

const char * CPLGetDirname (const char x)

const char x* CPLGetFilename (const char *)

const char * CPLGetBasename (const char)

const char * CPLGetExtension (const char)

char * CPLGetCurrentDir (void)

const char * CPLFormFilename (const char xpszPath, const char xpszBasename, const char
xpszExtension)

const char * CPLFormCIFilename (const char xpszPath, const char xpszBasename, const char
xpszExtension)

const char x* CPLResetExtension (const char *, const char)

const char * CPLProjectRelativeFilename (const char xpszProjectDir, const char
xpszSecondaryFilename)

int CPLIsFilenameRelative (const char *pszFilename)

const char * CPLExtractRelativePath (const char *, const char x, int %)

const char * CPLCleanTrailingSlash (const char *)

char xx CPLCorrespondingPaths (const char #pszOldFilename, const char *pszNewFilename, char
wxpapszFileList)

int CPLCheckForFile (char spszFilename, char *xpapszSiblingList)

const char * CPLFindFile (const char xpszClass, const char *pszBasename)

const char * CPLDefaultFindFile (const char xpszClass, const char *pszBasename)
void CPLPushFileFinder (CPLFileFinder pfnFinder)

CPLFileFinder CPLPopFileFinder (void)

void CPLPushFinderLocation (const char)

void CPLPopFinderLocation (void)

void CPLFinderClean (void)

int CPLStat (const char x, VSIStatBuf)

40.1 cpl_conv.h File Reference 277

* FILE x CPLOpenShared (const char *, const char *, int)

¢ void CPLCloseShared (FILE x)

¢ CPLSharedFilelnfo * CPLGetSharedList (int %)

¢ void CPLDumpSharedList (FILE x)

¢ double CPLDMSToDec (const char x*is)

¢ const char * CPLDecToDMS (double dfAngle, const char *pszAxis, int nPrecision)
¢ double CPLPackedDMSToDec (double)

¢ double CPLDecToPackedDMS (double dfDec)

* void CPLStringToComplex (const char *pszString, double xpdfReal, double «pdflmag)
¢ int CPLUnlinkTree (const char %)

* int CPLCopyFile (const char xpszNewPath, const char xpszOldPath)

* int CPLMoveFile (const char xpszNewPath, const char xpszOldPath)

40.1.1 Detailed Description

Various convenience functions for CPL.

40.1.2 Function Documentation
40.1.2.1 double CPLAtof (const char * nptr)

Converts ASCII string to floating point number.

This function converts the initial portion of the string pointed to by nptr to double floating point represen-
tation. The behaviour is the same as

CPLStrtod(nptr, (char *x)NULL);

This function does the same as standard atof(3), but does not take locale in account. That means, the
decimal delimiter is always °.” (decimal point). Use CPLAtofDelim() (p.??) function if you want to
specify custom delimiter.

IMPORTANT NOTE. Existance of this function does not mean you should always use it. Sometimes you
should use standard locale aware atof(3) and its family. When you need to process the user’s input (for
example, command line parameters) use atof(3), because user works in localized environment and her
input will be done accordingly the locale set. In particular that means we should not make assumptions
about character used as decimal delimiter, it can be either "." or ",". But when you are parsing some ASCII
file in predefined format, you most likely need CPLAtof() (p. ??), because such files distributed across the
systems with different locales and floating point representation shoudl be considered as a part of file format.

If the format uses "." as a delimiter the same character must be used when parsing number regardless of
actual locale setting.

Parameters:

nptr Pointer to string to convert.

Returns:

Converted value, if any.

References CPLAtof(), and CPLStrtod().
Referenced by CPLAtof(), and CPLScanDouble().

278 File Documentation

40.1.2.2 double CPLAtofDelim (const char * nptr, char point)

Converts ASCII string to floating point number.

This function converts the initial portion of the string pointed to by nptr to double floating point represen-
tation. The behaviour is the same as

CPLStrtodDelim(nptr, (char **)NULL, point);

This function does the same as standard atof(3), but does not take locale in account. Instead of locale
defined decimal delimiter you can specify your own one. Also see notes for CPLAtof() (p. ??) function.
Parameters:

nptr Pointer to string to convert.

point Decimal delimiter.

Returns:

Converted value, if any.

References CPLAtofDelim(), and CPLStrtodDelim().
Referenced by CPLAtofDelim().

40.1.2.3 double CPLAtofM (const char * nptr)

Converts ASCII string to floating point number using any numeric locale.

This function converts the initial portion of the string pointed to by nptr to double floating point represen-
tation. This function does the same as standard atof(), but it allows a variety of locale representations. That
is it supports numeric values with either a comma or a period for the decimal delimiter.

PS. The M stands for Multi-lingual.

Parameters:

nptr The string to convert.

Returns:

Converted value, if any. Zero on failure.

References CPLAtofM(), and CPLStrtodDelim().

Referenced by CPLAtofM(), GDALReadWorldFile(), GDALRasterBand::GetMaximum(), and GDAL-
RasterBand::GetMinimum().

40.1.2.4 voidx CPLCalloc (size_t nCount, size_t nSize)

Safe version of calloc().

This function is like the C library calloc(), but raises a CE_Fatal error with CPLError() (p. ??) if it fails
to allocate the desired memory. It should be used for small memory allocations that are unlikely to fail
and for which the application is unwilling to test for out of memory conditions. It uses VSICalloc() to
get the memory, so any hooking of VSICalloc() will apply to CPLCalloc() (p. ??) as well. CPLFree() or
VSIFree() can be used free memory allocated by CPLCalloc() (p. ??).

40.1 cpl_conv.h File Reference 279

Parameters:
nCount number of objects to allocate.
nSize size (in bytes) of object to allocate.
Returns:

pointer to newly allocated memory, only NULL if nSize * nCount is NULL.

40.1.2.5 int CPLCheckForFile (char pszFilename, char xx papszSiblingFiles)

Check for file existance.

The function checks if a named file exists in the filesystem, hopefully in an efficient fashion if a sibling file
list is available. It exists primarily to do faster file checking for functions like GDAL open methods that
get a list of files from the target directory.

If the sibling file list exists (is not NULL) it is assumed to be a list of files in the same directory as the target
file, and it will be checked (case insensitively) for a match. If a match is found, pszFilename is updated
with the correct case and TRUE is returned.

If papszSiblingFiles is NULL, a VSIStatL() (p.??) is used to test for the files existance, and no case
insensitive testing is done.
Parameters:

pszFilename name of file to check for - filename case updated in some cases.

papszSiblingFiles a list of files in the same directory as pszFilename if available, or NULL. This list
should have no path components.

Returns:

TRUE if a match is found, or FALSE if not.

References CPLGetFilename(), and VSIStatL().

40.1.2.6 const charx CPLCleanTrailingSlash (const char x pszFilename)

Remove trailing forward/backward slash from the path for unix/windows resp.

Returns a string containing the portion of the passed path string with trailing slash removed. If there is no
path in the passed filename an empty string will be returned (not NULL).

CPLCleanTrailingSlash("abc/def/") == "abc/def"
CPLCleanTrailingSlash("abc/def") == "abc/def"
CPLCleanTrailingSlash("c:\abc\def\") == "c:\abc\def"
CPLCleanTrailingSlash("c:\abc\def") == "c:\abc\def"
CPLCleanTrailingSlash("abc") == "abc"

Parameters:

pszPath the path to be cleaned up

Returns:

Path in an internal string which must not be freed. The string may be destroyed by the next CPL
filename handling call. The returned will generally not contain a trailing path separator.

280 File Documentation

References CPLCleanTrailingSlash().
Referenced by CPLCleanTrailingSlash().

40.1.2.7 void CPLCloseShared (FILE x fp)

Close shared file.

Dereferences the indicated file handle, and closes it if the reference count has dropped to zero. A CPLEr-
ror() (p. ??) is issued if the file is not in the shared file list.

Parameters:

Jfp file handle from CPLOpenShared() (p. ??) to deaccess.

References VSIFCloseL().

40.1.2.8 charx+x CPLCorrespondingPaths (const char x pszOldFilename, const char *
pszNewFilename, char xx papszFileList)
Identify corresponding paths.

Given a prototype old and new filename this function will attempt to determine corresponding names for a
set of other old filenames that will rename them in a similar manner. This correspondance assumes there
are two possibly kinds of renaming going on. A change of path, and a change of filename stem.

If a consistent renaming cannot be established for all the files this function will return indicating an error.

The returned file list becomes owned by the caller and should be destroyed with CSLDestroy() (p. ??).

Parameters:

pszOldFilename path to old prototype file.
pszNewFilename path to new prototype file.

papszFileList list of other files associated with pszOldFilename to rename similarly.

Returns:

a list of files corresponding to papszFileList but renamed to correspond to pszNewFilename.

References CPLCorrespondingPaths(), CPLFormFilename(), CPLGetBasename(), CPLGetFilename(),
and CPLGetPath().

Referenced by GDALDriver::CopyFiles(), CPLCorrespondingPaths(), and GDALDriver::Rename().

40.1.2.9 double CPLDecToPackedDMS (double dfDec)

Convert decimal degrees into packed DMS value (DDDMMMSSS.SS).

This function converts a value, specified in decimal degrees into packed DMS angle. The standard packed
DMS format is:

degrees * 1000000 + minutes * 1000 + seconds
See also CPLPackedDMSToDec() (p. ??).

40.1 cpl_conv.h File Reference 281

Parameters:

dfDec Angle in decimal degrees.

Returns:

Angle in packed DMS format.

40.1.2.10 void CPLDumpSharedList (FILE x fp)

Report open shared files.

Dumps all open shared files to the indicated file handle. If the file handle is NULL information is sent via
the CPLDebug() (p. ??) call.

Parameters:

Jfp File handle to write to.

40.1.2.11 const charx CPLExtractRelativePath (const char * pszBaseDir, const char * pszTarget,
int x pbGotRelative)
Get relative path from directory to target file.

Computes a relative path for pszTarget relative to pszBaseDir. Currently this only works if they share a
common base path. The returned path is normally into the pszTarget string. It should only be considered
valid as long as pszTarget is valid or till the next call to this function, whichever comes first.

Parameters:

pszBaseDir the name of the directory relative to which the path should be computed. pszBaseDir may
be NULL in which case the original target is returned without relitivizing.

pszlarget the filename to be changed to be relative to pszBaseDir.

pbGotRelative Pointer to location in which a flag is placed indicating that the returned path is relative
to the basename (TRUE) or not (FALSE). This pointer may be NULL if flag is not desired.
Returns:

an adjusted path or the original if it could not be made relative to the pszBaseFile’s path.

References CPLExtractRelativePath(), and CPLGetPath().
Referenced by CPLExtractRelativePath().

40.1.2.12 charx CPLFGets (char * pszBuffer, int nBufferSize, FILE x fp)

Reads in at most one less than nBufferSize characters from the fp stream and stores them into the buffer
pointed to by pszBuffer. Reading stops after an EOF or a newline. If a newline is read, it is _not_ stored
into the buffer. A ” is stored after the last character in the buffer. All three types of newline terminators
recognized by the CPLFGets() (p. ??): single ” and ’

>and’

> combination.

282 File Documentation

Parameters:

pszBuffer pointer to the targeting character buffer.
nBufferSize maximum size of the string to read (not including termonating).

Jp file pointer to read from.

Returns:

pointer to the pszBuffer containing a string read from the file or NULL if the error or end of file was
encountered.

40.1.2.13 const charx CPLFormCIFilename (const char x pszPath, const char x pszBasename,
const char « pszExtension)
Case insensitive file searching, returing full path.

This function tries to return the path to a file regardless of whether the file exactly matches the basename,
and extension case, or is all upper case, or all lower case. The path is treated as case sensitive. This function
is equivelent to CPLFormFilename() (p. ??) on case insensitive file systems (like Windows).

Parameters:

pszPath directory path to the directory containing the file. This may be relative or absolute, and may
have a trailing path separator or not. May be NULL.

pszBasename file basename. May optionally have path and/or extension. May not be NULL.

pszExtension file extension, optionally including the period. May be NULL.

Returns:

a fully formed filename in an internal static string. Do not modify or free the returned string. The
string may be destroyed by the next CPL call.

References CPLFormClIFilename(), and CPLFormFilename().
Referenced by CPLFormCIFilename().

40.1.2.14 const char+ CPLFormFilename (const char x pszPath, const char * pszBasename, const
char * pszExtension)

Build a full file path from a passed path, file basename and extension.

The path, and extension are optional. The basename may in fact contain an extension if desired.

CPLFormFilename ("abc/xyz", "def", ".dat") == "abc/xyz/def.dat"

CPLFormFilename (NULL, "def", NULL) == "def"

CPLFormFilename (NULL, "abc/def.dat", NULL) == "abc/def.dat"

CPLFormFilename ("/abc/xyz/","def.dat", NULL) == "/abc/xyz/def.dat"
Parameters:

pszPath directory path to the directory containing the file. This may be relative or absolute, and may
have a trailing path separator or not. May be NULL.

pszBasename file basename. May optionally have path and/or extension. May not be NULL.

40.1 cpl_conv.h File Reference 283

pszExtension file extension, optionally including the period. May be NULL.

Returns:

a fully formed filename in an internal static string. Do not modify or free the returned string. The
string may be destroyed by the next CPL call.

References CPLFormFilename().

Referenced by GDALDriverManager:: AutoLoadDrivers(), CPLCorrespondingPaths(), CPLFormCIFile-
name(), CPLFormFilename(), and GDALGeneralCmdLineProcessor().

40.1.2.15 const charx CPLGetBasename (const char x pszFullFilename)

Extract basename (non-directory, non-extension) portion of filename.
Returns a string containing the file basename portion of the passed name. If there is no basename (passed

value ends in trailing directory separator, or filename starts with a dot) an empty string is returned.

CPLGetBasename ("abc/def.xyz") == "def"
CPLGetBasename ("abc/def") == "def"
CPLGetBasename ("abc/def/") == ""

Parameters:

pszFullFilename the full filename potentially including a path.

Returns:

just the non-directory, non-extension portion of the path in an internal string which must not be freed.
The string may be destroyed by the next CPL filename handling call.

References CPLGetBasename().

Referenced by GDALDriverManager:: AutoLoadDrivers(), CPLCorrespondingPaths(), and CPLGetBase-
name().

40.1.2.16 charx CPLGetCurrentDir (void)
Get the current working directory name.

Returns:

a pointer to buffer, containing current working directory path or NULL in case of error. User is
responsible to free that buffer after usage with CPLFree() function. If HAVE_ GETCWD macro is not
defined, the function returns NULL.

References CPLGetCurrentDir().
Referenced by CPLGetCurrentDir().

40.1.2.17 const charx CPLGetDirname (const char * pszFilename)

Extract directory path portion of filename.

284 File Documentation

Returns a string containing the directory path portion of the passed filename. If there is no path in the
passed filename the dot will be returned. It is the only difference from CPLGetPath() (p. ??).

CPLGetDirname ("abc/def.xyz") == "abc"
CPLGetDirname ("/abc/def/") == "/abc/def"
CPLGetDirname("/") == "/"
CPLGetDirname ("/abc/def") == "/abc"
CPLGetDirname ("abc") == "."

Parameters:

pszFilename the filename potentially including a path.

Returns:

Path in an internal string which must not be freed. The string may be destroyed by the next CPL
filename handling call. The returned will generally not contain a trailing path separator.

References CPLGetDirname().
Referenced by GDALDriverManager::AutoLoadDrivers(), and CPLGetDirname().

40.1.2.18 int CPLGetExecPath (char x pszPathBuf, int nMaxLength)

Fetch path of executable.

The path to the executable currently running is returned. This path includes the name of the executable.
Currently this only works on win32 platform.

Parameters:

pszPathBuf the buffer into which the path is placed.
nMaxLength the buffer size, MAX_PATH+1 is suggested.

Returns:

FALSE on failure or TRUE on success.

References CPLGetExecPath().
Referenced by GDALDriverManager::AutoLoadDrivers(), and CPLGetExecPath().

40.1.2.19 const charx CPLGetExtension (const char * pszFullFilename)

Extract filename extension from full filename.
Returns a string containing the extention portion of the passed name. If there is no extension (the filename
has no dot) an empty string is returned. The returned extension will not include the period.

CPLGetExtension("abc/def.xyz") == "xyz"
CPLGetExtension("abc/def") == ""

Parameters:

pszFullFilename the full filename potentially including a path.

40.1 cpl_conv.h File Reference 285

Returns:
just the extension portion of the path in an internal string which must not be freed. The string may be
destroyed by the next CPL filename handling call.

References CPLGetExtension().

Referenced by GDALDriverManager::AutoLoadDrivers(), CPLGetExtension(), and GDALReadWorld-
File().

40.1.2.20 const charx CPLGetFilename (const char x pszFullFilename)

Extract non-directory portion of filename.

Returns a string containing the bare filename portion of the passed filename. If there is no filename (passed
value ends in trailing directory separator) an empty string is returned.

CPLGetFilename ("abc/def.xyz") == "def.xyz"

CPLGetFilename ("/abc/def/") == ""

CPLGetFilename ("abc/def") == "def"
Parameters:

pszFullFilename the full filename potentially including a path.

Returns:

just the non-directory portion of the path (points back into original string).

References CPLGetFilename().
Referenced by CPLCheckForFile(), CPLCorrespondingPaths(), and CPLGetFilename().

40.1.2.21 const charx CPLGetPath (const char * pszFilename)

Extract directory path portion of filename.

Returns a string containing the directory path portion of the passed filename. If there is no path in the
passed filename an empty string will be returned (not NULL).

CPLGetPath("abc/def.xyz") == "abc"
CPLGetPath("/abc/def/") == "/abc/def"
CPLGetPath("/") == "/"
CPLGetPath("/abc/def") == "/abc"
CPLGetPath("abc") == ""

Parameters:

pszFilename the filename potentially including a path.

Returns:
Path in an internal string which must not be freed. The string may be destroyed by the next CPL
filename handling call. The returned will generally not contain a trailing path separator.

References CPLGetPath().

Referenced by CPLCorrespondingPaths(), CPLExtractRelativePath(), and CPLGetPath().

286 File Documentation

40.1.2.22 CPLSharedFileInfox CPLGetSharedList (int x pnCount)

Fetch list of open shared files.

Parameters:

pnCount place to put the count of entries.

Returns:

the pointer to the first in the array of shared file info structures.

40.1.2.23 void+ CPLGetSymbol (const char x pszLibrary, const char x pszSymbolName)

Fetch a function pointer from a shared library / DLL.

This function is meant to abstract access to shared libraries and DLLs and performs functions similar to
dlopen()/dIsym() on Unix and LoadLibrary() / GetProcAddress() on Windows.

If no support for loading entry points from a shared library is available this function will always return
NULL. Rules on when this function issues a CPLError() (p. ??) or not are not currently well defined, and
will have to be resolved in the future.

Currently CPLGetSymbol() (p. ??) doesn’t try to:

« prevent the reference count on the library from going up for every request, or given any opportunity
to unload the library.

 Attempt to look for the library in non-standard locations.

* Attempt to try variations on the symbol name, like pre-prending or post-pending an underscore.
Some of these issues may be worked on in the future.

Parameters:

pszLibrary the name of the shared library or DLL containing the function. May contain path to file.
If not system supplies search paths will be used.

pszSymbolName the name of the function to fetch a pointer to.

Returns:

A pointer to the function if found, or NULL if the function isn’t found, or the shared library can’t be
loaded.

References CPLGetSymbol().
Referenced by GDALDriverManager:: AutoLoadDrivers(), and CPLGetSymbol().

40.1.2.24 int CPLIsFilenameRelative (const char * pszFilename)

Is filename relative or absolute?

The test is filesystem convention agnostic. That is it will test for Unix style and windows style path
conventions regardless of the actual system in use.

40.1 cpl_conv.h File Reference 287

Parameters:

pszFilename the filename with path to test.

Returns:

TRUE if the filename is relative or FALSE if it is absolute.

References CPLIsFilenameRelative().

Referenced by CPLIsFilenameRelative(), and CPLProjectRelativeFilename().

40.1.2.25 void+« CPLMalloc (size_t nSize)

Safe version of malloc().

This function is like the C library malloc(), but raises a CE_Fatal error with CPLError() (p. ??) if it fails
to allocate the desired memory. It should be used for small memory allocations that are unlikely to fail
and for which the application is unwilling to test for out of memory conditions. It uses VSIMalloc() to
get the memory, so any hooking of VSIMalloc() will apply to CPLMalloc() (p. ??) as well. CPLFree() or
VSIFree() can be used free memory allocated by CPLMalloc() (p. ??).

Parameters:

nSize size (in bytes) of memory block to allocate.

Returns:

pointer to newly allocated memory, only NULL if nSize is zero.

40.1.2.26 FILEx+ CPLOpenShared (const char * pszFilename, const char x pszAccess, int bLarge)

Open a shared file handle.

Some operating systems have limits on the number of file handles that can be open at one time. This
function attempts to maintain a registry of already open file handles, and reuse existing ones if the same
file is requested by another part of the application.

nonon

Note that access is only shared for access types "r", "rb", "r+" and "rb+". All others will just result in direct
VSIOpen() calls. Keep in mind that a file is only reused if the file name is exactly the same. Different
names referring to the same file will result in different handles.

The VSIFOpen() or VSIFOpenL() (p. ??) function is used to actually open the file, when an existing file
handle can’t be shared.

Parameters:

pszFilename the name of the file to open.
pszAccess the normal fopen()/VSIFOpen() style access string.
bLarge If TRUE VSIFOpenL() (p. ??) (for large files) will be used instead of VSIFOpen().

Returns:

a file handle or NULL if opening fails.

References VSIFOpenL().

288 File Documentation

40.1.2.27 double CPLPackedDMSToDec (double dfPacked)

Convert a packed DMS value (DDDMMMSSS.SS) into decimal degrees.

This function converts a packed DMS angle to seconds. The standard packed DMS format is:
degrees * 1000000 + minutes * 1000 + seconds

Example: ang = 120025045.25 yields deg = 120 min = 25 sec = 45.25

The algorithm used for the conversion is as follows:

1. The absolute value of the angle is used.

. The degrees are separated out: deg = ang/1000000 (fractional portion truncated)

. The minutes are separated out: min = (ang - deg * 1000000) / 1000 (fractional portion truncated)
. The seconds are then computed: sec = ang - deg * 1000000 - min * 1000

. The total angle in seconds is computed: sec = deg * 3600.0 + min * 60.0 + sec

AN A W N

. The sign of sec is set to that of the input angle.
Packed DMS values used by the USGS GCTP package and probably by other software.

NOTE: This code does not validate input value. If you give the wrong value, you will get the wrong result.

Parameters:

dfPacked Angle in packed DMS format.

Returns:

Angle in decimal degrees.

40.1.2.28 int CPLPrintDouble (char * pszBuffer, const char x pszFormat, double dfValue, const
char * pszLocale)

Print double value into specified string buffer. Exponential character flag ’E’ (or ’e’) will be replaced with
’D’, as in Fortran. Resulting string will not to be NULL-terminated.

Parameters:

pszBuffer Pointer to the destination string buffer. Should be large enough to hold the resulting string.
Note, that the string will not be NULL-terminated, so user should do this himself, if needed.

pszFormat Format specifier (for example, "%16.9E").
dfValue Numerical value to print.

pszLocale Pointer to a character string containing locale name ("C", "POSIX", "us_US", "ru_-
RU.KOI8-R" etc.). If NULL we will not manipulate with locale settings and current process
locale will be used for printing. With the pszLocale option we can control what exact locale will
be used for printing a numeric value to the string (in most cases it should be C/POSIX).

Returns:

Number of characters printed.

40.1 cpl_conv.h File Reference 289

40.1.2.29 int CPLPrintInt32 (char * pszBuffer, GInt32 iValue, int nMaxLen)

Print GInt32 value into specified string buffer. This string will not be NULL-terminated.

Parameters:

pszBuffer Pointer to the destination string buffer. Should be large enough to hold the resulting string.
Note, that the string will not be NULL-terminated, so user should do this himself, if needed.

iValue Numerical value to print.

nMaxLen Maximum length of the resulting string. If string length is greater than nMaxLen, it will be
truncated.

Returns:

Number of characters printed.

40.1.2.30 int CPLPrintPointer (char = pszBuffer, void = pValue, int nMaxLen)

Print pointer value into specified string buffer. This string will not be NULL-terminated.

Parameters:

pszBuffer Pointer to the destination string buffer. Should be large enough to hold the resulting string.
Note, that the string will not be NULL-terminated, so user should do this himself, if needed.

pValue Pointer to ASCII encode.

nMaxLen Maximum length of the resulting string. If string length is greater than nMaxLen, it will be
truncated.

Returns:

Number of characters printed.

40.1.2.31 int CPLPrintString (char * pszDest, const char * pszSrc, int nMaxLen)

Copy the string pointed to by pszSrc, NOT including the terminating ¢’ character, to the array pointed to
by pszDest.

Parameters:
pszDest Pointer to the destination string buffer. Should be large enough to hold the resulting string.
pszDest Pointer to the source buffer.

nMaxLen Maximum length of the resulting string. If string length is greater than nMaxLen, it will be
truncated.

Returns:

Number of characters printed.

290 File Documentation

40.1.2.32 int CPLPrintStringFill (char * pszDest, const char * pszSrc, int nMaxLen)

Copy the string pointed to by pszSrc, NOT including the terminating “’ character, to the array pointed to
by pszDest. Remainder of the destination string will be filled with space characters. This is only difference
from the PrintString().

Parameters:
pszDest Pointer to the destination string buffer. Should be large enough to hold the resulting string.
pszDest Pointer to the source buffer.

nMaxLen Maximum length of the resulting string. If string length is greater than nMaxLen, it will be
truncated.

Returns:

Number of characters printed.

40.1.2.33 int CPLPrintTime (char * pszBuffer, int nMaxLen, const char x pszFormat, const struct
tm * poBrokenTime, const char * pszLocale)

Print specified time value accordingly to the format options and specified locale name. This function does
following:

« if locale parameter is not NULL, the current locale setting will be stored and replaced with the
specified one;

 format time value with the strftime(3) function;

¢ restore back current locale, if was saved.

Parameters:

pszBuffer Pointer to the destination string buffer. Should be large enough to hold the resulting string.
Note, that the string will not be NULL-terminated, so user should do this himself, if needed.

nMaxLen Maximum length of the resulting string. If string length is greater than nMaxLen, it will be
truncated.

pszFormat Controls the output format. Options are the same as for strftime(3) function.

poBrokenTime Pointer to the broken-down time structure. May be requested with the VSIGMTime()
and VSILocalTime() functions.

pszLocale Pointer to a character string containing locale name ("C", "POSIX", "us_US", "ru_-
RU.KOI8-R" etc.). If NULL we will not manipulate with locale settings and current process
locale will be used for printing. Be aware that it may be unsuitable to use current locale for
printing time, because all names will be printed in your native language, as well as time format
settings also may be ajusted differently from the C/POSIX defaults. To solve these problems this
option was introdiced.

Returns:

Number of characters printed.

40.1 cpl_conv.h File Reference 291

40.1.2.34 int CPLPrintUIntBig (char * pszBuffer, GUIntBig iValue, int nMaxLen)
Print GUIntBig value into specified string buffer. This string will not be NULL-terminated.

Parameters:

pszBuffer Pointer to the destination string buffer. Should be large enough to hold the resulting string.
Note, that the string will not be NULL-terminated, so user should do this himself, if needed.
iValue Numerical value to print.

nMaxLen Maximum length of the resulting string. If string length is greater than nMaxLen, it will be
truncated.

Returns:

Number of characters printed.

40.1.2.35 const charx CPLProjectRelativeFilename (const char x pszProjectDir, const char x
pszSecondaryFilename)

Find a file relative to a project file.

Given the path to a "project” directory, and a path to a secondary file referenced from that project, build
a path to the secondary file that the current application can use. If the secondary path is already absolute,
rather than relative, then it will be returned unaltered.

Examples:
CPLProjectRelativeFilename ("abc/def", "tmp/abc.gif") == "abc/def/tmp/abc.gif"
CPLProjectRelativeFilename ("abc/def", "/tmp/abc.gif") == "/tmp/abc.gif"
CPLProjectRelativeFilename ("/xy", "abc.gif") == "/xy/abc.gif"
CPLProjectRelativeFilename ("/abc/def","../abc.gif") == "/abc/def/../abc.gif"
CPLProjectRelativeFilename ("C:\WIN", "abc.gif") == "C:\WIN\abc.gif"
Parameters:

pszProjectDir the directory relative to which the secondary files path should be interpreted.
pszSecondaryFilename the filename (potentially with path) that is to be interpreted relative to the

project directory.
Returns:
a composed path to the secondary file. The returned string is internal and should not be altered, freed,
or depending on past the next CPL call.
References CPLIsFilenameRelative(), and CPLProjectRelativeFilename().

Referenced by CPLProjectRelativeFilename().

40.1.2.36 const charx CPLReadLine (FILE x fp)

Simplified line reading from text file.

Read a line of text from the given file handle, taking care to capture CR and/or LF and strip off ... equivelent
of DKReadLine(). Pointer to an internal buffer is returned. The application shouldn’t free it, or depend on
it’s value past the next call to CPLReadLine() (p. ??).

292 File Documentation

Note that CPLReadLine() (p. ??) uses VSIFGets(), so any hooking of VSI file services should apply to
CPLReadLine() (p. ??) as well.

CPLReadLine() (p. ??) maintains an internal buffer, which will appear as a single block memory leak in
some circumstances. CPLReadLine() (p. ??) may be called with a NULL FILE x at any time to free this
working buffer.

Parameters:

Jp file pointer opened with VSIFOpen().

Returns:

pointer to an internal buffer containing a line of text read from the file or NULL if the end of file was
encountered.

40.1.2.37 const charx CPLReadLineL (FILE x fp)

Simplified line reading from text file.

Similar to CPLReadLine() (p. ??), but reading from a large file API handle.

Parameters:

Jp file pointer opened with VSIFOpenL() (p. ??).

Returns:

pointer to an internal buffer containing a line of text read from the file or NULL if the end of file was
encountered.

References VSIFReadL(), VSIFSeekL(), and VSIFTellL().

40.1.2.38 void+« CPLRealloc (void * pData, size_t nNewSize)

Safe version of realloc().

This function is like the C library realloc(), but raises a CE_Fatal error with CPLError() (p. ??) if it fails
to allocate the desired memory. It should be used for small memory allocations that are unlikely to fail
and for which the application is unwilling to test for out of memory conditions. It uses VSIRealloc() to
get the memory, so any hooking of VSIRealloc() will apply to CPLRealloc() (p. ??) as well. CPLFree() or
VSIFree() can be used free memory allocated by CPLRealloc() (p. 2?).

It is also safe to pass NULL in as the existing memory block for CPLRealloc() (p. ??), in which case it
uses VSIMalloc() to allocate a new block.
Parameters:

pData existing memory block which should be copied to the new block.

nNewSize new size (in bytes) of memory block to allocate.

Returns:

pointer to allocated memory, only NULL if nNewSize is zero.

40.1 cpl_conv.h File Reference 293

40.1.2.39 const charx CPLResetExtension (const char * pszPath, const char * pszExt)

Replace the extension with the provided one.

Parameters:
pszPath the input path, this string is not altered.

pszExt the new extension to apply to the given path.

Returns:

an altered filename with the new extension. Do not modify or free the returned string. The string may
be destroyed by the next CPL call.

References CPLResetExtension().
Referenced by CPLResetExtension(), and GDALReadWorldFile().

40.1.2.40 double CPLScanDouble (const char * pszString, int nMaxLength)

Extract double from string.

Scan up to a maximum number of characters from a string and convert the result to a double. This function
uses CPLAtof() (p. ??) to convert string to double value, so it uses a comma as a decimal delimiter.

Parameters:
pszString String containing characters to be scanned. It may be terminated with a null character.

nMaxLength The maximum number of character to consider as part of the number. Less characters
will be considered if a null character is encountered.

Returns:

Double value, converted from its ASCII form.

References CPLAtof().

40.1.2.41 long CPLScanLong (const char * pszString, int nMaxLength)

Scan up to a maximum number of characters from a string and convert the result to a long.

Parameters:
pszString String containing characters to be scanned. It may be terminated with a null character.

nMaxLength The maximum number of character to consider as part of the number. Less characters
will be considered if a null character is encountered.

Returns:

Long value, converted from its ASCII form.

294 File Documentation

40.1.2.42 voidx CPLScanPointer (const char * pszString, int nMaxLength)

Extract pointer from string.

Scan up to a maximum number of characters from a string and convert the result to a pointer.

Parameters:
pszString String containing characters to be scanned. It may be terminated with a null character.
nMaxLength The maximum number of character to consider as part of the number. Less characters
will be considered if a null character is encountered.
Returns:

pointer value, converted from its ASCII form.

40.1.2.43 charx CPLScanString (const char * pszString, int nMaxLength, int bTrimSpaces, int
bNormalize)

Scan up to a maximum number of characters from a given string, allocate a buffer for a new string and fill
it with scanned characters.

Parameters:

pszString String containing characters to be scanned. It may be terminated with a null character.

nMaxLength The maximum number of character to read. Less characters will be read if a null char-
acter is encountered.

bTrimSpaces 1f TRUE, trim ending spaces from the input string. Character considered as empty using
isspace(3) function.

bNormalize 1f TRUE, replace ’:” symbol with the ’_’. It is needed if resulting string will be used in
CPL dictionaries.
Returns:

Pointer to the resulting string buffer. Caller responsible to free this buffer with CPLFree().

40.1.2.44 GUIntBig CPLScanUIntBig (const char * pszString, int nMaxLength)

Extract big integer from string.

Scan up to a maximum number of characters from a string and convert the result to a GUIntBig.

Parameters:
pszString String containing characters to be scanned. It may be terminated with a null character.

nMaxLength The maximum number of character to consider as part of the number. Less characters
will be considered if a null character is encountered.

Returns:

GUIntBig value, converted from its ASCII form.

40.1 cpl_conv.h File Reference 295

40.1.2.45 unsigned long CPLScanULong (const char * pszString, int nMaxLength)

Scan up to a maximum number of characters from a string and convert the result to a unsigned long.

Parameters:

pszString String containing characters to be scanned. It may be terminated with a null character.

nMaxLength The maximum number of character to consider as part of the number. Less characters
will be considered if a null character is encountered.

Returns:

Unsigned long value, converted from its ASCII form.

40.1.2.46 charx CPLStrdup (const char x pszString)

Safe version of strdup() function.

This function is similar to the C library strdup() function, but if the memory allocation fails it will issue a
CE_Fatal error with CPLError() (p. ??) instead of returning NULL. It uses VSIStrdup(), so any hooking
of that function will apply to CPLStrdup() (p. ??) as well. Memory allocated with CPLStrdup() (p. ??)
can be freed with CPLFree() or VSIFree().

It is also safe to pass a NULL string into CPLStrdup() (p.??). CPLStrdup() (p.??) will allocate and
return a zero length string (as opposed to a NULL string).

Parameters:

pszString input string to be duplicated. May be NULL.

Returns:

pointer to a newly allocated copy of the string. Free with CPLFree() or VSIFree().

40.1.2.47 charx CPLStrlwr (char * pszString)

Convert each characters of the string to lower case.

For example, "ABcdE" will be converted to "abcde". This function is locale dependent.

Parameters:

pszString input string to be converted.

Returns:

pointer to the same string, pszString.

40.1.2.48 double CPLStrtod (const char * nptr, char xx endptr)

Converts ASCII string to floating point number.

This function converts the initial portion of the string pointed to by nptr to double floating point represen-
tation. This function does the same as standard strtod(3), but does not take locale in account. That means,
the decimal delimiter is always ’.” (decimal point). Use CPLStrtodDelim() (p. ??) function if you want to
specify custom delimiter. Also see notes for CPLAtof() (p. ??) function.

296 File Documentation

Parameters:

nptr Pointer to string to convert.

endptr If is not NULL, a pointer to the character after the last character used in the conversion is
stored in the location referenced by endptr.
Returns:

Converted value, if any.

References CPLStrtod(), and CPLStrtodDelim().
Referenced by CPLAtof(), and CPLStrtod().

40.1.2.49 double CPLStrtodDelim (const char * nptr, char xx endptr, char point)

Converts ASCII string to floating point number using specified delimiter.

This function converts the initial portion of the string pointed to by nptr to double floating point repre-
sentation. This function does the same as standard strtod(3), but does not take locale in account. Instead
of locale defined decimal delimiter you can specify your own one. Also see notes for CPLAtof() (p.??)
function.

Parameters:

nptr Pointer to string to convert.

endptr 1f is not NULL, a pointer to the character after the last character used in the conversion is
stored in the location referenced by endptr.

point Decimal delimiter.

Returns:

Converted value, if any.

References CPLStrtodDelim().
Referenced by CPLAtofDelim(), CPLAtofM(), CPLStrtod(), CPLStrtodDelim(), and CPLStrtofDelim().

40.1.2.50 float CPLStrtof (const char * nptr, char xx endptr)

Converts ASCII string to floating point number.

This function converts the initial portion of the string pointed to by nptr to single floating point represen-
tation. This function does the same as standard strtof(3), but does not take locale in account. That means,
the decimal delimiter is always *.” (decimal point). Use CPLStrtofDelim() (p. ??) function if you want to
specify custom delimiter. Also see notes for CPLAtof() (p. ??) function.

Parameters:

nptr Pointer to string to convert.

endptr 1f is not NULL, a pointer to the character after the last character used in the conversion is
stored in the location referenced by endptr.

Returns:

Converted value, if any.

40.1 cpl_conv.h File Reference 297

References CPLStrtof(), and CPLStrtofDelim().
Referenced by CPLStrtof().

40.1.2.51 float CPLStrtofDelim (const char * nptr, char xx endptr, char point)

Converts ASCII string to floating point number using specified delimiter.

This function converts the initial portion of the string pointed to by nptr to single floating point representa-
tion. This function does the same as standard strtof(3), but does not take locale in account. Instead of locale
defined decimal delimiter you can specify your own one. Also see notes for CPLAtof() (p. ??) function.

Parameters:

nptr Pointer to string to convert.

endptr If is not NULL, a pointer to the character after the last character used in the conversion is
stored in the location referenced by endptr.

point Decimal delimiter.

Returns:

Converted value, if any.

References CPLStrtodDelim(), and CPLStrtofDelim().
Referenced by CPLStrtof(), and CPLStrtofDelim().

298 File Documentation

40.2 cpl_error.h File Reference

#include "cpl_port.h"

Defines

* #define CPLAssert(expr)

¢ #define VALIDATE_POINTER_ERR CE_Failure
¢ #define VALIDATE_POINTERO(ptr, func)

¢ #define VALIDATE_POINTERI1(ptr, func, rc)
¢ #define CPLE_None 0

¢ #define CPLE_AppDefined 1

¢ #define CPLE_OutOfMemory 2

e #define CPLE_FilelO 3

¢ #define CPLE_OpenFailed 4

* #define CPLE_IllegalArg 5

* #define CPLE_NotSupported 6

e #define CPLE_AssertionFailed 7

¢ #define CPLE_NoWriteAccess 8

¢ #define CPLE_UserInterrupt 9

¢ #define CPLE_ObjectNull 10

Typedefs

¢ typedef const char xvoid CPLLoggingErrorHandler (CPLEtr, int, const char)

Enumerations

¢ enum CPLETrr {
CE_None = 0, CE_Debug = 1, CE_Warning = 2, CE_Failure = 3,
CE_Fatal =4}

Functions

¢ void CPLError (CPLErr eErrClass, int err_no, const char xfmt,...)
¢ void CPLErrorV (CPLErr, int, const char *, va_list)

¢ void CPLErrorReset (void)

¢ int CPLGetLastErrorNo (void)

e CPLErr CPLGetLastErrorType (void)

* const char * CPLGetLastErrorMsg (void)

¢ typedef void (1 «*CPLErrorHandler)(CPLErr

¢ void CPLDefaultErrorHandler (CPLErr, int, const char x)

¢ void CPLQuietErrorHandler (CPLErr, int, const char *)

¢ CPLErrorHandler CPLSetErrorHandler (CPLErrorHandler)
¢ void CPLPushErrorHandler (CPLErrorHandler)

* void CPLPopErrorHandler (void)

* void CPLDebug (const char *, const char x,...)

¢ void _CPLAssert (const char *, const char *, int)

40.2 cpl_error.h File Reference 299

Variables

¢ typedef int

40.2.1 Detailed Description

CPL error handling services.

40.2.2 Define Documentation
40.2.2.1 #define VALIDATE_POINTERO(ptr, func)
Value:

do { if (NULL == ptr) \
{\
CPLErr const ret = VALIDATE_POINTER_ERR; \
CPLError (ret, CPLE_ObjectNull, \
"Pointer \’%s\’ is NULL in \’%s\’.\n", #ptr, (func)); \
return; }} while (0)

40.2.2.2 #define VALIDATE_POINTERI1(ptr, func, rc)
Value:

do { if (NULL == ptr) \
{\
CPLErr const ret = VALIDATE_POINTER_ERR; \
CPLError (ret, CPLE_ObjectNull, \
"Pointer \’%s\’ is NULL in \’%s\’.\n", #ptr, (func)); \
return (rc); }} while (0)

40.2.3 Function Documentation
40.2.3.1 void _CPLAssert (const char * pszExpression, const char * pszFile, int iLine)

Report failure of a logical assertion.

Applications would normally use the CPLAssert() macro which expands into code calling _CPLAssert()
(p- ??) only if the condition fails. _CPLAssert() (p. ??) will generate a CE_Fatal error call to CPLError()
(p- ??), indicating the file name, and line number of the failed assertion, as well as containing the assertion
itself.

There is no reason for application code to call _CPLAssert() (p. ??) directly.

40.2.3.2 void CPLDebug (const char * pszCategory, const char x pszFormat, ...)

Display a debugging message.

The category argument is used in conjunction with the CPL_DEBUG environment variable to establish if
the message should be displayed. If the CPL_DEBUG environment variable is not set, no debug messages
are emitted (use CPLError(CE_Warning,...) to ensure messages are displayed). If CPL_DEBUG is set, but

300 File Documentation

is an empty string or the word "ON" then all debug messages are shown. Otherwise only messages whose
category appears somewhere within the CPL_DEBUG value are displayed (as determinted by strstr()).

Categories are usually an identifier for the subsystem producing the error. For instance "GDAL" might be
used for the GDAL core, and "TIFF" for messages from the TIFF translator.

Parameters:

pszCategory name of the debugging message category.

pszFormat printf() style format string for message to display. Remaining arguments are assumed to
be for format.

40.2.3.3 void CPLError (CPLErr eErrClass, int err_no, const char x fmt, ...)

Report an error.

This function reports an error in a manner that can be hooked and reported appropriate by different appli-
cations.

The effect of this function can be altered by applications by installing a custom error handling using
CPLSetErrorHandler() (p. ??).

The eErrClass argument can have the value CE_Warning indicating that the message is an informational
warning, CE_Failure indicating that the action failed, but that normal recover mechanisms will be used or
CE_Fatal meaning that a fatal error has occured, and that CPLError() (p. ??) should not return.

The default behaviour of CPLError() (p. ??) is to report errors to stderr, and to abort() after reporting a
CE_Fatal error. It is expected that some applications will want to supress error reporting, and will want to
install a C++ exception, or longjmp() approach to no local fatal error recovery.

Regardless of how application error handlers or the default error handler choose to handle an error, the
error number, and message will be stored for recovery with CPLGetLastErrorNo() (p. ??) and CPLGet-
LastErrorMsg() (p. ??).

Parameters:

eErrClass one of CE_Warning, CE_Failure or CE_Fatal.
err_no the error number (CPLE_x) from cpl_error.h (p. ??).

Jmt a printf() style format string. Any additional arguments will be treated as arguments to fill in this
format in a manner similar to printf().

40.2.3.4 void CPLErrorReset (void)

Erase any traces of previous errors.

This is normally used to ensure that an error which has been recovered from does not appear to be still in
play with high level functions.

40.2.3.5 const charx CPLGetLastErrorMsg (void)

Get the last error message.

Fetches the last error message posted with CPLError() (p. 2?), that hasn’t been cleared by CPLErrorRe-
set() (p. ??). The returned pointer is to an internal string that should not be altered or freed.

40.2 cpl_error.h File Reference 301

Returns:

the last error message, or NULL if there is no posted error message.

40.2.3.6 int CPLGetLastErrorNo (void)

Fetch the last error number.

This is the error number, not the error class.

Returns:

the error number of the last error to occur, or CPLE_None (0) if there are no posted errors.

40.2.3.7 CPLErr CPLGetLastErrorType (void)

Fetch the last error type.

This is the error class, not the error number.

Returns:

the error number of the last error to occur, or CE_None (0) if there are no posted errors.

40.2.3.8 void CPLPopErrorHandler (void)

Pop error handler off stack.

Discards the current error handler on the error handler stack, and restores the one in use before the last
CPLPushErrorHandler() (p.??) call. This method has no effect if there are no error handlers on the
current threads error handler stack.

40.2.3.9 void CPLPushErrorHandler (CPLErrorHandler pfnErrorHandlerNew)

Push a new CPLError handler.

This pushes a new error handler on the thread-local error handler stack. This handler will be used untill
removed with CPLPopErrorHandler() (p. ??).

The CPLSetErrorHandler() (p. ??) docs have further information on how CPLError handlers work.

Parameters:

pfnErrorHandlerNew new error handler function.

40.2.3.10 CPLErrorHandler CPLSetErrorHandler (CPLErrorHandler pfnErrorHandlerNew)

Install custom error handler.

Allow the library’s user to specify his own error handler function. A valid error handler is a C function
with the following prototype:

302 File Documentation

void MyErrorHandler (CPLErr eErrClass, int err_no, const char xmsg)

Pass NULL to come back to the default behavior. The default behaviour (CPLDefaultErrorHandler()) is to
write the message to stderr.

The msg will be a partially formatted error message not containing the "ERROR %d:" portion emitted
by the default handler. Message formatting is handled by CPLError() (p. ??) before calling the handler.
If the error handler function is passed a CE_Fatal class error and returns, then CPLError() (p. 2?) will
call abort(). Applications wanting to interrupt this fatal behaviour will have to use longjmp(), or a C++
exception to indirectly exit the function.

Another standard error handler is CPLQuietErrorHandler() which doesn’t make any attempt to report the
passed error or warning messages but will process debug messages via CPLDefaultErrorHandler.

Note that error handlers set with CPLSetErrorHandler() (p. ??) apply to all threads in an application,
while error handlers set with CPLPushErrorHandler are thread-local. However, any error handlers pushed
with CPLPushErrorHandler (and not removed with CPLPopErrorHandler) take precidence over the global
error handlers set with CPLSetErrorHandler() (p.??). Generally speaking CPLSetErrorHandler()
(p- ??) would be used to set a desired global error handler, while CPLPushErrorHandler() (p. ??) would
be used to install a temporary local error handler, such as CPLQuietErrorHandler() to suppress error re-
porting in a limited segment of code.

Parameters:

pfnErrorHandlerNew new error handler function.

Returns:

returns the previously installed error handler.

40.3 cpl_list.h File Reference 303

40.3 cpl_list.h File Reference

#include "cpl_port.h"

Classes

¢ struct _CPLList

Typedefs

* typedef struct _CPLList CPLList

Functions

* CPLList x CPLListAppend (CPLList xpsList, void xpData)

* CPLList x CPLListInsert (CPLList *psList, void *pData, int nPosition)
¢ CPLList x« CPLListGetLast (CPLList *psList)

e CPLList x* CPLListGet (CPLList xpsList, int nPosition)

¢ int CPLListCount (CPLList xpsList)

¢ CPLList x* CPLListRemove (CPLList xpsList, int nPosition)

* void CPLListDestroy (CPLList *psList)

¢ CPLList x+ CPLListGetNext (CPLList xpsElement)

¢ void * CPLListGetData (CPLList xpsElement)

40.3.1 Detailed Description

Simplest list implementation. List contains only pointers to stored objects, not objects itself. All operations
regarding allocation and freeing memory for objects should be performed by the caller.

40.3.2 Typedef Documentation

40.3.2.1 typedef struct _CPLList CPLList

List element structure.

40.3.3 Function Documentation
40.3.3.1 CPLList+x CPLListAppend (CPLList x psList, void * pData)

Append an object list and return a pointer to the modified list. If the input list is NULL, then a new list is
created.
Parameters:

psList pointer to list head.
pData pointer to inserted data object. May be NULL.

304

File Documentation

Returns:

pointer to the head of modified list.

References _CPLList::pData, and _CPLList::psNext.

40.3.3.2 int CPLListCount (CPLList x psList)

Return the number of elements in a list.

Parameters:

psList pointer to list head.

Returns:

number of elements in a list.

References _CPLList::psNext.

40.3.3.3 void CPLListDestroy (CPLList x psList)

Destroy a list. Caller responsible for freeing data objects contained in list elements.

Parameters:

psList pointer to list head.

References _CPLList::psNext.

40.3.3.4 CPLList+ CPLListGet (CPLList x psList, int nPosition)

Return the pointer to the specified element in a list.

Parameters:

psList pointer to list head.

Returns:

pointer to the specified element in a list.

References _CPLList::psNext.

40.3.3.5 void+ CPLListGetData (CPLList x psElement)

Return pointer to the data object contained in given list element.

Parameters:

psElement pointer to list element.

Returns:

pointer to the data object contained in given list element.

References _CPLList::pData.

40.3 cpl_list.h File Reference 305

40.3.3.6 CPLListx CPLListGetLast (CPLList x psList)
Return the pointer to last element in a list.

Parameters:

psList pointer to list head.

Returns:

pointer to last element in a list.

References _CPLList::psNext.

40.3.3.7 CPLListx CPLListGetNext (CPLList x psElement)
Return the pointer to next element in a list.

Parameters:

psElement pointer to list element.

Returns:

pointer to the list element preceded by the given element.

References _CPLList::psNext.

40.3.3.8 CPLList+ CPLListInsert (CPLList x psList, void x pData, int nPosition)

Insert an object into list at specified position (zero based). If the input list is NULL, then a new list is
created.

Parameters:

psList pointer to list head.
pData pointer to inserted data object. May be NULL.

nPosition position number to insert an object.

Returns:

pointer to the head of modified list.

References _CPLList::pData, and _CPLList::psNext.

40.3.3.9 CPLList+ CPLListRemove (CPLList * psList, int nPosition)

Remove the element from the specified position (zero based) in a list. Data object contained in removed
element must be freed by the caller first.

Parameters:

psList pointer to list head.

306 File Documentation

nPosition position number to delet an element.

Returns:

pointer to the head of modified list.

References _CPLList::psNext.

40.4 cpl_minixml.h File Reference 307

40.4 cpl_minixml.h File Reference

#include "cpl_port.h"

Classes

* struct CPLXMLNode

Enumerations

* enum CPLXMLNodeType {
CXT_Element = 0, CXT_Text = 1, CXT_Attribute = 2, CXT_Comment = 3,
CXT_Literal =4 }

Functions

¢ CPLXMLNode * CPLParseXMLString (const char x)

Parse an XML string into tree form.

¢ void CPLDestroyXMLNode (CPLXMLNode *)

Destroy a tree.

¢ CPLXMLNode * CPLGetXMLNode (CPLXMLNode «poRoot, const char *pszPath)
Find node by path.

* CPLXMLNode * CPLSearchXMLNode (CPLXMILNode xpoRoot, const char xpszTarget)

Search for a node in document.

e const char ¥ CPLGetXMLValue (CPLXMLNode #xpoRoot, const char xpszPath, const char
xpszDefault)

Fetch element/attribute value.

e CPLXMLNode * CPLCreateXMLNode (CPLXMLNode xpoParent, CPLXMLNodeType
eType, const char xpszText)

Create an document tree item.

* char * CPLSerializeXMLTree (CPLXMLNode *psNode)

Convert tree into string document.

¢ void CPLAddXMLChild (CPLXMLNode *psParent, CPLXMLNode *psChild)
Add child node to parent.

¢ int CPLRemoveXML Child (CPLXMLNode *psParent, CPLXMLNode *psChild)

Remove child node from parent.

* void CPLAddXMLSibling (CPLXMLNode *psOlderSibling, CPLXMLNode *psNewSibling)
Add new sibling.

308

File Documentation

CPLXMLNode * CPLCreateXMLElementAndValue (CPLXMLNode xpsParent, const char
xpszName, const char xpszValue)

Create an element and text value.

CPLXMLNode * CPLCloneXMLTree (CPLXMLNode xpsTree)
Copy tree.

int CPLSetXMLValue (CPLXMLNode *psRoot, const char spszPath, const char xpszValue)
Set element value by path.

void CPLStripXMLNamespace (CPLXMLNode *psRoot, const char xpszNameSpace, int bRe-
curse)

Strip indicated namespaces.

void CPLCleanXMLElementName (char x)
Make string into safe XML token.

CPLXMLNode « CPLParseXMLFile (const char spszFilename)
Parse XML file into tree.

int CPLSerializeXMLTreeToFile (CPLXMLNode *«psTree, const char xpszFilename)

Write document tree to a file.

40.4.1 Detailed Description

Definitions for CPL mini XML Parser/Serializer.

40.4.2 Enumeration Type Documentation

40.4.2.1 enum CPLXMLNodeType

Enumerator:

CXT_Element Node is an element
CXT_Text Node is a raw text value
CXT_Attribute Node is attribute
CXT_Comment Node is an XML comment.
CXT _Literal Node is a special literal

40.4.3 Function Documentation

40.4.3.1 void CPLAddXMLChild (CPLXMLNode * psParent, CPLXMLNode * psChild)

Add child node to parent.

The passed child is added to the list of children of the indicated parent. Normally the child is added at the
end of the parents child list, but attributes (CXT_Attribute) will be inserted after any other attributes but
before any other element type. Ownership of the child node is effectively assumed by the parent node. If
the child has siblings (it’s psNext is not NULL) they will be trimmed, but if the child has children they are
carried with it.

40.4 cpl_minixml.h File Reference 309

Parameters:

psParent the node to attach the child to. May not be NULL.
psChild the child to add to the parent. May not be NULL. Should not be a child of any other parent.

References CXT_Attribute, CPLXMLNode::eType, CPLXMLNode::psChild, and CPLXMLN-
ode::psNext.

40.4.3.2 void CPLAddXMLSibling (CPLXMLNode * psOlderSibling, CPLXMLNode
psNewSibling)
Add new sibling.

The passed psNewSibling is added to the end of siblings of the psOlderSibling node. That is, it is added to
the end of the psNext chain. There is no special handling if psNewSibling is an attribute. If this is required,
use CPLAddXMLChild() (p. ??).

Parameters:

psOlderSibling the node to attach the sibling after.
psNewSibling the node to add at the end of psOlderSiblings psNext chain.

References CPLXMLNode::psNext.

40.4.3.3 void CPLCleanXMLElementName (char * pszTarget)

Make string into safe XML token.

Modififies a string in place to try and make it into a legal XML token that can be used as an element name.
This is accomplished by changing any characters not legal in a token into an underscore.

NOTE: This function should implement the rules in section 2.3 of http://www.w3.0org/TR/xm111/
but it doesn’t yet do that properly. We only do a rough approximation of that.

Parameters:

pszTarget the string to be adjusted. It is altered in place.

40.4.3.4 CPLXMLNodex CPLCloneXMLTree (CPLXMLNode * psTree)

Copy tree.
Creates a deep copy of a CPLXMLNode (p. ??) tree.

Parameters:

psTree the tree to duplicate.

Returns:

a copy of the whole tree.

References CPLXMLNode::eType, CPLXMLNode::psChild, CPLXMLNode::psNext, and CPLXMLN-
ode::pszValue.

310 File Documentation

40.4.3.5 CPLXMLNodex CPLCreateXMLElementAndValue (CPLXMLNode * psParent, const
char * pszName, const char * pszValue)
Create an element and text value.

This is function is a convenient short form for:

CPLXMLNode x*psTextNode;
CPLXMLNode xpsElementNode;

psElementNode = CPLCreateXMLNode (psParent, CXT_Element, pszName);
psTextNode = CPLCreateXMLNode (psElementNode, CXT_Text, pszValue);

return psElementNode;

It creates a CXT_Element node, with a CXT_Text child, and attaches the element to the passed parent.

Parameters:

psParent the parent node to which the resulting node should be attached. May be NULL to keep as
freestanding.

pszName the element name to create.

pszValue the text to attach to the element. Must not be NULL.

Returns:

the pointer to the new element node.

References CXT_Element, and CXT_Text.

40.4.3.6 CPLXMLNodex CPLCreateXMLNode (CPLXMLNode * poParent, CPLXMLNodeType
eType, const char x pszText)
Create an document tree item.

Create a single CPLXMLNode (p. ??) object with the desired value and type, and attach it as a child of
the indicated parent.

Parameters:

poParent the parent to which this node should be attached as a child. May be NULL to keep as free
standing.

Returns:

the newly created node, now owned by the caller (or parent node).

References CPLXMLNode::eType, CPLXMLNode::psChild, CPLXMLNode::psNext, and CPLXMLN-
ode::pszValue.

40.4.3.7 void CPLDestroyXMLNode (CPLXMLNode * psNode)

Destroy a tree.

This function frees resources associated with a CPLXMLNode (p. ??) and all its children nodes.

40.4 cpl_minixml.h File Reference 311

Parameters:

psNode the tree to free.

References CPLXMLNode::psChild, CPLXMLNode::psNext, and CPLXMLNode::pszValue.

40.4.3.8 CPLXMLNodex CPLGetXMLNode (CPLXMLNode * psRoot, const char * pszPath)

Find node by path.

Searches the document or subdocument indicated by psRoot for an element (or attribute) with the given
path. The path should consist of a set of element names separated by dots, not including the name of the
root element (psRoot). If the requested element is not found NULL is returned.

Attribute names may only appear as the last item in the path.

The search is done from the root nodes children, but all intermediate nodes in the path must be specified.
Seaching for "name" would only find a name element or attribute if it is a direct child of the root, not at
any level in the subdocument.

If the pszPath is prefixed by "=" then the search will begin with the root node, and it’s siblings, instead of
the root nodes children. This is particularly useful when searching within a whole document which is often
prefixed by one or more "junk" nodes like the <?xml> declaration.

Parameters:

psRoot the subtree in which to search. This should be a node of type CXT_Element. NULL is safe.
pszPath the list of element names in the path (dot separated).

Returns:

the requested element node, or NULL if not found.

References CXT_Text, CPLXMLNode::eType, CPLXMLNode::psChild, CPLXMLNode::psNext, and
CPLXMLNode::pszValue.

40.4.3.9 const charx CPLGetXMLValue (CPLXMLNode * psRoot, const char x pszPath, const
char * pszDefault)

Fetch element/attribute value.

Searches the document for the element/attribute value associated with the path. The corresponding node
is internally found with CPLGetXMLNode() (p. ??) (see there for details on path handling). Once found,
the value is considered to be the first CXT_Text child of the node.

If the attribute/element search fails, or if the found node has not value then the passed default value is
returned.

The returned value points to memory within the document tree, and should not be altered or freed.

Parameters:

psRoot the subtree in which to search. This should be a node of type CXT_Element. NULL is safe.

pszPath the list of element names in the path (dot separated). An empty path means get the value of
the psRoot node.

pszDefault the value to return if a corresponding value is not found, may be NULL.

312 File Documentation

Returns:

the requested value or pszDefault if not found.

References CXT_Attribute, CXT_Element, CXT_Text, CPLXMLNode::eType, CPLXMLNode::psChild,
CPLXMLNode::psNext, and CPLXMLNode::pszValue.

40.4.3.10 CPLXMLNodex CPLParseXMLFile (const char * pszFilename)

Parse XML file into tree.

The named file is opened, loaded into memory as a big string, and parsed with CPLParseXMLString()
(p- ??). Errors in reading the file or parsing the XML will be reported by CPLError() (p. ??).

The "large file" API is used, so XML files can come from virtualized files.

Parameters:

pszFilename the file to open.

Returns:

NULL on failure, or the document tree on success.

References VSIFCloseL(), VSIFOpenL(), VSIFReadL(), VSIFSeekL(), and VSIFTellL().

40.4.3.11 CPLXMLNodex CPLParseXMLString (const char * pszString)

Parse an XML string into tree form.

The passed document is parsed into a CPLXMLNode (p. ??) tree representation. If the document is not
well formed XML then NULL is returned, and errors are reported via CPLError() (p. ??). No validation
beyond wellformedness is done. The CPLParseXMLFile() (p. ??) convenience function can be used to
parse from a file.

The returned document tree is is owned by the caller and should be freed with CPLDestroyXMLNode()
(p- ??) when no longer needed.

If the document has more than one "root level" element then those after the first will be attached to the
first as siblings (via the psNext pointers) even though there is no common parent. A document with no
XML structure (no angle brackets for instance) would be considered well formed, and returned as a single
CXT _Text node.

Parameters:

pszString the document to parse.

Returns:

parsed tree or NULL on error.

References CXT_Attribute, CXT_Comment, CXT_Element, CXT_Literal, CXT_Text, and CPLXMLN-
ode::pszValue.

40.4 cpl_minixml.h File Reference 313

40.4.3.12 int CPLRemoveXMLChild (CPLXMLNode * psParent, CPLXMLNode * psChild)

Remove child node from parent.

The passed child is removed from the child list of the passed parent, but the child is not destroyed. The
child retains ownership of it’s own children, but is cleanly removed from the child list of the parent.

Parameters:

psParent the node to the child is attached to.
psChild the child to remove.

Returns:

TRUE on success or FALSE if the child was not found.

References CPLXMLNode::psChild, and CPLXMLNode::psNext.

40.4.3.13 CPLXMLNodex CPLSearchXMLNode (CPLXMLNode * psRoot, const char x
pszElement)
Search for a node in document.

Searches the children (and potentially siblings) of the documented passed in for the named element or
attribute. To search following siblings as well as children, prefix the pszElement name with an equal sign.
This function does an in-order traversal of the document tree. So it will first match against the current node,
then it’s first child, that childs first child, and so on.

Use CPLGetXMLNode() (p. ??) to find a specific child, or along a specific node path.

Parameters:
psRoot the subtree to search. This should be a node of type CXT_Element. NULL is safe.

pszElement the name of the element or attribute to search for.

Returns:

The matching node or NULL on failure.

References CXT_Attribute, CXT_Element, CPLXMLNode::eType, CPLXMLNode::psChild,
CPLXMLNode::psNext, and CPLXMLNode::pszValue.

40.4.3.14 charx CPLSerializeXMLTree (CPLXMLNode * psNode)

Convert tree into string document.

This function converts a CPLXMLNode (p. ??) tree representation of a document into a flat string rep-
resentation. White space indentation is used visually preserve the tree structure of the document. The
returned document becomes owned by the caller and should be freed with CPLFree() when no longer
needed.

Parameters:

psNode

314 File Documentation

Returns:

the document on success or NULL on failure.

References CPLXMLNode::psNext.

40.4.3.15 int CPLSerializeXMLTreeToFile (CPLXMLNode * psTree, const char x pszFilename)

Write document tree to a file.

The passed document tree is converted into one big string (with CPLSerializeXMLTree() (p. ??)) and
then written to the named file. Errors writing the file will be reported by CPLError() (p. ??). The source
document tree is not altered. If the output file already exists it will be overwritten.

Parameters:
psTree the document tree to write.

pszFilename the name of the file to write to.

Returns:

TRUE on success, FALSE otherwise.

References VSIFCloseL(), VSIFOpenL(), and VSIFWriteL().

40.4.3.16 int CPLSetXMLValue (CPLXMLNode * psRoot, const char x pszPath, const char x
pszValue)

Set element value by path.
Find (or create) the target element or attribute specified in the path, and assign it the indicated value.

Any path elements that do not already exist will be created. The target nodes value (the first CXT_Text
child) will be replaced with the provided value.

If the target node is an attribute instead of an element, the last separator should be a "#" instead of the
normal period path separator.

Example: CPLSetXMLValue("Citation.Id.Description”, "DOQ dataset"); CPLSetXMLValue("Cita-
tion.Id.Description#name", "doq");

Parameters:
psRoot the subdocument to be updated.
pszPath the dot seperated path to the target element/attribute.

pszValue the text value to assign.

Returns:

TRUE on success.

References CXT_Attribute, CXT_Element, CXT_Text, CPLXMLNode::eType, CPLXMLNode::psChild,
CPLXMLNode::psNext, and CPLXMLNode::pszValue.

40.4 cpl_minixml.h File Reference 315

40.4.3.17 void CPLStripXMLNamespace (CPLXMLNode * psRoot, const char x pszNamespace,
int bRecurse)

Strip indicated namespaces.

The subdocument (psRoot) is recursively examined, and any elements with the indicated namespace prefix
will have the namespace prefix stripped from the element names. If the passed namespace is NULL, then
all namespace prefixes will be stripped.

Nodes other than elements should remain unaffected. The changes are made "in place", and should not
alter any node locations, only the pszValue field of affected nodes.

Parameters:

psRoot the document to operate on.
pszNamespace the name space prefix (not including colon), or NULL.

bRecurse TRUE to recurse over whole document, or FALSE to only operate on the passed node.

References CXT_Attribute, CXT_Element, CPLXMLNode::eType, CPLXMLNode::psChild,
CPLXMLNode::psNext, and CPLXMLNode::pszValue.

316

File Documentation

40.5 cpl_odbc.h File Reference

#include "cpl_port.h"
#include <sgl.h>
#finclude <sglext.h>
#include <odbcinst.h>

#include "cpl_string.h"

Classes

¢ class CPLODBCDriverInstaller

¢ class CPLODBCSession

¢ class CPLODBCStatement
Defines

¢ #define ODBC_FILENAME_MAX (255 + 1)
¢ #define _SQLULEN SQLULEN
¢ #define _SQLLEN SQLLEN

40.5.1 Detailed Description

ODBC Abstraction Layer (C++).

40.6 cpl_port.h File Reference

317

40.6 cpl_port.h File Reference

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include

Defines

"cpl_config.h"
<stdio.h>
<stdlib.h>
<math.h>
<stdarg.h>
<string.h>
<ctype.h>
<limits.h>
<time.h>
<errno.h>

<locale.h>

e #define CPL_C_START extern "C" {

e #define CPL_C_END }

e #define CPL_ODLL

¢ #define FORCE_CDECL

e #define NULL 0

¢ #define FALSE 0

¢ #define TRUE 1

* #define MIN(a, b) ((a<b) ? a: b)

* #define MAX(a, b) ((a>b) ?a: b)

e #define ABS(x) ((x<0) ? (-1%(x)) : X)

* #define CPLIsEqual(x, y) (fabs((x) - (y)) < 0.0000000000001)
¢ #define EQUALN(a, b, n) (strncasecmp(a,b,n)==0)
* #define EQUALC(a, b) (strcasecmp(a,b)==0)

¢ #define CPLIsNan(x) isnan(x)

¢ #define CPLIsInf(x) FALSE

¢ #define CPLIsFinite(x) (!isnan(x))

e #define CPL_MSB

e #define CPL_IS_LSB 0

¢ #define CPL_SWAP16(x)

¢ #define CPL_SWAP16PTR(x)

e #define CPL_SWAP32(x)

¢ #define CPL_SWAP32PTR(x)

* #define CPL_SWAPG64PTR(x)

¢ #define CPL_SWAPDOUBLE(p) CPL_SWAP64PTR(p)
¢ #define CPL_MSBWORD16(x) (x)

¢ #define CPL_LSBWORDI16(x) CPL_SWAP16(x)

¢ #define CPL_MSBWORD32(x) (x)

e #define CPL_LSBWORD32(x) CPL_SWAP32(x)

¢ #define CPL_MSBPTR16(x)

e #define CPL_LSBPTR16(x) CPL_SWAP16PTR(x)

318 File Documentation

#define CPL_MSBPTR32(x)
#define CPL_LSBPTR32(x) CPL_SWAP32PTR(x)
#define CPL_MSBPTR64(x)
#define CPL_LSBPTR64(x) CPL_SWAP64PTR(x)
#define CPL_CVSID(string)

Typedefs

* typedef int GInt32

* typedef unsigned int GUInt32

* typedef short GInt16

* typedef unsigned short GUInt16

* typedef unsigned char GByte

* typedef int GBool

¢ typedef long long GIntBig

* typedef unsigned long long GUIntBig

40.6.1 Detailed Description

Core portability definitions for CPL.

40.6.2 Define Documentation

40.6.2.1 #define CPL_CVSID(string)

Value:
static char cpl_cvsid[] = string; \
static char xcvsid_aw() { return(cvsid_aw() ? ((char %) NULL) : cpl_cvsid); }

40.6.2.2 #define CPL_SWAP16(x)

Value:

((GUINntl1l6) (x) & 0x00ffU) << 8) | \

((GUInt16) (\
(
(((GUIntl6) (x) & Oxff0O0U) >> 8)))

40.6.2.3 #define CPL_SWAP16PTR(x)

Value:

GByte byTemp, *_pabyDataT = (GByte *) (x);

byTemp = _pabyDataT[0];
_pabyDataT[0] = _pabyDataT[l];
_pabyDataT[l] = byTemp;

P g

40.6 cpl_port.h File Reference

319

40.6.2.4 #define CPL_SWAP32(x)

Value:

((GUInt32) (\
(((GUINt32) (x)
(((GUINt32) (x)
(((GUINt32) (x)
(((GUINt32) (x)

R R R R

GUInt32)0x000000££UL)
GUInt32)0x0000££00UL)
GUInt32)0x00££0000UL)
GUInt32)0xf£000000UL)

40.6.2.5 #define CPL_SWAP32PTR(x)

Value:
{
GByte byTemp, *_pabyDataT = (GByte *) (x);
byTemp = _pabyDataT[0];
_pabyDataT[0] = _pabyDataTI[3];
_pabyDataT[3] = byTemp;
byTemp = _pabyDataT[1l];
_pabyDataT[1l] = _pabyDataTl[2];
_pabyDataT[2] = byTemp;

40.6.2.6 #define CPL_SWAP64PTR(x)

Value:

{
GByte byTemp, =*_pabyDataT = (GByte x) (x);
byTemp = _pabyDataT[0];
_pabyDataT[0] = _pabyDataT[7];
_pabyDataT[7] = byTemp;
byTemp = _pabyDataT[1l];
_pabyDataT[1l] = _pabyDataTl[6];
_pabyDataT[6] = byTemp;
byTemp = _pabyDataT[2];
_pabyDataT[2] = _pabyDataTI[5];
_pabyDataT[5] = byTemp;
byTemp = _pabyDataT[3];
_pabyDataT[3] = _pabyDataTl[4];

_pabyDataT[4] = byTemp;

<<
<<

>>

& 00 00 >

P A

PP g gl g A O O e

320

File Documentation

40.7 cpl_string.h File Reference

#include "cpl_vsi.h"

#include "cpl_error.h"

#include "cpl_conv.h"

#include <string>

Classes

¢ class CPLString

Defines

#define CSLT_HONOURSTRINGS 0x0001
#define CSLT_ALLOWEMPTYTOKENS 0x0002
#define CSLT_PRESERVEQUOTES 0x0004
#define CSLT_PRESERVEESCAPES 0x0008
#define CPLES_BackslashQuotable 0

#define CPLES_XML 1

#define CPLES_URL 2

#define CPLES_SQL 3

#define CPLES_CSV 4

#define MSVC_OLD_STUPID_BEHAVIOUR
#define std_string string

Functions

¢ char *x* CSLAddString (char s*papszStrList, const char *pszNewString)

int CSLCount (char *xpapszStrList)

const char * CSLGetField (char xx, int)

void CSLDestroy (char sxpapszStrList)

char +x CSLDuplicate (char *xpapszStrList)

char xx CSLMerge (char **papszOrig, char *xpapszOverride)

Merge two lists.

char xx CSLTokenizeString (const char *pszString)

char *x CSLTokenizeStringComplex (const char xpszString, const char spszDelimiter, int
bHonourStrings, int bAllowEmptyTokens)

char x+ CSLTokenizeString2 (const char xpszString, const char spszDelimeter, int nCSLTFlags)
int CSLPrint (char #xpapszStrList, FILE *fpOut)

char #*x CSLLoad (const char xpszFname)

int CSLSave (char *xpapszStrList, const char xpszFname)

char #* CSLInsertStrings (char *xpapszStrList, int nInsertAtLineNo, char *xpapszNewLines)
char +x CSLInsertString (char xxpapszStrList, int nInsertAtLineNo, const char xpszNewLine)
char +x CSLRemoveStrings (char *xpapszStrList, int nFirstLineToDelete, int nNumToRemove,
char s+xxppapszRetStrings)

int CSLFindString (char *x, const char %)

int CSLPartialFindString (char xxpapszHaystack, const char xpszNeedle)

40.7 cpl_string.h File Reference 321

¢ int CSLTestBoolean (const char xpszValue)

« int CSLFetchBoolean (char sxpapszStrList, const char xpszKey, int bDefault)

¢ const char * CPLSPrintf (const char xfmt,...)

¢ char xx CSLAppendPrintf (char #xpapszStrList, char xfmt,...)

¢ int CPLVASPrintf (char sxbuf, const char *fmt, va_list args)

* const char *+ CPLParseNameValue (const char *pszNameValue, char *xppszKey)

* const char * CSLFetchNameValue (char sxpapszStrList, const char *pszName)

* char x CSLFetchNameValueMultiple (char *xpapszStrList, const char *xpszName)

¢ char xx CSLAddNameValue (char xxpapszStrList, const char xpszName, const char xpszValue)
e char ** CSLSetNameValue (char #xpapszStrList, const char *pszName, const char xpszValue)
* void CSLSetNameValueSeparator (char **papszStrList, const char xpszSeparator)

¢ char x CPLEscapeString (const char *pszString, int nLength, int nScheme)

¢ char x* CPLUnescapeString (const char xpszString, int spnLength, int nScheme)

e char *+ CPLBinaryToHex (int nBytes, const GByte *pabyData)

* GByte * CPLHexToBinary (const char xpszHex, int xpnBytes)

40.7.1 Detailed Description

Various convenience functions for working with strings and string lists.

A StringList is just an array of strings with the last pointer being NULL. An empty StringList may be either
a NULL pointer, or a pointer to a pointer memory location with a NULL value.

A common convention for StringLists is to use them to store name/value lists. In this case the contents
are treated like a dictionary of name/value pairs. The actual data is formatted with each string having
the format "<name>:<value>" (though "=" is also an acceptable separator). A number of the functions
in the file operate on name/value style string lists (such as CSLSetNameValue() (p.??), and CSLFetch-
NameValue()).

40.7.2 Function Documentation
40.7.2.1 charx CPLBinaryToHex (int nBytes, const GByte x pabyData)

Binary to hexadecimal translation.

Parameters:

nBytes number of bytes of binary data in pabyData.
pabyData array of data bytes to translate.

Returns:

hexadecimal translation, zero terminated. Free with CPLFree().

40.7.2.2 charx CPLEscapeString (const char x pszInput, int nLength, int nScheme)

Apply escaping to string to preserve special characters.

This function will "escape” a variety of special characters to make the string suitable to embed within a
string constant or to write within a text stream but in a form that can be reconstitued to it’s original form.
The escaping will even preserve zero bytes allowing preservation of raw binary data.

322 File Documentation

CPLES_BackslashQuotable(0): This scheme turns a binary string into a form suitable to be placed within
double quotes as a string constant. The backslash, quote, ” and newline characters are all escaped in the
usual C style.

CPLES_XML(1): This scheme converts the ’<’,’<’ and &’ characters into their XML/HTML equivelent
(>, < and &) making a string safe to embed as CDATA within an XML element. The ” is not escaped and
should not be included in the input.

CPLES_URL(2): Everything except alphanumerics and the underscore are converted to a percent followed
by a two digit hex encoding of the character (leading zero supplied if needed). This is the mechanism used
for encoding values to be passed in URLSs.

CPLES_SQL(3): All single quotes are replaced with two single quotes. Suitable for use when constructing
literal values for SQL commands where the literal will be enclosed in single quotes.

CPLES_CSV(4): If the values contains commas, double quotes, or newlines it placed in double quotes,
and double quotes in the value are doubled. Suitable for use when constructing field values for .csv files.
Note that CPLUnescapeString() (p. ??) currently does not support this format, only CPLEscapeString()
(p-??). See cpl_csv.cpp for csv parsing support.

Parameters:

pszInput the string to escape.

nLength The number of bytes of data to preserve. If this is -1 the strlen(pszString) function will be
used to compute the length.

nScheme the encoding scheme to use.

Returns:

an escaped, zero terminated string that should be freed with CPLFree() when no longer needed.

40.7.2.3 GBytex CPLHexToBinary (const char * pszHex, int x pnBytes)
Hexadecimal to binary translation

Parameters:

pszHex the input hex encoded string.

pnBytes the returned count of decoded bytes placed here.

Returns:

returns binary buffer of data - free with CPLFree().

40.7.2.4 const char+ CPLParseNameValue (const char x pszNameValue, char xx ppszKey)

Parse NAME=VALUE string into name and value components.

Note that if ppszKey is non-NULL, the key (or name) portion will be allocated using VSIMalloc(), and
returned in that pointer. It is the applications responsibility to free this string, but the application should
not modify or free the returned value portion.

This function also support "NAME:VALUE" strings and will strip white space from around the delimeter
when forming name and value strings.

Eventually CSLFetchNameValue() and friends may be modified to use CPLParseNameValue() (p. ??).

40.7 cpl_string.h File Reference 323

Parameters:

pszNameValue string in "NAME=VALUE" format.

ppszKey optional pointer though which to return the name portion.
Returns:

the value portion (pointing into original string).

40.7.2.5 charx CPLUnescapeString (const char x pszInput, int x pnLength, int nScheme)

Unescape a string.

This function does the opposite of CPLEscapeString() (p. ??). Given a string with special values escaped
according to some scheme, it will return a new copy of the string returned to it’s original form.

Parameters:

pszlnput the input string. This is a zero terminated string.

pnLength location to return the length of the unescaped string, which may in some cases include
embedded ” characters.

nScheme the escaped scheme to undo (see CPLEscapeString() (p. ??) for a list).
Returns:

a copy of the unescaped string that should be freed by the application using CPLFree() when no longer
needed.

40.7.2.6 int CSLCount (char xx papszStrList)

Return number of items in a string list.

Returns the number of items in a string list, not counting the terminating NULL. Passing in NULL is safe,
and will result in a count of zero.

Lists are counted by iterating through them so long lists will take more time than short lists. Care should be
taken to avoid using CSLCount() (p. ??) as an end condition for loops as it will result in O(n”2) behavior.

Parameters:

papszStrList the string list to count.

Returns:

the number of entries.

40.7.2.7 void CSLDestroy (char xx papszStrList)

Free string list.

Frees the passed string list (null terminated array of strings). It is safe to pass NULL.

Parameters:

papszStrList the list to free.

324 File Documentation

40.7.2.8 charxx CSLDuplicate (char xx papszStrList)

Clone a string list.

Efficiently allocates a copy of a string list. The returned list is owned by the caller and should be freed with
CSLDestroy() (p. 2?).

Parameters:

papszStrList the input string list.

Returns:

newly allocated copy.

40.7.2.9 int CSLFindString (char xx papszList, const char x pszTarget)

Find a string within a string list.

Returns the index of the entry in the string list that contains the target string. The string in the string list
must be a full match for the target, but the search is case insensitive.

Parameters:
papszList the string list to be searched.

pszlarget the string to be searched for.

Returns:

the index of the string within the list or -1 on failure.

40.7.2.10 charxx CSLLoad (const char x pszFname)

Load a text file into a string list.

The VSI«L API is used, so VSIFOpenL() (p. ??) supported objects that aren’t physical files can also be
accessed. Files are returned as a string list, with one item in the string list per line. End of line markers are
stripped (by CPLReadLineL() (p. ??)).

If reading the file fails a CPLError() (p. ??) will be issued and NULL returned.

Parameters:

pszFname the name of the file to read.

Returns:

a string list with the files lines, now owned by caller.

References VSIFCloseL(), VSIFEofL(), and VSIFOpenL().

40.7 cpl_string.h File Reference 325

40.7.2.11 charxx CSLMerge (char *x papszOrig, char xx papszOverride)

Merge two lists.

The two lists are merged, ensuring that if any keys appear in both that the value from the second (pap-
szOverride) list take precidence.

Parameters:

papszOrig the original list, being modified.

papszOverride the list of items being merged in. This list is unaltered and remains owned by the caller.

Returns:

updated list.

40.7.2.12 int CSLPartialFindString (char *x papszHaystack, const char x pszNeedle)

Find a substring within a string list.

Returns the index of the entry in the string list that contains the target string as a substring. The search is
case sensitive (unlike CSLFindString() (p. 2?)).

Parameters:

papszHaystack the string list to be searched.
pszNeedle the substring to be searched for.

Returns:

the index of the string within the list or -1 on failure.

40.7.2.13 charxx CSLSetNameValue (char xx papszList, const char x pszName, const char x
pszValue)
Assign value to name in StringList.

Set the value for a given name in a StringList of "Name=Value" pairs ("Name:Value" pairs are also sup-
ported for backward compatibility with older stuff.)

If there is already a value for that name in the list then the value is changed, otherwise a new "Name=Value"
pair is added.
Parameters:

papszList the original list, the modified version is returned.

pszName the name to be assigned a value. This should be a well formed token (no spaces or very
special characters).

pszValue the value to assign to the name. This should not contain any newlines (CR or LF) but is
otherwise pretty much unconstrained. If NULL any corresponding value will be removed.

Returns:

modified stringlist.

326 File Documentation

40.7.2.14 void CSLSetNameValueSeparator (char xx papszList, const char x pszSeparator)

non n_n

Replace the default separator (":" or "=") with the passed separator in the given name/value list.

non

Note that if a separator other than ":" or
name/value functions any more.

n_mn

is used, the resulting list will not be manipulatable by the CSL

The CPLParseNameValue() (p.??) function is used to break the existing lines, and it also strips white
space from around the existing delimiter, thus the old separator, and any white space will be replaced by
the new separator. For formatting purposes it may be desireable to include some white space in the new

n,on " "

separator. eg. ": "or " =".

Parameters:

papszList the list to update. Component strings may be freed but the list array will remain at the same
location.

pszSeparator the new separator string to insert.

40.7.2.15 int CSLTestBoolean (const char x pszValue)

Test what boolean value contained in the string.

If pszValue is "NO", "FALSE", "OFF" or "0" will be returned FALSE. Otherwise, TRUE will be returned.

Parameters:

pszValue the string should be tested.

Returns:

TRUE or FALSE.

40.7.2.16 charxx CSLTokenizeString2 (const char * pszString, const char x pszDelimiters, int
nCSLTFlags)
Tokenize a string.

This function will split a string into tokens based on specified’ delimeter(s) with a variety of options. The
returned result is a string list that should be freed with CSLDestroy() (p. ??) when no longer needed.

The available parsing options are:

e CSLT_ALLOWEMPTYTOKENS: Allow the return of empty tokens when two delimiters in a row
occur with no other text between them. If not set, empty tokens will be discarded.

* CSLT_HONOURSTRINGS: double quotes can be used to hold values that should not be broken into
multiple tokens.

e CSLT_PRESERVEQUOTES: String quotes are carried into the tokens when this is set, otherwise
they are removed.

* CSLT_PRESERVEESCAPES: If set backslash escapes (for backslash itself, and for literal double
quotes) will be preserved in the tokens, otherwise the backslashes will be removed in processing.

40.7 cpl_string.h File Reference 327

Example:

Parse a string into tokens based on various white space (space, newline, tab) and then print out results and
cleanup. Quotes may be used to hold white space in tokens.

char xxpapszTokens;

int i;
papszTokens =
CSLTokenizeString2 (pszCommand, " \t\n",
CSLT_HONOURSTRINGS | CSLT_ALLOWEMPTYTOKENS) ;
for(i = 0; papszTokens != NULL && papszTokens[i] != NULL; i++)
printf("arg %d: ’'%s’", papszTokens[i]);

CSLDestroy (papszTokens);

Parameters:

pszString the string to be split into tokens.
pszDelimeters one or more characters to be used as token delimeters.

nCSLTFlags an ORing of one or more of the CSLT_ flag values.

Returns:

a string list of tokens owned by the caller.

328 File Documentation

40.8 cpl_vsi.h File Reference

#include "cpl_port.h"
#include <unistd.h>

#include <sys/stat.h>

Defines

e #define VSI_ISLNK(x) S_ISLNK(x)

e #define VSI_ISREG(x) S_ISREG(x)

¢ #define VSI_ISDIR(x) S_ISDIR(x)

e #define VSI_ISCHR(x) S_ISCHR(x)

e #define VSI_ISBLK(x) S_ISBLK(x)

¢ #define CPLReadDir VSIReadDir

* #define VSIDebugd(f, al, a2, a3, a4) {}
* #define VSIDebug3(f, al, a2, a3) {}

* #define VSIDebug2(f, al, a2) {}

¢ #define VSIDebugl(f, al) {}

Typedefs

* typedef struct stat VSIStatBuf
¢ typedef GUIntBig vsi_l_offset
¢ typedef struct VSI_STAT64_T VSIStatBufL

Functions

¢ FILE * VSIFOpen (const char *, const char)

¢ int VSIFClose (FILE x)

« int VSIFSeek (FILE x, long, int)

* long VSIFTell (FILE x)

¢ void VSIRewind (FILE x)

« void VSIFFlush (FILE x)

¢ size_t VSIFRead (void *, size_t, size_t, FILE *)
« size_t VSIFWrite (const void *, size_t, size_t, FILE x)
e char x VSIFGets (char x, int, FILE x)

¢ int VSIFPuts (const char %, FILE %)

¢ int VSIFPrintf (FILE %, const char ,...)

¢ int VSIFGetc (FILE %)

¢ int VSIFPutc (int, FILE %)

¢ int VSIUngetc (int, FILE x)

« int VSIFEof (FILE x)

« int VSIStat (const char *, VSIStatBuf)

e FILE * VSIFOpenL (const char *, const char)

Open file.

¢ int VSIFCloseL (FILE %)
Close file.

40.8 cpl_vsi.h File Reference 329

¢ int VSIFSeekL (FILE *, vsi_l_offset, int)

Seek to requested offset.

* vsi_l_offset VSIFTellL. (FILE %)
Tell current file offset.

¢ void VSIRewindL (FILE x*)
¢ size_t VSIFReadL (void %, size_t, size_t, FILE x)

Read bytes from file.

e size_t VSIFWriteL (const void *, size_t, size_t, FILE x)
Write bytes to file.

* int VSIFEofL (FILE x)
Test for end of file.

¢ int VSIFFlushL (FILE x)
Flush pending writes to disk.

e int VSIFPrintfL (FILE x, const char x,...)

Formatted write to file.

« int VSIStatL (const char *, VSIStatBufL x)
Get filesystem object info.

¢ void * VSICalloc (size_t, size_t)

¢ void * VSIMalloc (size_t)

¢ void VSIFree (void x)

¢ void * VSIRealloc (void *, size_t)
e char x VSIStrdup (const char)

¢ char xx VSIReadDir (const char)

Read names in a directory.

« int VSIMKdir (const char xpathname, long mode)

Create a directory.

* int VSIRmdir (const char xpathname)

Delete a directory.

* int VSIUnlink (const char *pathname)
Delete a file.

¢ int VSIRename (const char xoldpath, const char xnewpath)

Rename a file.

e char x VSIStrerror (int)
¢ void VSIInstallMemFileHandler (void)

Install "memory" file system handler.

330 File Documentation

* void VSIlInstallLargeFileHandler (void)
¢ void VSICleanupFileManager (void)

e FILE * VSIFileFromMemBuffer (const char xpszFilename, GByte spabyData, vsi_l_offset
nDatalLength, int bTakeOwnership)

Create memory "file" from a buffer.

* GByte * VSIGetMemFileBuffer (const char xpszFilename, vsi_l_offset xpnDatalength, int bUn-
linkAndSeize)

Fetch buffer underlying memory file.

* unsigned long VSITime (unsigned long *)

* const char * VSICTime (unsigned long)

* struct tm * VSIGMTime (const time_t *pnTime, struct tm *poBrokenTime)

* struct tm * VSILocalTime (const time_t xpnTime, struct tm *xpoBrokenTime)

40.8.1 Detailed Description

Standard C Covers

The VSI functions are intended to be hookable aliases for Standard C I/O, memory allocation and other
system functions. They are intended to allow virtualization of disk I/O so that non file data sources can be
made to appear as files, and so that additional error trapping and reporting can be interested. The memory
access API is aliased so that special application memory management services can be used.

Is is intended that each of these functions retains exactly the same calling pattern as the original Standard
C functions they relate to. This means we don’t have to provide custom documentation, and also means
that the default implementation is very simple.

40.8.2 Function Documentation
40.8.2.1 int VSIFCloseL (FILE x fp)

Close file.
This function closes the indicated file.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as
in memory.

Analog of the POSIX fclose() function.

Parameters:

Jp file handle opened with VSIFOpenL() (p. 2?).

Returns:

0 on success or -1 on failure.

References VSIFCloseL().

Referenced by CPLCloseShared(), CPLParseXMLFile(), CPLSerializeXMLTreeToFile(), CSLLoad(),
GDALVersionlInfo(), and VSIFCloseL().

40.8 cpl_vsi.h File Reference 331

40.8.2.2 int VSIFEofL (FILE x fp)

Test for end of file.
Returns TRUE (non-zero) if the file read/write offset is currently at the end of the file.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as
in memory.

Analog of the POSIX feof() call.

Parameters:

Jp file handle opened with VSIFOpenL() (p. 2?).

Returns:

TRUE if at EOF else FALSE.

References VSIFEofL().
Referenced by CSLLoad(), and VSIFEofL().

40.8.2.3 int VSIFFlushL (FILE x fp)

Flush pending writes to disk.

For files in write or update mode and on filesystem types where it is applicable, all pending output on the
file is flushed to the physical disk.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as
in memory.

Analog of the POSIX fflush() call.

Parameters:

Jfp file handle opened with VSIFOpenL() (p. 2?).

Returns:

0 on success or -1 on error.

References VSIFFlushL().
Referenced by VSIFFlushL().

40.8.2.4 FILEx VSIFileFromMemBuffer (const char x pszFilename, GByte x pabyData,
vsi_l_offset nDataLength, int bTakeOwnership)

Create memory "file" from a buffer.

A virtual memory file is created from the passed buffer with the indicated filename. Under normal condi-
tions the filename would need to be absolute and within the /vsimem/ portion of the filesystem.

If bTakeOwnership is TRUE, then the memory file system handler will take ownership of the buffer, freeing
it when the file is deleted. Otherwise it remains the responsibility of the caller, but should not be freed as
long as it might be accessed as a file. In no circumstances does this function take a copy of the pabyData
contents.

332 File Documentation

Parameters:

pszFilename the filename to be created.

pabyData the data buffer for the file.

nDataLength the length of buffer in bytes.

bTakeOwnership TRUE to transfer "ownership" of buffer or FALSE.

Returns:

open file handle on created file (see VSIFOpenL() (p. ??)).

References VSIFileFromMemBuffer(), and VSlInstallMemFileHandler().
Referenced by VSIFileFromMemBuffer().

40.8.2.5 FILEx VSIFOpenL (const char x pszFilename, const char x pszAccess)

Open file.

This function opens a file with the desired access. Large files (larger than 2GB) should be supported.
Binary access is always implied and the "b" does not need to be included in the pszAccess string.

Note that the "FILE =" returned by this function is not really a standard C library FILE x*, and cannot be
used with any functions other than the "VSI«L" family of functions. They aren’t "real" FILE objects.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as
in memory.

Analog of the POSIX fopen() function.

Parameters:

pszFilename the file to open.

nanon non

PpszAccess access requested (ie. "r", "r+", "wW"

Returns:

NULL on failure, or the file handle.

References VSIFOpenL().

Referenced by CPLOpenShared(), CPLParseXMLFile(), CPLSerializeXMLTreeToFile(), CSLLoad(),
GDALVersionInfo(), and VSIFOpenL().

40.8.2.6 int VSIFPrintfL (FILE * fp, const char x pszFormat, ...)

Formatted write to file.

Provides fprintf() style formatted output to a VSIxL file. This formats an internal buffer which is written
using VSIFWriteL() (p. 2?).

Analog of the POSIX fprintf() call.

Parameters:

Jp file handle opened with VSIFOpenL() (p. ??).

pszFormat the printf style format string.

40.8 cpl_vsi.h File Reference 333

Returns:

the number of bytes written or -1 on an error.

References VSIFPrintfL(), and VSIFWriteL().
Referenced by VSIFPrintfL().

40.8.2.7 size_t VSIFReadL (void * pBuffer, size_t nSize, size_t nCount, FILE x fp)

Read bytes from file.
Reads nCount objects of nSize bytes from the indicated file at the current offset into the indicated buffer.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as
in memory.

Analog of the POSIX fread() call.

Parameters:

pBuffer the buffer into which the data should be read (at least nCount * nSize bytes in size.
nSize size of objects to read in bytes.

nCount number of objects to read.

Jfp file handle opened with VSIFOpenL() (p. 2?).

Returns:

number of objects successfully read.

References VSIFReadL().
Referenced by CPLParseXMLFile(), CPLReadLineL(), GDALVersionInfo(), and VSIFReadL().

40.8.2.8 int VSIFSeekL (FILE x fp, vsi_l_offset nOffset, int nWhence)

Seek to requested offset.
Seek to the desired offset (nOffset) in the indicated file.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as
in memory.

Analog of the POSIX fseek() call.

Parameters:

Jp file handle opened with VSIFOpenL() (p. ??).
nOffset offset in bytes.
nWhence one of SEEK_SET, SEEK_CUR or SEEK_END.

Returns:

0 on success or -1 one failure.

References VSIFSeekL().
Referenced by CPLParseXMLFile(), CPLReadLineL(), GDALVersionInfo(), and VSIFSeekL().

334 File Documentation

40.8.2.9 vsi_l_offset VSIFTellLL (FILE x fp)

Tell current file offset.
Returns the current file read/write offset in bytes from the beginning of the file.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as
in memory.

Analog of the POSIX ftell() call.

Parameters:

Jp file handle opened with VSIFOpenL() (p. ??).

Returns:

file offset in bytes.

References VSIFTellL().
Referenced by CPLParseXMLFile(), CPLReadLineL.(), GDALVersionInfo(), and VSIFTellL().

40.8.2.10 size_t VSIFWriteL (const void * pBuffer, size_t nSize, size_t nCount, FILE x fp)

Write bytes to file.
Writess nCount objects of nSize bytes to the indicated file at the current offset into the indicated buffer.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as
in memory.

Analog of the POSIX fwrite() call.

Parameters:

pBuffer the buffer from which the data should be written (at least nCount * nSize bytes in size.
nSize size of objects to read in bytes.

nCount number of objects to read.

Jp file handle opened with VSIFOpenL() (p. 2?).

Returns:

number of objects successfully written.

References VSIFWriteL().
Referenced by CPLSerializeXMLTreeToFile(), VSIFPrintfL(), and VSIFWriteL().

40.8.2.11 GBytex VSIGetMemFileBuffer (const char * pszFilename, vsi_l_offset « pnDataLength,
int bUnlinkAndSeize)

Fetch buffer underlying memory file.

This function returns a pointer to the memory buffer underlying a virtual "in memory" file. If bUnlinkAnd-
Seize is TRUE the filesystem object will be deleted, and ownership of the buffer will pass to the caller
otherwise the underlying file will remain in existance.

40.8 cpl_vsi.h File Reference 335

Parameters:

pszFilename the name of the file to grab the buffer of.
pnDataLength (file) length returned in this variable.
bUnlinkAndSeize TRUE to remove the file, or FALSE to leave unaltered.

Returns:

pointer to memory buffer or NULL on failure.

References VSIGetMemFileBuffer().
Referenced by VSIGetMemFileBuffer().

40.8.2.12 void VSIInstallMemFileHandler (void)

Install "memory" file system handler.

A special file handler is installed that allows block of memory to be treated as files. All portions of the file
system underneath the base path "/vsimem/" will be handled by this driver.

Normal VSIx+L functions can be used freely to create and destroy memory arrays treating them as if they
were real file system objects. Some additional methods exist to efficient create memory file system objects
without duplicating original copies of the data or to "steal" the block of memory associated with a memory
file.

At this time the memory handler does not properly handle directory semantics for the memory portion of
the filesystem. The VSIReadDir() (p.??) function is not supported though this will be corrected in the
future.

Calling this function repeatedly should do no harm, though it is not necessary. It is already called the first
time a virtualizable file access function (ie. VSIFOpenL() (p. ??), VSIMkDir(), etc) is called.

This code example demonstrates using GDAL to translate from one memory buffer to another.

GByte xConvertBufferFormat (GByte xpabyInData, vsi_1l_offset nInDatalLength,
vsi_1_offset xpnOutDatalength)
{
// create memory file system object from buffer.
VSIFCloseL(VSIFileFromMemBuffer ("/vsimem/work.dat", pabyInData,
nInDatalLength, FALSE));

// Open memory buffer for read.
GDALDatasetH hDS = GDALOpen("/vsimem/work.dat", GA_ReadOnly);

// Get output format driver.
GDALDriverH hDriver = GDALGetDriverByName("GTiff");
GDALDatasetH hOutDS;

houtDS = GDALCreateCopy(hDriver, "/vsimem/out.tif", hDS, TRUE, NULL,
NULL, NULL);

// close source file, and "unlink" it.
GDALClose(hDS);
VSIUnlink ("/vsimem/work.dat");

// seize the buffer associated with the output file.

return VSIGetMemFileBuffer("/vsimem/out.tif", pnOutDatalength, TRUE);

References VSlInstallMemFileHandler().

336 File Documentation

Referenced by VSIFileFromMemBuffer(), and VSlInstallMemFileHandler().

40.8.2.13 int VSIMKkdir (const char * pszPathname, long mode)

Create a directory.

Create a new directory with the indicated mode. The mode is ignored on some platforms. A reasonable
default mode value would be 0666. This method goes through the VSIFileHandler virtualization and may
work on unusual filesystems such as in memory.

Analog of the POSIX mkdir() function.

Parameters:

pszPathname the path to the directory to create.

mode the permissions mode.

Returns:

0 on success or -1 on an error.

References VSIMkdir().
Referenced by VSIMKkdir().

40.8.2.14 charxx VSIReadDir (const char x pszPath)

Read names in a directory.

This function abstracts access to directory contains. It returns a list of strings containing the names of files,
and directories in this directory. The resulting string list becomes the responsibility of the application and
should be freed with CSLDestroy() (p. ??) when no longer needed.

Note that no error is issued via CPLError() (p. ??) if the directory path is invalid, though NULL is returned.

This function used to be known as CPLReadDir(), but the old name is now deprecated.

Parameters:

pszPath the relative, or absolute path of a directory to read.

Returns:

The list of entries in the directory, or NULL if the directory doesn’t exist.

References VSIReadDir().
Referenced by VSIReadDir().

40.8.2.15 int VSIRename (const char x oldpath, const char x newpath)

Rename a file.

Renames a file object in the file system. It should be possible to rename a file onto a new filesystem, but it
is safest if this function is only used to rename files that remain in the same directory.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as
in memory.

40.8 cpl_vsi.h File Reference 337

Analog of the POSIX rename() function.

Parameters:

oldpath the name of the file to be renamed.

newpath the name the file should be given.

Returns:

0 on success or -1 on an error.

References VSIRename().

Referenced by VSIRename().

40.8.2.16 int VSIRmdir (const char x pszDirname)

Delete a directory.

Deletes a directory object from the file system. On some systems the directory must be empty before it can
be deleted.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as
in memory.

Analog of the POSIX rmdir() function.

Parameters:

pszDirname the path of the directory to be deleted.

Returns:

0 on success or -1 on an error.

References VSIRmdir().
Referenced by VSIRmdir().

40.8.2.17 int VSIStatL (const char * pszFilename, VSIStatBufL * psStatBuf)

Get filesystem object info.

Fetches status information about a filesystem object (file, directory, etc). The returned information is placed
in the VSIStatBufL structure. For portability only the st_size (size in bytes), and st_mode (file type). This
method is similar to VSIStat(), but will work on large files on systems where this requires special calls.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as
in memory.

Analog of the POSIX stat() function.

Parameters:

pszFilename the path of the filesystem object to be queried.

psStatBuf the structure to load with information.

338 File Documentation

Returns:

0 on success or -1 on an error.

References VSIStatL().

Referenced by CPLCheckForFile(), GDALReadWorldFile(), GDALPamDataset::GetFileList(), GDAL-
Dataset::GetFileList(), and VSIStatL().

40.8.2.18 int VSIUnlink (const char * pszFilename)

Delete a file.
Deletes a file object from the file system.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as
in memory.

Analog of the POSIX unlink() function.

Parameters:

pszFilename the path of the file to be deleted.

Returns:

0 on success or -1 on an error.

References VSIUnlink().
Referenced by GDALDriver::CopyFiles(), GDALDriver::Delete(), and VSIUnlink().

40.9 gdal.h File Reference 339

40.9 gdal.h File Reference

#include "gdal_version.h"

#include "cpl_port.h"

#include "cpl_error.h"

Classes

struct GDALOptionDefinition
struct GDAL_GCP

struct GDALRPClInfo

struct GDALColorEntry

Defines

#define GDALMD_AREA_OR_POINT "AREA_OR_POINT"

#define GDALMD_AOP_AREA "Area"

#define GDALMD_AOP_POINT "Point"

#define CPLE_WrongFormat 200

#define GDAL_DMD_LONGNAME "DMD_LONGNAME"

#define GDAL_DMD_HELPTOPIC "DMD_HELPTOPIC"

#define GDAL_DMD_MIMETYPE "DMD_MIMETYPE"

#define GDAL_DMD_EXTENSION "DMD_EXTENSION"

#define GDAL_DMD_CREATIONOPTIONLIST "DMD_CREATIONOPTIONLIST"
#define GDAL_DMD_CREATIONDATATYPES "DMD_CREATIONDATATYPES"
#define GDAL_DCAP_CREATE "DCAP_CREATE"

#define GDAL_DCAP_CREATECOPY "DCAP_CREATECOPY"

#define GDAL_DCAP_VIRTUALIO "DCAP_VIRTUALIO"

#define SRCVAL (papoSource, eSrcType, ii)

#define GMF_ALL_VALID 0x01

#define GMF_PER_DATASET 0x02

#define GMF_ALPHA 0x04

#define GMF_NODATA 0x08

#define GDAL_CHECK_VERSION(pszCallingComponentName) GDALCheckVersion(GDAL_-
VERSION_MAIJOR, GDAL_VERSION_MINOR, pszCallingComponentName)

Typedefs

typedef void * GDALMajorObjectH

typedef void * GDALDatasetH

typedef void * GDALRasterBandH

typedef void x* GDALDriverH

typedef void * GDALProjDefH

typedef void * GDALColorTableH

typedef void * GDALRasterAttributeTableH

typedef const char void *int GDALDummyProgress (double, const char *, void)

typedef CPLErr(+ GDALDerivedPixelFunc)(void sxpapoSources, int nSources, void xpData,
int nBufXSize, int nBufYSize, GDALDataType eSrcType, GDALDataType eBufType, int nPix-
elSpace, int nLineSpace)

340 File Documentation

Enumerations

¢ enum GDALDataType {
GDT_Unknown = 0, GDT_Byte = 1, GDT_UInt16 =2, GDT_Int16 = 3,
GDT_UInt32 =4, GDT_Int32 = 5, GDT_Float32 = 6, GDT_Float64 = 7,
GDT_CInt16 = 8, GDT_CInt32 =9, GDT_CFloat32 = 10, GDT_CFloat64 = 11,

GDT_TypeCount = 12 }
e enum GDALAccess { GA_ReadOnly =0, GA_Update =1 }
e enum GDALRWFlag { GF_Read = 0, GF_Write =1 }
e enum GDALColorInterp {

GCI_Undefined = 0, GCI_GrayIndex = 1, GCI_PaletteIndex = 2, GCI_RedBand = 3,
GCI_GreenBand = 4, GCI_BlueBand = 5, GCI_AlphaBand = 6, GCI_HueBand = 7,

GCI_SaturationBand = 8, GCI_LightnessBand = 9, GCI_CyanBand = 10, GCI_MagentaBand
=11,

GCI_YellowBand = 12, GCI_BlackBand = 13, GCIL_YCbCr_YBand = 14, GCL_YCbCr._-
CbBand = 15,

GCL_YCbCr_CrBand = 16, GCI_Max = 16 }
¢ enum GDALPaletteInterp { GPI_Gray = 0, GPI_RGB = 1, GPI_CMYK =2, GPI_HLS =3}
¢ enum GDALRATFieldType { GFT_Integer, GFT_Real, GFT_String }
e enum GDALRATFieldUsage {

GFU_Generic = 0, GFU_PixelCount = 1, GFU_Name =2, GFU_Min = 3,

GFU_Max =4, GFU_MinMax = 5, GFU_Red = 6, GFU_Green =7,

GFU_Blue = 8, GFU_Alpha = 9, GFU_RedMin = 10, GFU_GreenMin = 11,
GFU_BlueMin = 12, GFU_AlphaMin = 13, GFU_RedMax = 14, GFU_GreenMax = 15,
GFU_BlueMax = 16, GFU_AlphaMax = 17, GFU_MaxCount }

Functions

¢ int GDALGetDataTypeSize (GDALDataType)

* int GDALDataTypelsComplex (GDALDataType)

* const char * GDALGetDataTypeName (GDALDataType)

¢ GDALDataType GDALGetDataTypeByName (const char)

¢ GDALDataType GDALDataTypeUnion (GDALDataType, GDALDataType)

¢ const char x GDALGetColorInterpretationName (GDALColorInterp)

* const char * GDALGetPaletteInterpretationName (GDALPaletteInterp)

¢ typedef int (1 *GDALProgressFunc)(double

¢ int GDALTermProgress (double, const char *, void)

* int GDALScaledProgress (double, const char *, void)

¢ void * GDALCreateScaledProgress (double, double, GDALProgressFunc, void *)

¢ void GDALDestroyScaledProgress (void *)

¢ void GDALAIIRegister (void)

¢ GDALDatasetH GDALCreate (GDALDriverH hDriver, const char x, int, int, int, GDALDataType,
char)

¢ GDALDatasetH GDALCreateCopy (GDALDriverH, const char x, GDALDatasetH, int, char *x,
GDALProgressFunc, void)

* GDALDriverH GDALIdentifyDriver (const char xpszFilename, char *xpapszFileList)

¢ GDALDatasetH GDALOpen (const char xpszFilename, GDALAccess eAccess)

40.9 gdal.h File Reference 341

* GDALDatasetH GDALOpenShared (const char x, GDALAccess)

¢ int GDALDumpOpenDatasets (FILE x)

¢ GDALDriverH GDALGetDriverByName (const char *)

¢ int GDALGetDriverCount (void)

¢ GDALDriverH GDALGetDriver (int)

¢ int GDALRegisterDriver (GDALDriverH)

¢ void GDALDeregisterDriver (GDALDriverH)

¢ void GDALDestroyDriverManager (void)

¢ CPLErr GDALDeleteDataset (GDALDriverH, const char *)

* CPLErr GDALRenameDataset (GDALDriverH, const char #xpszNewName, const char
xpszOldName)

¢ CPLErr GDALCopyDatasetFiles (GDALDriverH, const char sxpszNewName, const char
*pszOldName)

* int GDALValidateCreationOptions (GDALDriverH, char sxpapszCreationOptions)

¢ const char x GDALGetDriverShortName (GDALDriverH)

¢ const char x GDALGetDriverLongName (GDALDriverH)

* const char * GDALGetDriverHelpTopic (GDALDriverH)

* const char x GDALGetDriverCreationOptionList (GDALDriverH)

¢ void GDALInitGCPs (int, GDAL_GCP x)

¢ void GDALDeinitGCPs (int, GDAL_GCP %)

¢ GDAL_GCP * GDALDuplicateGCPs (int, const GDAL_GCP x)

¢ int GDALGCPsToGeoTransform (int nGCPCount, const GDAL_GCP xpasGCPs, double
xpadfGeoTransform, int bApproxOK)

¢ int GDALInvGeoTransform (double *padfGeoTransformln, double xpadfInvGeoTransformOut)

* void GDALApplyGeoTransform (double *, double, double, double *, double x)

e char +x GDALGetMetadata (GDALMajorObjectH, const char *)

* CPLErr GDALSetMetadata (GDALMajorObjectH, char s, const char *)

* const char x GDALGetMetadataltem (GDALMajorObjectH, const char *, const char)

e CPLErr GDALSetMetadataltem (GDALMajorObjectH, const char *, const char *, const char)

¢ const char x GDALGetDescription (GDALMajorObjectH)

* void GDALSetDescription (GDALMajorObjectH, const char)

¢ GDALDriverH GDALGetDatasetDriver (GDALDatasetH)

e char xx GDALGetFileList (GDALDatasetH)

¢ void GDALClose (GDALDatasetH)

¢ int GDALGetRasterXSize (GDALDatasetH)

¢ int GDALGetRasterYSize (GDALDatasetH)

¢ int GDALGetRasterCount (GDALDatasetH)

¢ GDALRasterBandH GDALGetRasterBand (GDALDatasetH, int)

* CPLErr GDALAddBand (GDALDatasetH hDS, GDALDataType eType, char *xpapszOptions)

¢ CPLErr GDALDatasetRasterIO (GDALDatasetH hDS, GDALRWFlag eRWFlag, int nDSXOff,
int nDSYOft, int nDSXSize, int nDSYSize, void *pBuffer, int nBXSize, int nBYSize, GDAL-
DataType eBDataType, int nBandCount, int *panBandCount, int nPixelSpace, int nLineSpace, int
nBandSpace)

¢ CPLErr GDALDatasetAdviseRead (GDALDatasetH hDS, int nDSXOff, int nDSYOff, int nDSX-
Size, int nDSYSize, int nBXSize, int nBYSize, GDALDataType eBDataType, int nBandCount, int
xpanBandCount, char *xpapszOptions)

¢ const char x GDALGetProjectionRef (GDALDatasetH)

e CPLErr GDALSetProjection (GDALDatasetH, const char)

¢ CPLErr GDALGetGeoTransform (GDALDatasetH, double x)

¢ CPLErr GDALSetGeoTransform (GDALDatasetH, double %)

¢ int GDALGetGCPCount (GDALDatasetH)

342

File Documentation

const char * GDALGetGCPProjection (GDALDatasetH)

const GDAL_GCP x GDALGetGCPs (GDALDatasetH)

CPLErr GDALSetGCPs (GDALDatasetH, int, const GDAL_GCP x, const char %)

void * GDALGetInternalHandle (GDALDatasetH, const char)

int GDALReferenceDataset (GDALDatasetH)

int GDALDereferenceDataset (GDALDatasetH)

CPLErr GDALBuildOverviews (GDALDatasetH, const char %, int, int *, int, int x, GDALProgress-
Func, void %)

void GDALGetOpenDatasets (GDALDatasetH *xhDS, int +*pnCount)

int GDALGetAccess (GDALDatasetH hDS)

void GDALFlushCache (GDALDatasetH hDS)

CPLErr GDALCreateDatasetMaskBand (GDALDatasetH hBand, int nFlags)

CPLErr GDALDatasetCopyWholeRaster (GDALDatasetH hSrcDS, GDALDatasetH hDstDS,
char *xpapszOptions, GDALProgressFunc pfnProgress, void *pProgressData)

GDALDataType GDALGetRasterDataType (GDALRasterBandH)

void GDALGetBlockSize (GDALRasterBandH, int xpnXSize, int xpnY Size)

CPLErr GDALRasterAdviseRead (GDALRasterBandH hRB, int nDSXOff, int nDSYOff, int
nDSXSize, int nDSYSize, int nBXSize, int nBYSize, GDALDataType eBDataType, char
xxpapszOptions)

CPLErr GDALRasterIO (GDALRasterBandH hRBand, GDALRWFlag eRWFlag, int nDSXOfT,
int nDSYOff, int nDSXSize, int nDSYSize, void *pBuffer, int nBXSize, int nBYSize, GDAL-
DataType eBDataType, int nPixelSpace, int nLineSpace)

CPLErr GDALReadBlock (GDALRasterBandH, int, int, void)

CPLErr GDALWriteBlock (GDALRasterBandH, int, int, void %)

int GDALGetRasterBandXSize (GDALRasterBandH)

int GDALGetRasterBandYSize (GDALRasterBandH)

GDALAccess GDALGetRasterAccess (GDALRasterBandH)

int GDALGetBandNumber (GDALRasterBandH)

GDALDatasetH GDALGetBandDataset (GDALRasterBandH)

GDALColorInterp GDALGetRasterColorInterpretation (GDALRasterBandH)

CPLErr GDALSetRasterColorInterpretation (GDALRasterBandH, GDALColorInterp)
GDALColorTableH GDALGetRasterColorTable (GDALRasterBandH)

CPLErr GDALSetRasterColorTable (GDALRasterBandH, GDALColorTableH)

int GDALHasArbitraryOverviews (GDALRasterBandH)

int GDALGetOverviewCount (GDALRasterBandH)

GDALRasterBandH GDALGetOverview (GDALRasterBandH, int)

double GDALGetRasterNoDataValue (GDALRasterBandH, int)

CPLErr GDALSetRasterNoDataValue (GDALRasterBandH, double)

char xx+ GDALGetRasterCategoryNames (GDALRasterBandH)

CPLErr GDALSetRasterCategoryNames (GDALRasterBandH, char xx)

double GDALGetRasterMinimum (GDALRasterBandH, int xpbSuccess)

double GDALGetRasterMaximum (GDALRasterBandH, int xpbSuccess)

CPLErr GDALGetRasterStatistics (GDALRasterBandH, int bApproxOK, int bForce, double
+pdfMin, double xpdfMax, double *xpdfMean, double xpdfStdDev)

CPLErr GDALComputeRasterStatistics (GDALRasterBandH, int bApproxOK, double #pdfMin,
double xpdfMax, double xpdfMean, double xpdfStdDev, GDALProgressFunc pfnProgress, void
x*pProgressData)

CPLErr GDALSetRasterStatistics (GDALRasterBandH hBand, double dfMin, double dfMax, dou-
ble dfMean, double dfStdDev)

const char * GDALGetRasterUnitType (GDALRasterBandH)

double GDALGetRasterOffset (GDALRasterBandH, int xpbSuccess)

40.9 gdal.h File Reference 343

¢ CPLErr GDALSetRasterOffset (GDALRasterBandH hBand, double dfNewOffset)

¢ double GDALGetRasterScale (GDALRasterBandH, int xpbSuccess)

¢ CPLErr GDALSetRasterScale (GDALRasterBandH hBand, double dfNewOffset)

* void GDALComputeRasterMinMax (GDALRasterBandH hBand, int bApproxOK, double
adfMinMax[2])

¢ CPLErr GDALFlushRasterCache (GDALRasterBandH hBand)

¢ CPLErr GDALGetRasterHistogram (GDALRasterBandH hBand, double dfMin, double dfMax,
int nBuckets, int xpanHistogram, int bIncludeOutOfRange, int bApproxOK, GDALProgressFunc
pfnProgress, void *pProgressData)

e CPLErr GDALGetDefaultHistogram (GDALRasterBandH hBand, double xpdfMin, double
xpdfMax, int xpnBuckets, int *xppanHistogram, int bForce, GDALProgressFunc pfnProgress, void
xpProgressData)

¢ CPLErr GDALSetDefaultHistogram (GDALRasterBandH hBand, double dfMin, double dfMax,
int nBuckets, int *panHistogram)

¢ int GDALGetRandomRasterSample (GDALRasterBandH, int, float *)

¢ GDALRasterBandH GDALGetRasterSampleOverview (GDALRasterBandH, int)

e CPLErr GDALFillRaster (GDALRasterBandH hBand, double dfRealValue, double dflmaginary-
Value)

e CPLErr GDALComputeBandStats (GDALRasterBandH hBand, int nSampleStep, double
xpdfMean, double xpdfStdDev, GDALProgressFunc pfnProgress, void xpProgressData)

e CPLErr GDALOverviewMagnitudeCorrection (GDALRasterBandH hBaseBand, int
nOverviewCount, GDALRasterBandH xpahOverviews, GDALProgressFunc pfnProgress, void
xpProgressData)

¢ GDALRasterAttributeTableH GDALGetDefaultRAT (GDALRasterBandH hBand)

¢ CPLErr GDALSetDefaultRAT (GDALRasterBandH, GDALRasterAttributeTableH)

e CPLErr GDALAddDerivedBandPixelFunc (const char xpszName, GDALDerivedPixelFunc pfn-
PixelFunc)

¢ GDALRasterBandH GDALGetMaskBand (GDALRasterBandH hBand)

¢ int GDALGetMaskFlags (GDALRasterBandH hBand)

¢ CPLErr GDALCreateMaskBand (GDALRasterBandH hBand, int nFlags)

 int GDALGeneralCmdLineProcessor (int nArgc, char sx*ppapszArgyv, int nOptions)

¢ void GDALSwapWords (void xpData, int nWordSize, int n'WordCount, int nWordSkip)

* void GDALCopyWords (void xpSrcData, GDALDataType eSrcType, int nSrcPixelOffset, void
xpDstData, GDALDataType eDstType, int nDstPixelOffset, int nWordCount)

e void GDALCopyBits (const GByte =xpabySrcData, int nSrcOffset, int nSrcStep, GByte
xpabyDstData, int nDstOffset, int nDstStep, int nBitCount, int nStepCount)

e int GDALReadWorldFile (const char xpszBaseFilename, const char spszExtension, double
xpadfGeoTransform)

e int GDALWriteWorldFile (const char xpszBaseFilename, const char xpszExtension, double
xpadfGeoTransform)

* int GDALReadTabFile (const char sxpszBaseFilename, double xpadfGeoTransform, char
xxppszWKT, int xpnGCPCount, GDAL_GCP xxppasGCPs)

¢ const char * GDALDecToDMS (double, const char *, int)

¢ double GDALPackedDMSToDec (double)

¢ double GDALDecToPackedDMS (double)

¢ const char * GDALVersionInfo (const char)

e int GDALCheckVersion (int nVersionMajor, int nVersionMinor, const char
xpszCallingComponentName)

¢ int GDALExtractRPClInfo (char x*, GDALRPCInfo %)

¢ GDALColorTableH GDALCreateColorTable (GDALPaletteInterp)

* void GDALDestroyColorTable (GDALColorTableH)

344

File Documentation

GDALColorTableH GDALCloneColorTable (GDALColorTableH)
GDALPaletteInterp GDALGetPaletteInterpretation (GDALColorTableH)

int GDALGetColorEntryCount (GDALColorTableH)

const GDALColorEntry + GDALGetColorEntry (GDALColorTableH, int)

int GDALGetColorEntryAsRGB (GDALColorTableH, int, GDALColorEntry)

void GDALSetColorEntry (GDALColorTableH, int, const GDALColorEntry)

void GDALCreateColorRamp (GDALColorTableH hTable, int nStartindex, const GDALCol-
orEntry xpsStartColor, int nEndIndex, const GDALColorEntry xpsEndColor)
GDALRasterAttributeTableH GDALCreateRasterAttributeTable (void)

void GDALDestroyRasterAttributeTable (GDALRasterAttributeTableH)

int GDALRATGetColumnCount (GDALRasterAttributeTableH)

const char * GDALRATGetNameOfCol (GDALRasterAttributeTableH, int)
GDALRATFieldUsage GDALRATGetUsageOfCol (GDALRasterAttributeTableH, int)
GDALRATFieldType GDALRATGetTypeOfCol (GDALRasterAttributeTableH, int)
int GDALRATGetColOfUsage (GDALRasterAttributeTableH, GDALRATFieldUsage)
int GDALRATGetRowCount (GDALRasterAttribute TableH)

const char * GDALRATGetValueAsString (GDALRasterAttributeTableH, int, int)

int GDALRATGetValueAsInt (GDALRasterAttributeTableH, int, int)

double GDALRATGetValueAsDouble (GDALRasterAttributeTableH, int, int)

void GDALRATSetValueAsString (GDALRasterAttributeTableH, int, int, const char)
void GDALRATSetValueAsInt (GDALRasterAttributeTableH, int, int, int)

void GDALRATSetValueAsDouble (GDALRasterAttributeTableH, int, int, double)
void GDALRATSetRowCount (GDALRasterAttributeTableH, int)

CPLErr GDALRAT CreateColumn (GDALRasterAttributeTableH, const char *, GDALRATField-
Type, GDALRATFieldUsage)

CPLErr GDALRATSetLinearBinning (GDALRasterAttributeTableH, double, double)
int GDALRATGetLinearBinning (GDALRasterAttributeTableH, double %, double *)

CPLErr GDALRATInitializeFromColorTable (GDALRasterAttributeTableH, @ GDALCol-
orTableH)

GDALColorTableH GDALRAT TranslateToColorTable (int nEntryCount)
void GDALRATDumpReadable (GDALRasterAttributeTableH, FILE x)
GDALRasterAttributeTableH GDALRAT Clone (GDALRasterAttributeTableH)
int GDALRATGetRowOfValue (GDALRasterAttributeTableH, double)

void GDALSetCacheMax (int nBytes)

int GDALGetCacheMax (void)

int GDALGetCacheUsed (void)

int GDALFlushCacheBlock (void)

40.9.1 Detailed Description

Public (C callable) GDAL entry points.

40.9.2 Define Documentation

40.9.2.1 #define GDAL_CHECK _-

VERSION(pszCallingComponentName) GDALCheckVersion(GDAL_-
VERSION_MAJOR, GDAL_VERSION_MINOR, pszCallingComponentName)

Helper macro for GDALCheck Version

40.9 gdal.h File Reference 345

40.9.2.2 #define SRCVAL(papoSource, eSrcType, ii)

Value:
(eSrcType == GDT_Byte 2 \

((GByte =*)papoSource) [1i] : \
(eSrcType == GDT_Float32 2 \

((float «)papoSource) [1i] : \
(eSrcType == GDT_Float64 ? \

((double «*)papoSource) [ii] : \
(eSrcType == GDT_Int32 ? \

((GInt32 x)papoSource) [ii1] : \
(eSrcType == GDT_UIntlé6 2 \

((GUIntl6 *)papoSource) [11] : \
(eSrcType == GDT_Intlé6 ? \

((GIntl6 x)papoSource) [ii] : \
(eSrcType == GDT_UInt32 2 \

((GUINnt32 *)papoSource) [1i] : \
(eSrcType == GDT_CIntl6 2 \

((GIntl6 x)papoSource) [i1 = 2] : \
(eSrcType == GDT_CInt32 2 \

((GInt32 *)papoSource) [ii * 2] : \
(eSrcType == GDT_CFloat32 2 \

((float «)papoSource) [11 * 2] : \
(eSrcType == GDT_CFloat64 2 \

((double x)papoSource) [1ii + 2] : 0)))))))))))

SRCVAL - Macro which may be used by pixel functions to obtain a pixel from a source buffer.

40.9.3 Enumeration Type Documentation
40.9.3.1 enum GDALAccess
Flag indicating read/write, or read-only access to data.

Enumerator:

GA_ReadOnly Read only (no update) access
GA_Update Read/write access.

40.9.3.2 enum GDALColorInterp
Types of color interpretation for raster bands.

Enumerator:

GCI_GrayIndex Greyscale

GCI_PaletteIndex Paletted (see associated color table)
GCI_RedBand Red band of RGBA image
GCI_GreenBand Green band of RGBA image
GCI_BlueBand Blue band of RGBA image
GCI_AlphaBand Alpha (O=transparent, 255=opaque)
GCI_HueBand Hue band of HLS image
GCI_SaturationBand Saturation band of HLS image

346 File Documentation

GCI_LightnessBand Lightness band of HLS image
GCI_CyanBand Cyan band of CMYK image
GCI_MagentaBand Magenta band of CMYK image
GCI _YellowBand Yellow band of CMYK image
GCI_BlackBand Black band of CMLY image
GCI_YCbCr_YBand Y Luminance
GCI_YCbCr_CbBand Cb Chroma
GCI_YCbCr_CrBand Cr Chroma

GCI_Max Max current value

40.9.3.3 enum GDALDataType

Pixel data types

Enumerator:

GDT_Byte FEight bit unsigned integer

GDT Ulntl6 Sixteen bit unsigned integer
GDT Intl6 Sixteen bit signed integer
GDT _UlInt32 Thirty two bit unsigned integer
GDT _Int32 Thirty two bit signed integer
GDT_Float32 Thirty two bit floating point
GDT _Float64 Sixty four bit floating point
GDT_CIntl16 Complex Intl16
GDT_CInt32 Complex Int32
GDT_CFloat32 Complex Float32
GDT_CFloat64 Complex Float64

40.9.3.4 enum GDALPaletteInterp

Types of color interpretations for a GDALColorTable (p. ??).

Enumerator:
GPI_Gray Grayscale (in GDALColorEntry.cl (p. 2?))
GPI_RGB Red, Green, Blue and Alphain (in c1, ¢2, ¢3 and c4)
GPI_CMYK Cyan, Magenta, Yellow and Black (in c1, c2, ¢3 and c4)
GPI_HLS Hue, Lightness and Saturation (in c1, c2, and c3)

40.9.3.5 enum GDALRATFieldType

Enumerator:

GFT _Integer Integer field
GFT_Real Floating point (double) field
GFT_String String field

40.9 gdal.h File Reference 347

40.9.3.6 enum GDALRATFieldUsage

Enumerator:
GFU_Generic General purpose field.
GFU_PixelCount Histogram pixel count
GFU_Name Class name
GFU_Min Class range minimum
GFU_Max Class range maximum
GFU_MinMax Class value (min=max)
GFU_Red Red class color (0-255)
GFU_Green Green class color (0-255)
GFU_Blue Blue class color (0-255)
GFU_Alpha Alpha (O=transparent,255=opaque)
GFU_RedMin Color Range Red Minimum
GFU_GreenMin Color Range Green Minimum
GFU_BlueMin Color Range Blue Minimum
GFU_AlphaMin Color Range Alpha Minimum
GFU_RedMax Color Range Red Maximum
GFU_GreenMax Color Range Green Maximum
GFU_BlueMax Color Range Blue Maximum
GFU_AlphaMax Color Range Alpha Maximum
GFU_MaxCount Maximum GFU value

40.9.3.7 enum GDALRWFlag
Read/Write flag for RasterIO() method

Enumerator:

GF_Read Read data
GF_Write Write data

40.9.4 Function Documentation

40.9.4.1 CPLErr GDALAddBand (GDALDatasetH hDataset, GDALDataType eType, char xx
papszOptions)

See also:

GDALDataset::AddBand() (p. ??).

References GDALAddBand().
Referenced by GDALAddBand().

348 File Documentation

40.9.4.2 CPLErr GDALAddDerivedBandPixelFunc (const char x pszFuncName,
GDALDerivedPixelFunc pfnNewFunction)

This adds a pixel function to the global list of available pixel functions for derived bands. Pixel functions
must be registered in this way before a derived band tries to access data.

Derived bands are stored with only the name of the pixel function that it will apply, and if a pixel function
matching the name is not found the IRasterIO() call will do nothing.

Parameters:

pszFuncName Name used to access pixel function

pfnNewFunction Pixel function associated with name. An existing pixel function registered with the
same name will be replaced with the new one.

Returns:

CE_None, invalid (NULL) parameters are currently ignored.

40.9.4.3 void GDALAIIRegister (void)

Register all known configured GDAL drivers.

This function will drive any of the following that are configured into GDAL. Possible others as well that
haven’t been updated in this documentation:

* GeoTIFF (GTiff)

¢ Geosoft GXF (GXF)

* Erdas Imagine (HFA)

* CEOS (CEOS)

* ELAS (ELAS)

* Arc/Info Binary Grid (AIGrid)

* SDTS Raster DEM (SDTS)

* OGDI (OGDI)

¢ ESRI Labelled BIL (EHdr)

¢ PCI .aux Labelled Raw Raster (PAux)

* HDF4 Hierachal Data Format Release 4
* HDFS5 Hierachal Data Format Release 5
* GSAG Golden Software ASCII Grid

* GSBG Golden Software Binary Grid

References GDALDriverManager::AutoLoadDrivers(), GDALDriverManager::AutoSkipDrivers(), and
GDALAIIRegister().

Referenced by GDALAIIRegister().

40.9 gdal.h File Reference 349

40.9.4.4 void GDALApplyGeoTransform (double x padfGeoTransform, double dfPixel, double
dfLine, double * pdfGeoX, double * pdfGeoY)
Apply GeoTransform to x/y coordinate.

Applies the following computation, converting a (pixel,line) coordinate into a georeferenced (geo_x,geo_y)
location.

xpdfGeoX = padfGeoTransform[0] + dfPixel * padfGeoTransform[1] + dfLine * padfGeoTransform[2];
xpdfGeoY = padfGeoTransform[3] + dfPixel * padfGeoTransform[4] + dfLine * padfGeoTransform[5];

Parameters:
padfGeoTransform Six coefficient GeoTransform to apply.
dfPixel Input pixel position.
dfLine Input line position.
xpdfGeoX output location where GeoX (easting/longitude) location is placed.
xpdfGeoY output location where GeoX (northing/latitude) location is placed.

References GDALApplyGeoTransform().
Referenced by GDALApplyGeoTransform().

40.9.4.5 CPLErr GDALBuildOverviews (GDALDatasetH hDataset, const char x pszResampling,
int nOverviews, int x panOverviewList, int nListBands, int x panBandList,
GDALProgressFunc pfnProgress, void x pProgressData)

See also:

GDALDataset::BuildOverviews() (p.??)

References GDALBuildOverviews().
Referenced by GDALBuildOverviews().

40.9.4.6 int GDALCheckVersion (int nVersionMajor, int nVersionMinor, const char x
pszCallingComponentName)
Return TRUE if GDAL library version at runtime matches nVersionMajor.nVersionMinor.
The purpose of this method is to ensure that calling code will run with the GDAL version it is compiled
for. It is primarly intented for external plugins.
Parameters:
nVersionMajor Major version to be tested against
nVersionMinor Minor version to be tested against

pszCallingComponentName 1f not NULL, in case of version mismatch, the method will issue a failure
mentionning the name of the calling component.

References GDALCheckVersion().
Referenced by GDALCheckVersion().

350 File Documentation

40.9.4.7 void GDALClose (GDALDatasetH hDS)

Close GDAL dataset.

For non-shared datasets (opened with GDALOpen() (p. ??)) the dataset is closed using the C++ "delete"
operator, recovering all dataset related resources. For shared datasets (opened with GDALOpenShared()
(p- ??)) the dataset is dereferenced, and closed only if the referenced count has dropped below 1.

Parameters:

hDS The dataset to close. May be cast from a "GDALDataset *".

References GDALDataset::Dereference(), and GDALClose().

Referenced by GDALDriver::CopyFiles(), GDALDriver::Delete(), GDALClose(), and
GDALDriver::Rename().

40.9.4.8 void GDALComputeRasterMinMax (GDALRasterBandH hBand, int bApproxOK,
double adfMinMax[2])

Compute the min/max values for a band.

If approximate is OK, then the band’s GetMinimum()/GetMaximum() will be trusted. If it doesn’t work, a
subsample of blocks will be read to get an approximate min/max. If the band has a nodata value it will be
excluded from the minimum and maximum.

If bApprox is FALSE, then all pixels will be read and used to compute an exact range.

Parameters:

hBand the band to copmute the range for.
bApproxOK TRUE if an approximate (faster) answer is OK, otherwise FALSE.

adfMinMax the array in which the minimum (adfMinMax[0]) and the maximum (adfMinMax[1]) are
returned.

References GDALComputeRasterMinMax(), GDALGetRasterMaximum(), =~ GDALGetRasterMini-
mum(), GDALGetRasterSampleOverview(), GDT_Byte, GDT_CFloat32, GDT_CFloat64, GDT._-
CInt16, GDT_CInt32, GDT_Float32, GDT_Float64, GDT_Intl6, GDT_Int32, GDT_Ulntl6, GDT_-
UlInt32, GDALRasterBand::GetBlockSize(), GDALRasterBand::GetLockedBlockRef(), GDALRaster-
Band::GetNoDataValue(), GDALRasterBand::GetXSize(), and GDALRasterBand::GetY Size().

Referenced by GDALComputeRasterMinMax().

40.9.4.9 void GDALCopyBits (const GByte * pabySrcData, int nSrcOffset, int nSrcStep, GByte *
pabyDstData, int nDstOffset, int nDstStep, int nBitCount, int nStepCount)

Bitwise word copying.

A function for moving sets of partial bytes around. Loosely speaking this is a bitswise analog to GDAL-
CopyWords() (p.??).

It copies nStepCount "words" where each word is nBitCount bits long. The nSrcStep and nDstStep are
the number of bits from the start of one word to the next (same as nBitCount if they are packed). The
nSrcOffset and nDstOffset are the offset into the source and destination buffers to start at, also measured in
bits.

40.9 gdal.h File Reference 351

All bit offsets are assumed to start from the high order bit in a byte (ie. most significant bit first). Currently
this function is not very optimized, but it may be improved for some common cases in the future as needed.

Parameters:

pabySrcData the source data buffer.

nSrcOffset the offset (in bits) in pabySrcData to the start of the first word to copy.
nSrcStep the offset in bits from the start one source word to the start of the next.
pabyDstData the destination data buffer.

nDstOffset the offset (in bits) in pabyDstData to the start of the first word to copy over.
nDstStep the offset in bits from the start one word to the start of the next.

nBitCount the number of bits in a word to be copied.

nStepCount the number of words to copy.

References GDALCopyBits().
Referenced by GDALCopyBits().

40.9.4.10 CPLErr GDALCopyDatasetFiles (GDALDriverH hDriver, const char x pszNewName,
const char x pszOldName)

See also:

GDALDriver::CopyFiles() (p. ??)

References GDALCopyDatasetFiles().
Referenced by GDALCopyDatasetFiles().

40.9.4.11 void GDALCopyWords (void * pSrcData, GDALDataType eSrcType, int
nSrcPixelOffset, void * pDstData, GDALDataType eDstType, int nDstPixelOffset, int
nWordCount)

Copy pixel words from buffer to buffer.

This function is used to copy pixel word values from one memory buffer to another, with support for
conversion between data types, and differing step factors. The data type conversion is done using the normal
GDAL rules. Values assigned to a lower range integer type are clipped. For instance assigning GDT_Int16
values to a GDT_Byte buffer will cause values less the 0 to be set to 0, and values larger than 255 to be
set to 255. Assignment from floating point to integer uses default C type casting semantics. Assignment
from non-complex to complex will result in the imaginary part being set to zero on output. Assigment
from complex to non-complex will result in the complex portion being lost and the real component being
preserved (not magnitidue!).

No assumptions are made about the source or destination words occuring on word boundaries. It is assumed
that all values are in native machine byte order.

Parameters:
pSrcData
References GDALCopyWords(), GDALGetDataTypeSize(), GDT_Byte, GDT_CFloat32, GDT_CFloat64,

GDT_ClInt16, GDT_CInt32, GDT_Float32, GDT_Float64, GDT_Int16, GDT_Int32, GDT_UlInt16, and
GDT_UlInt32.

Referenced by GDALRasterBand::Fill(), GDALCopyWords(), and GDALWarpOperation::WarpRegion().

352 File Documentation

40.9.4.12 GDALDatasetH GDALCreate (GDALDriverH hDriver, const char x pszFilename, int
nXSize, int nYSize, int nBands, GDALDataType eBandType, char xx papszOptions)
See also:

GDALDriver::Create() (p. ??)

References GDALDriver::Create(), and GDALCreate().
Referenced by GDALCreate().

40.9.4.13 GDALDatasetH GDALCreateCopy (GDALDriverH hDriver, const char x pszFilename,
GDALDatasetH hSrcDS, int bStrict, char xx papszOptions, GDALProgressFunc
pfnProgress, void x pProgressData)

See also:

GDALDriver::CreateCopy() (p.??)

References GDALDriver::CreateCopy(), and GDALCreateCopy().
Referenced by GDALCreateCopy().

40.9.4.14 void+ GDALCreateScaledProgress (double dfMin, double dfMax, GDALProgressFunc
pfnProgress, void x pData)
Create scaled progress transformer.

Sometimes when an operations wants to report progress it actually invokes several subprocesses which also
take GDALProgressFunc()s, and it is desirable to map the progress of each sub operation into a portion of
0.0 to 1.0 progress of the overall process. The scaled progress function can be used for this.

For each subsection a scaled progress function is created and instead of passing the overall progress func
down to the sub functions, the GDALScaledProgress() (p. ??) function is passed instead.

Parameters:

dfMin the value to which 0.0 in the sub operation is mapped.
dfMax the value to which 1.0 is the sub operation is mapped.
pfnProgress the overall progress function.

pData the overall progress function callback data.

Returns:
pointer to pass as pProgressArg to sub functions. Should be freed with GDALDestroyScaled-
Progress() (p.??).

Example:

int MyOperation(..., GDALProgressFunc pfnProgress, void xpProgressData);

{

void xpScaledProgress;

pScaledProgress = GDALCreateScaledProgress(0.0, 0.5, pfnProgress,
pProgressData) ;

40.9 gdal.h File Reference 353

GDALDoLongSlowOperation(..., GDALScaledProgress, pScaledProgress);
GDALDestroyScaledProgress (pScaledProgress);

pScaledProgress = GDALCreateScaledProgress(0.5, 1.0, pfnProgress,
pProgressData);

GDALDoAnotherOperation(..., GDALScaledProgress, pScaledProgress);

GDALDestroyScaledProgress (pScaledProgress);

return ...;

}

References GDALCreateScaledProgress().
Referenced by GDALCreateScaledProgress().

40.9.4.15 CPLErr GDALDatasetCopyWholeRaster (GDALDatasetH hSrcDS, GDALDatasetH
hDstDS, char xx papszOptions, GDALProgressFunc pfnProgress, void * pProgressData)

Copy all dataset raster data.

This function copies the complete raster contents of one dataset to another similarly configured dataset.
The source and destination dataset must have the same number of bands, and the same width and height.
The bands do not have to have the same data type.

This function is primarily intended to support implementation of driver specific CreateCopy() functions. It
implements efficient copying, in particular "chunking" the copy in substantial blocks and, if appropriate,
performing the transfer in a pixel interleaved fashion.

Currently the only papszOptions value supported is "INTERLEAVE=PIXEL" to force pixel interleaved
operation. More options may be supported in the future.

Parameters:

hSreDS the source dataset

hDstDS the destination dataset

papszOptions transfer hints in "StringList" Name=Value format.
pfnProgress progress reporting function.

pProgressData callback data for progress function.
Returns:

CE_None on success, or CE_Failure on failure.
References GDALDatasetCopyWholeRaster(), GDALGetDataTypeSize(), GDALRaster-
Band::GetBlockSize(), GDALMajorObject::GetMetadataltem(), GDALDataset::GetRasterBand(), GDAL-

Dataset::GetRasterCount(), GDALRasterBand::GetRasterDataType(), GDALDataset::GetRasterXSize(),
GDALDataset::GetRasterYSize(), GF_Read, GF_Write, and GDALDataset::RasterIO().

Referenced by GDALDatasetCopyWholeRaster().

40.9.4.16 CPLErr GDALDatasetRaster]O (GDALDatasetH DS, GDALRWFlag eRWFlag, int
nXOff, int nYOff, int nXSize, int nYSize, void * pData, int nBufXSize, int nBufYSize,
GDALDataType eBufType, int nBandCount, int x panBandMap, int nPixelSpace, int
nLineSpace, int nBandSpace)

See also:

GDALDataset::RasterIO() (p. ??)

354 File Documentation

References GDALDatasetRasterIO(), and GDALDataset::RasterIO().

Referenced by GDALDatasetRasterlO(), GDALWarpOperation::WarpRegion(), and GDALWarpOpera-
tion:: WarpRegionToBuffer().

40.9.4.17 int GDALDataTypelsComplex (GDALDataType eDataType)

Is data type complex?

Returns:

TRUE if the passed type is complex (one of GDT_ClInt16, GDT_CInt32, GDT_CFloat32 or GDT_-
CFloat64), that is it consists of a real and imaginary component.

References GDALDataTypelsComplex(), GDT_CFloat32, GDT_CFloat64, GDT_CIntl6, and GDT_-
CInt32.

Referenced by GDALChecksumImage(), GDALDataTypelsComplex(), GDALDataTypeUnion(), and
GDALWarpOperation::Initialize().

40.9.4.18 GDALDataType GDALDataTypeUnion (GDALDataType eTypel, GDALDataType
eType2)

Return the smallest data type that can fully express both input data types.

Parameters:

eTypel
eType2

Returns:

a data type able to express eTypel and eType2.

References GDALDataTypelsComplex(), GDALDataTypeUnion(), GDT_Byte, GDT_CFloat32, GDT_-
CFloat64, GDT_ClInt16, GDT_ClInt32, GDT_Float32, GDT_Float64, GDT_Int16, GDT_Int32, GDT_-
Ulnt16, and GDT_UInt32.

Referenced by GDALDataTypeUnion(), and GDALWarpOperation::Initialize().

40.9.4.19 double GDALDecToPackedDMS (double dfDec)

Convert decimal degrees into packed DMS value (DDDMMMSSS.SS).
See CPLDecToPackedDMS() (p. ??).

References GDALDecToPackedDMS().

Referenced by GDALDecToPackedDMS().

40.9.4.20 CPLErr GDALDeleteDataset (GDALDriverH hDriver, const char x pszFilename)

See also:

GDALDriver::Delete() (p.??)

40.9 gdal.h File Reference 355

References GDALDeleteDataset().
Referenced by GDALDeleteDataset().

40.9.4.21 int GDALDereferenceDataset (GDALDatasetH hDataset)

See also:

GDALDataset::Dereference() (p. ??)

References GDALDereferenceDataset().
Referenced by GDALDereferenceDataset().

40.9.4.22 void GDALDeregisterDriver (GDALDriverH hDriver)

See also:

GDALDriverManager::GetDeregisterDriver()

References GDALDriverManager::DeregisterDriver(), and GDALDeregisterDriver().
Referenced by GDALDeregisterDriver().

40.9.4.23 void GDALDestroyDriverManager (void)

Destroy the driver manager.
Incidently unloads all managed drivers.

NOTE: This function is not thread safe. It should not be called while other threads are actively using
GDAL.

References GDALDestroyDriverManager().
Referenced by GDALDestroyDriverManager().

40.9.4.24 void GDALDestroyScaledProgress (void * pData)

Cleanup scaled progress handle.

This function cleans up the data associated with a scaled progress function as returned by GADLCre-
ateScaledProgress().

Parameters:

pData scaled progress handle returned by GDALCreateScaledProgress() (p. 2?).

References GDALDestroyScaledProgress().
Referenced by GDALDestroyScaledProgress().

40.9.4.25 int GDALDumpOpenDatasets (FILE x* fp)

List open datasets.

356 File Documentation

Dumps a list of all open datasets (shared or not) to the indicated text file (may be stdout or stderr). This
function is primariliy intended to assist in debugging "dataset leaks" and reference counting issues. The
information reported includes the dataset name, referenced count, shared status, driver name, size, and
band count.

References GDALDataset::Dereference(), GDALDumpOpenDatasets(), GDALMajorOb-
ject::GetDescription(), GDALDataset::GetDriver(), GDALDataset::GetRasterCount(), GDAL-
Dataset::GetRasterXSize(), GDALDataset::GetRasterYSize(), GDALDataset::GetShared(), and GDAL-
Dataset::Reference().

Referenced by GDALDumpOpenDatasets().

40.9.4.26 CPLErr GDALFillRaster (GDALRasterBandH hBand, double dfRealValue, double
dfImaginaryValue)

Fill this band with a constant value. Set dflmaginaryValue to zero non-complex rasters.

Parameters:

dfRealvalue Real component of fill value

dfImaginaryValue Imaginary component of fill value

See also:

GDALRasterBand::Fill() (p. ??)

Returns:

CE_Failure if the write fails, otherwise CE_None

References GDALFillRaster().
Referenced by GDALFillRaster().

40.9.4.27 void GDALFlushCache (GDALDatasetH hDS)
See also:

GDALDataset::FlushCache() (p. 2?).

References GDALFlushCache().
Referenced by GDALFlushCache(), and GDALWarpOperation:: WarpRegion().

40.9.4.28 CPLErr GDALFlushRasterCache (GDALRasterBandH hBand)
See also:

GDALRasterBand::FlushCache() (p.??)

References GDALFlushRasterCache().
Referenced by GDALFlushRasterCache().

40.9 gdal.h File Reference 357

40.9.4.29 int GDALGCPsToGeoTransform (int nGCPCount, const GDAL_GCP x pasGCPs,
double * padfGeoTransform, int bApproxOK)

Generate Geotransform from GCPs.
Given a set of GCPs perform first order fit as a geotransform.

Due to imprecision in the calculations the fit algorithm will often return non-zero rotational coefficients
even if given perfectly non-rotated inputs. A special case has been implemented for corner corner coordi-
nates given in TL, TR, BR, BL order. So when using this to get a geotransform from 4 corner coordinates,
pass them in this order.

Parameters:
nGCPCount the number of GCPs being passed in.
pasGCPs the list of GCP structures.
padfGeoTransform the six double array in which the affine geotransformation will be returned.

bApproxOK 1f FALSE the function will fail if the geotransform is not essentially an exact fit (within
0.25 pixel) for all GCPs.

Returns:

TRUE on success or FALSE if there aren’t enough points to prepare a geotransform, the pointers are
ill-determined or if bApproxOK is FALSE and the fit is poor.

References GDAL_GCP::dfGCPLine, GDAL_GCP::dfGCPPixel, GDAL_GCP::dfGCPX, GDAL_-
GCP::dfGCPY, and GDALGCPsToGeoTransform().

Referenced by GDALGCPsToGeoTransform().

40.9.4.30 int GDALGeneralCmdLineProcessor (int nArgc, char xxx ppapszArgv, int nOptions)

General utility option processing.

This function is intended to provide a variety of generic commandline options for all GDAL commandline
utilities. It takes care of the following commandline options:

—version: report version of GDAL in use. —license: report GDAL license info. —formats: report all format
drivers configured. —format [format]: report details of one format driver. —optfile filename: expand an
option file into the argument list. —config key value: set system configuration option. —debug [on/off/value]:
set debug level. —-mempreload dir: preload directory contents into /vsimem —help-general: report detailed
help on general options.

The argument array is replaced "in place” and should be freed with CSLDestroy() (p. ??) when no longer
needed. The typical usage looks something like the following. Note that the formats should be registered
so that the —formats and —format options will work properly.

int main(int argc, char *x* argv) { GDALAIIRegister() (p. ??);
argc = GDALGeneralCmdLineProcessor(arge, &argv, 0); if(arge < 1) exit(-argc);

Parameters:
nArgc number of values in the argument list.

Pointer to the argument list array (will be updated in place).

358 File Documentation

Returns:

updated nArgc argument count. Return of O requests terminate without error, return of -1 requests exit
with error code.

References CPLFormFilename(), GDALGeneralCmdLineProcessor(), GDALGetDriver(), GDAL-
GetDriverByName(), GDALGetDriverCount(), GDALGetMetadata(), GDALGetMetadataltem(), and
GDALVersionInfo().

Referenced by GDALGeneralCmdLineProcessor().

40.9.4.31 int GDALGetAccess (GDALDatasetH 2DS)

See also:

GDALDataset::GetAccess()
References GDALGetAccess().

Referenced by GDALGetAccess().

40.9.4.32 GDALDatasetH GDALGetBandDataset (GDALRasterBandH hBand)

See also:

GDALRasterBand::GetDataset() (p. ??)
References GDALGetBandDataset().

Referenced by GDALContourGenerate(), and GDALGetBandDataset().

40.9.4.33 int GDALGetBandNumber (GDALRasterBandH hBand)

See also:

GDALRasterBand::GetBand() (p.??)
References GDALGetBandNumber().

Referenced by GDALGetBandNumber().

40.9.4.34 void GDALGetBlockSize (GDALRasterBandH kBand, int « pnXSize, int x pnYSize)

See also:

GDALRasterBand::GetBlockSize() (p. ??)

References GDALGetBlockSize(), and GDALRasterBand::GetBlockSize().
Referenced by GDALGetBlockSize().

40.9.4.35 int GDALGetCacheMax (void)

Get maximum cache memory.

Gets the maximum amount of memory available to the GDALRasterBlock caching system for caching
GDAL read/write imagery.

40.9 gdal.h File Reference 359

Returns:

maximum in bytes.

References GDALGetCacheMax().
Referenced by GDALGetCacheMax().

40.9.4.36 int GDALGetCacheUsed (void)

Get cache memory used.

Returns:

the number of bytes of memory currently in use by the GDALRasterBlock memory caching.

References GDALGetCacheUsed().
Referenced by GDALGetCacheUsed().

40.9.4.37 const charx GDALGetColorInterpretationName (GDALColorInterp)

Translate a GDALColorInterp into a user displayable string.

References GCI_AlphaBand, GCI_BlackBand, GCI_BlueBand, GCI_CyanBand, GCI_Graylndex,
GCI_GreenBand, GCI_HueBand, GCI_LightnessBand, GCI_MagentaBand, GCI_PaletteIndex, GCI_-
RedBand, GCI_SaturationBand, GCI_YCbCr_CbBand, GCI_YCbCr_CrBand, GCI_YCbCr_YBand,
GCI_YellowBand, and GDALGetColorInterpretationName().

Referenced by GDALGetColorInterpretationName().

40.9.4.38 GDALDriverH GDALGetDatasetDriver (GDALDatasetH hDataset)

See also:

GDALDataset::GetDriver() (p. ??)

References GDALGetDatasetDriver().
Referenced by GDALGetDatasetDriver().

40.9.4.39 GDALDataType GDALGetDataTypeByName (const char x pszName)

Get data type by symbolic name.

Returns a data type corresponding to the given symbolic name. This function is opposite to the GDAL-
GetDataTypeName() (p. ??).

Parameters:

pszName string containing the symbolic name of the type.

Returns:

GDAL data type.

References GDALGetDataTypeByName(), and GDALGetDataTypeName().
Referenced by GDALGetDataTypeByName().

360 File Documentation

40.9.4.40 const charx GDALGetDataTypeName (GDALDataType eDataType)

Get name of data type.

Returns a symbolic name for the data type. This is essentially the the enumerated item name with the
GDT_ prefix removed. So GDT_Byte returns "Byte". The returned strings are static strings and should
not be modified or freed by the application. These strings are useful for reporting datatypes in debug
statements, errors and other user output.

Parameters:

eDataType type to get name of.

Returns:

string corresponding to type.

References GDALGetDataTypeName(), GDT_Byte, GDT_CFloat32, GDT_CFloat64, GDT_CIntl6,
GDT_ClInt32, GDT_Float32, GDT_Float64, GDT_Int16, GDT_Int32, GDT_Ulnt16, and GDT_UInt32.

Referenced by GDALDriver::Create(), GDALGetDataTypeByName(), and GDALGetDataTypeName().

40.9.4.41 int GDALGetDataTypeSize (GDALDataType eDataType)

Get data type size in bits.

Returns the size of a a GDT_x type in bits, not bytes!

Parameters:

data type, such as GDT_Byte.

Returns:

the number of bits or zero if it is not recognised.

References GDALGetDataTypeSize(), GDT_Byte, GDT_CFloat32, GDT_CFloat64, GDT_CIntl6,
GDT_ClInt32, GDT_Float32, GDT_Float64, GDT _Int16, GDT _Int32, GDT_UInt16, and GDT_UInt32.

Referenced by GDALRasterBand::Fill(), GDALCopyWords(), GDALDatasetCopyWholeRaster(),
GDALGetDataTypeSize(), GDALRasterizeGeometries(), GDALRasterBand::RasterIO(),
GDALDataset::RasterlO(), GDALWarpOperation::WarpRegion(), and GDALWarpOpera-
tion:: WarpRegionToBuffer().

40.9.4.42 const charx GDALGetDescription (GDALMajorObjectH hObject)
See also:

GDALMajorObject::GetDescription() (p. ??)

References GDALGetDescription().
Referenced by GDALCreateGenlmgProjTransformer(), and GDALGetDescription().

40.9 gdal.h File Reference 361

40.9.4.43 GDALDriverH GDALGetDriver (int iDriver)

See also:

GDALDriverManager::GetDriver() (p. ??)

References GDALGetDriver(), and GDALDriverManager::GetDriver().
Referenced by GDALGeneralCmdLineProcessor(), and GDALGetDriver().

40.9.4.44 GDALDriverH GDALGetDriverByName (const char x pszName)

See also:

GDALDriverManager::GetDriverByName() (p. ??)

References GDALGetDriverByName(), and GDALDriverManager::GetDriverByName().
Referenced by GDALGeneralCmdLineProcessor(), and GDALGetDriverByName().

40.9.4.45 int GDALGetDriverCount (void)

See also:

GDALDriverManager::GetDriverCount() (p. ??)

References GDALGetDriverCount(), and GDALDriverManager::GetDriverCount().
Referenced by GDALGeneralCmdLineProcessor(), and GDALGetDriverCount().

40.9.4.46 charx+x GDALGetFileList (GDALDatasetH hDS)

See also:

GDALDataset::GetFileList() (p. ??)

References GDALGetFileList().
Referenced by GDALDriver::CopyFiles(), GDALDriver::Delete(), GDALGetFileList(), and

GDALDriver::Rename().
40.9.4.47 int GDALGetGCPCount (GDALDatasetH ihDS)

See also:

GDALDataset::GetGCPCount() (p. ??)

References GDALGetGCPCount().

Referenced by GDALAutoCreateWarped VRT(), GDALCreateGenlmgProjTransformer(), and GDALGet-
GCPCount().

40.9.4.48 const charx GDALGetGCPProjection (GDALDatasetH hDS)

See also:

GDALDataset::GetGCPProjection() (p.??)

362 File Documentation

References GDALGetGCPProjection().
Referenced by GDALAutoCreateWarped VRT(), and GDALGetGCPProjection().

40.9.4.49 const GDAL_GCPx GDALGetGCPs (GDALDatasetH hDS)
See also:

GDALDataset::GetGCPs() (p.??)

References GDALGetGCPs().
Referenced by GDALCreateGenlmgProjTransformer(), and GDALGetGCPs().

40.9.4.50 CPLErr GDALGetGeoTransform (GDALDatasetH kDS, double x padfTransform)
See also:

GDALDataset::GetGeoTransform() (p. ??)

References GDALGetGeoTransform(), and GDALDataset::GetGeoTransform().
Referenced by GDALContourGenerate(), GDALCreateGenlmgProjTransformer(), and GDALGetGeo-

Transform().
40.9.4.51 void+x GDALGetInternalHandle (GDALDatasetH kDS, const char * pszRequest)
See also:

GDALDataset::GetInternalHandle() (p. ??)

References GDALGetInternalHandle(), and GDALDataset::GetInternalHandle().
Referenced by GDALGetInternalHandle().

40.9.4.52 charxx GDALGetMetadata (GDALMajorObjectH hObject, const char x pszDomain)

See also:

GDALMajorObject::GetMetadata() (p. ??)

References GDALGetMetadata().

Referenced by GDALCreateGenlmgProjTransformer(), GDALGeneralCmdLineProcessor(), and GDAL-
GetMetadata().

40.9.4.53 const char+ GDALGetMetadataltem (GDALMajorObjectH hObject, const char *
pszName, const char x pszZDomain)
See also:

GDALMajorObject::GetMetadataltem() (p.??)

References GDALGetMetadataltem().
Referenced by GDALGeneralCmdLineProcessor(), and GDALGetMetadataltem().

40.9 gdal.h File Reference 363

40.9.4.54 void GDALGetOpenDatasets (GDALDatasetH xx ppahDSList, int x pnCount)

See also:

GDALDataset::GetOpenDatasets() (p. ??)

References GDALGetOpenDatasets(), and GDALDataset::GetOpenDatasets().
Referenced by GDALGetOpenDatasets().

40.9.4.55 GDALRasterBandH GDALGetOverview (GDALRasterBandH hBand, int i)

See also:

GDALRasterBand::GetOverview() (p. ??)

References GDALGetOverview().
Referenced by GDALGetOverview(), and GDALGetRasterSampleOverview().

40.9.4.56 int GDALGetOverviewCount (GDALRasterBandH ZBand)

See also:

GDALRasterBand::GetOverviewCount() (p. 2?)

References GDALGetOverviewCount().
Referenced by GDALGetOverviewCount(), and GDALGetRasterSampleOverview().

40.9.4.57 const charx GDALGetPaletteInterpretationName (GDALPaletteInterp)

Translate a GDALPaletteInterp into a user displayable string.
References GDALGetPaletteInterpretationName(), GPI_CMYK, GPI_Gray, GPI_HLS, and GPI_RGB.
Referenced by GDALGetPaletteInterpretationName().

40.9.4.58 const char+ GDALGetProjectionRef (GDALDatasetH hDS)

See also:

GDALDataset::GetProjectionRef() (p. ??)

References GDALGetProjectionRef(), and GDALDataset::GetProjectionRef().

Referenced by GDALAutoCreateWarped VRT(), GDALCreateGenlmgProjTransformer(), and GDALGet-
ProjectionRef().

40.9.4.59 GDALAccess GDALGetRasterAccess (GDALRasterBandH hBand)

See also:

GDALRasterBand::GetAccess() (p. ??)

References GA_ReadOnly, and GDALGetRasterAccess().
Referenced by GDALGetRasterAccess().

364 File Documentation

40.9.4.60 GDALRasterBandH GDALGetRasterBand (GDALDatasetH 2DS, int nBandld)

See also:

GDALDataset::GetRasterBand() (p. ??).

References GDALGetRasterBand(), and GDALDataset::GetRasterBand().

Referenced by GDALCreateWarpedVRT(), GDALGetRasterBand(), GDALReprojectlmage(), GDALSim-
pleImageWarp(), and GDALWarpOperation::Initialize().

40.9.4.61 int GDALGetRasterBandXSize (GDALRasterBandH hBand)

See also:

GDALRasterBand::GetXSize() (p. 2?)

References GDALGetRasterBandXSize().

Referenced by GDALComputeMedianCutPCT(), GDALContourGenerate(), GDALDitherRGB2PCT(),
GDALGetRasterBandXSize(), and GDALGetRasterSampleOverview().

40.9.4.62 int GDALGetRasterBandYSize (GDALRasterBandH hBand)
See also:

GDALRasterBand::GetYSize() (p.??)

References GDALGetRasterBandY Size().
Referenced by GDALComputeMedianCutPCT(), GDALContourGenerate(), GDALDitherRGB2PCT(),

GDALGetRasterBandYSize(), and GDALGetRasterSampleOverview().
40.9.4.63 char+x GDALGetRasterCategoryNames (GDALRasterBandH hBand)
See also:

GDALRasterBand::GetCategoryNames() (p. ??)

References GDALGetRasterCategoryNames().
Referenced by GDALGetRasterCategoryNames().

40.9.4.64 GDALColorInterp GDALGetRasterColorInterpretation (GDALRasterBandH /hBand)
See also:

GDALRasterBand::GetColorInterpretation() (p. ??)

References GDALGetRasterColorInterpretation().
Referenced by GDALGetRasterColorInterpretation().

40.9 gdal.h File Reference 365

40.9.4.65 GDALColorTableH GDALGetRasterColorTable (GDALRasterBandH hZBand)

See also:

GDALRasterBand::GetColorTable() (p. ??)

References GDALGetRasterColorTable().
Referenced by GDALGetRasterColorTable().

40.9.4.66 int GDALGetRasterCount (GDALDatasetH hDS)

See also:

GDALDataset::GetRasterCount() (p. ??).

References GDALGetRasterCount(), and GDALDataset::GetRasterCount().

Referenced by GDALAutoCreateWarpedVRT(), GDALGetRasterCount(), GDALReprojectlmage(),
GDALSimpleImageWarp(), and GDALWarpOperation::Initialize().

40.9.4.67 GDALDataType GDALGetRasterDataType (GDALRasterBandH hBand)

See also:

GDALRasterBand::GetRasterDataType() (p.??)

References GDALGetRasterDataType(), and GDALRasterBand::GetRasterDataType().

Referenced by GDALChecksumImage(), GDALGetRasterDataType(), and GDALWarpOpera-
tion::Initialize().

40.9.4.68 CPLErr GDALGetRasterHistogram (GDALRasterBandH hBand, double dfMin,
double dfMax, int nBuckets, int x panHistogram, int bIncludeOutOfRange, int
bApproxOK, GDALProgressFunc pfnProgress, void x pProgressData)

See also:

GDALRasterBand::GetHistogram() (p. ??)

References GDALGetRasterHistogram(), and GDALRasterBand::GetHistogram().
Referenced by GDALGetRasterHistogram().

40.9.4.69 double GDALGetRasterMaximum (GDALRasterBandH kBand, int « pbSuccess)
See also:

GDALRasterBand::GetMaximum() (p. ??)

References GDALGetRasterMaximum().
Referenced by GDALComputeRasterMinMax(), and GDALGetRasterMaximum().

366 File Documentation

40.9.4.70 double GDALGetRasterMinimum (GDALRasterBandH %Band, int « pbSuccess)

See also:

GDALRasterBand::GetMinimum() (p. ??)

References GDALGetRasterMinimum().
Referenced by GDALComputeRasterMinMax(), and GDALGetRasterMinimum().

40.9.4.71 double GDALGetRasterNoDataValue (GDALRasterBandH hBand, int « pbSuccess)

See also:

GDALRasterBand::GetNoDataValue() (p.??)

References GDALGetRasterNoDataValue().
Referenced by GDALGetRasterNoDataValue(), and GDALReprojectImage().

40.9.4.72 GDALRasterBandH GDALGetRasterSampleOverview (GDALRasterBandH hBand,
int nDesiredSamples)
Fetch best sampling overview.

Returns the most reduced overview of the given band that still satisfies the desired number of samples.
This function can be used with zero as the number of desired samples to fetch the most reduced overview.
The same band as was passed in will be returned if it has not overviews, or if none of the overviews have
enough samples.

Parameters:
hBand the band to search for overviews on.

nDesiredSamples the returned band will have at least this many pixels.

Returns:

optimal overview or hBand itself.

References GDALGetOverview(), GDALGetOverviewCount(), GDALGetRasterBandXSize(), GDALGe-
tRasterBandYSize(), and GDALGetRasterSampleOverview().

Referenced by GDALRasterBand::ComputeStatistics(), GDALComputeRasterMinMax(), and GDALGe-
tRasterSampleOverview().

40.9.4.73 const charx GDALGetRasterUnitType (GDALRasterBandH /hBand)

See also:

GDALRasterBand::GetUnitType() (p. ??)

References GDALGetRasterUnitType().
Referenced by GDALGetRasterUnitType().

40.9 gdal.h File Reference 367

40.9.4.74 int GDALGetRasterXSize (GDALDatasetH hDataset)

See also:

GDALDataset::GetRasterXSize() (p. ??).

References GDALGetRasterXSize().

Referenced by GDALGetRasterXSize(), GDALReprojectlmage(), GDALSimpleImageWarp(), and
GDALSuggestedWarpOutput2().

40.9.4.75 int GDALGetRasterYSize (GDALDatasetH hDataset)

See also:

GDALDataset::GetRaster YSize() (p. ??).

References GDALGetRasterY Size().

Referenced by GDALGetRasterYSize(), GDALReprojectimage(), GDALSimpleImageWarp(), and
GDALSuggestedWarpOutput2().

40.9.4.76 int GDALHasArbitraryOverviews (GDALRasterBandH 2Band)

See also:

GDALRasterBand::HasArbitraryOverviews() (p.??)

References GDALHasArbitraryOverviews().
Referenced by GDALHasArbitraryOverviews().

40.9.4.77 int GDALInvGeoTransform (double x g¢t_in, double * g¢_out)

Invert Geotransform.

This function will invert a standard 3x2 set of GeoTransform coefficients. This converts the equation from
being pixel to geo to being geo to pixel.

Parameters:
gt_in Input geotransform (six doubles - unaltered).

gt_out Output geotransform (six doubles - updated).

Returns:

TRUE on success or FALSE if the equation is uninvertable.

References GDALInvGeoTransform().

Referenced by GDALCreateGenlmgProjTransformer(), GDALInvGeoTransform(), and GDALSetGen-
ImgProjTransformerDstGeoTransform().

368 File Documentation

40.9.4.78 GDALDatasetH GDALOpen (const char * pszFilename, GDALAccess eAccess)

Open a raster file as a GDALDataset (p. ??).

This function will try to open the passed file, or virtual dataset name by invoking the Open method of each
registered GDALDriver (p. ??) in turn. The first successful open will result in a returned dataset. If all
drivers fail then NULL is returned.

See also:

GDALOpenShared() (p.??)

Parameters:

pszFilename the name of the file to access. In the case of exotic drivers this may not refer to a physical
file, but instead contain information for the driver on how to access a dataset.

eAccess the desired access, either GA_Update or GA_ReadOnly. Many drivers support only read only
access.

Returns:
A GDALDatasetH handle or NULL on failure. For C++ applications this handle can be cast to a
GDALDataset (p. ??) x.

References GDALMajorObject::GetDescription(), GDALDriverManager::GetDriver(), GDALDriver-
Manager::GetDriverCount(), GDALDriver::pfnOpen, GDALDataset::poDriver, and GDALMajorOb-
ject::SetDescription().

Referenced by GDALDriver::CopyFiles(), GDALDriver::Delete(), and GDALDriver::Rename().

40.9.4.79 GDALDatasetH GDALOpenShared (const char * pszFilename, GDALAccess eAccess)

Open a raster file as a GDALDataset (p. 2?).

This function works the same as GDALOpen() (p. ??), but allows the sharing of GDALDataset (p.??)
handles for a dataset with other callers to GDALOpenShared() (p. 2?).

In particular, GDALOpenShared() (p.??) will first consult it’s list of currently open and shared
GDALDataset’s, and if the GetDescription() name for one exactly matches the pszFilename passed to
GDALOpenShared() (p. ??) it will be referenced and returned.

See also:

GDALOpen() (p.??)

Parameters:

pszFilename the name of the file to access. In the case of exotic drivers this may not refer to a physical
file, but instead contain information for the driver on how to access a dataset.

eAccess the desired access, either GA_Update or GA_ReadOnly. Many drivers support only read only
access.

Returns:
A GDALDatasetH handle or NULL on failure. For C++ applications this handle can be cast to a
GDALDataset (p. ??) x*.

References GA_ReadOnly, GDALDataset::GDALOpen, GDALMajorObject::GetDescription(), GDAL-
Dataset::MarkAsShared(), and GDALDataset::Reference().

40.9 gdal.h File Reference 369

40.9.4.80 double GDALPackedDMSToDec (double dfPacked)

Convert a packed DMS value (DDDMMMSSS.SS) into decimal degrees.
See CPLPackedDMSToDec() (p. ??).

References GDALPackedDMSToDec().

Referenced by GDALPackedDMSToDec().

40.9.4.81 CPLErr GDALRasterIO (GDALRasterBandH hBand, GDALRWFlag eRWFlag, int
nXOff, int nYOff, int nXSize, int nYSize, void * pData, int nBufXSize, int nBufYSize,
GDALDataType eBufType, int nPixelSpace, int nLineSpace)

See also:

GDALRasterBand::RasterIO() (p. 2?)

References GDALRasterIO(), and GDALRasterBand::RasterIO().

Referenced by GDALChecksumImage(), GDALComputeMedianCutPCT(), GDALContourGenerate(),
GDALDitherRGB2PCT(), GDALRasterIO(), and GDALSimpleImageWarp().

40.9.4.82 CPLErr GDALReadBlock (GDALRasterBandH hBand, int nXOff, int nYOff, void *
pData)
See also:

GDALRasterBand::ReadBlock() (p.??)

References GDALReadBlock(), and GDALRasterBand::ReadBlock().
Referenced by GDALReadBlock().

40.9.4.83 int GDALReadWorldFile (const char * pszBaseFilename, const char x pszExtension,
double * padfGeoTransform)

Read ESRI world file.

This function reads an ESRI style world file, and formats a geotransform from it’s contents. It will form
the filename for the worldfile from the filename of the raster file referred and the suggested extension. If
no extension is provided, the code will internally try the unix style and windows style world file extensions
(eg. for .tif these would be .tfw and .tifw).

The world file contains an affine transformation with the parameters in a different order than in a geotrans-
form array.

geotransform[1] - width of pixel geotransform[4] - rotational coefficient, zero for north up images. geo-
transform[2] - rotational coefficient, zero for north up images. geotransform[5] - height of pixel (but
negative) geotransform[0] - x offset to center of top left pixel. geotrasnform[3] - y offset to center of top
left pixel.

Parameters:

pszBaseFilename the target raster file.

pszExtension the extension to use (ie. ".wld") or NULL to derive it from the pszBaseFilename

370 File Documentation

padfGeoTransform the six double array into which the geotransformation should be placed.

Returns:

TRUE on success or FALSE on failure.

References CPLAtofM(), CPLGetExtension(), CPLResetExtension(), GDALReadWorldFile(), and VSIS-
tatL().

Referenced by GDALReadWorldFile().

40.9.4.84 int GDALReferenceDataset (GDALDatasetH hDataset)

See also:

GDALDataset::Reference() (p. ??)

References GDALReferenceDataset().
Referenced by GDALReferenceDataset().

40.9.4.85 int GDALRegisterDriver (GDALDriverH hDriver)

See also:

GDALDriverManager::GetRegisterDriver()

References GDALRegisterDriver(), and GDALDriverManager::RegisterDriver().
Referenced by GDALRegisterDriver().

40.9.4.86 CPLErr GDALRenameDataset (GDALDriverH hDriver, const char x pszNewName,
const char x pszOldName)
See also:

GDALDriver::Rename() (p. ??)

References GDALRenameDataset().
Referenced by GDALRenameDataset().

40.9.4.87 int GDALScaledProgress (double dfComplete, const char x pszMessage, void * pData)

Scaled progress transformer.

This is the progress function that should be passed along with the callback data returned by GDALCre-
ateScaledProgress() (p. ??).

References GDALScaledProgress().
Referenced by GDALScaledProgress().

40.9 gdal.h File Reference 371

40.9.4.88 void GDALSetCacheMax (int nNewSize)

Set maximum cache memory.

This function sets the maximum amount of memory that GDAL is permitted to use for GDALRasterBlock
caching.

Parameters:

nNewSize the maximum number of bytes for caching. Maximum is 2GB.

References GDALSetCacheMax().
Referenced by GDALSetCacheMax().

40.9.4.89 void GDALSetDescription (GDALMajorObjectH hObject, const char x pszNewDesc)
See also:

GDALMajorObject::SetDescription() (p. ??)

References GDALSetDescription().
Referenced by GDALSetDescription().

40.9.4.90 CPLErr GDALSetGCPs (GDALDatasetH hDS, int nGCPCount, const GDAL_GCP x
pasGCPList, const char x pszGCPProjection)
See also:

GDALDataset::SetGCPs() (p. ??)

References GDALSetGCPs().
Referenced by GDALSetGCPs().

40.9.4.91 CPLErr GDALSetGeoTransform (GDALDatasetH ADS, double * padfTransform)
See also:

GDALDataset::SetGeoTransform() (p. ??)

References GDALSetGeoTransform(), and GDALDataset::SetGeoTransform().
Referenced by GDALSetGeoTransform().

40.9.4.92 CPLErr GDALSetMetadata (GDALMajorObjectH hObject, char xx papszMD, const
char x pszDomain)
See also:

GDALMajorObject::SetMetadata() (p.??)

References GDALSetMetadata().
Referenced by GDALSetMetadata().

372 File Documentation

40.9.4.93 CPLErr GDALSetMetadataltem (GDALMajorObjectH hObject, const char * pszName,
const char x pszValue, const char x pszDomain)

See also:

GDALMajorObject::SetMetadataltem() (p. ??)

References GDALSetMetadataltem().
Referenced by GDALSetMetadataltem().

40.9.4.94 CPLErr GDALSetProjection (GDALDatasetH hDS, const char x pszProjection)

See also:

GDALDataset::SetProjection() (p.??)

References GDALSetProjection(), and GDALDataset::SetProjection().
Referenced by GDALAutoCreateWarpedVRT(), and GDALSetProjection().

40.9.4.95 CPLErr GDALSetRasterCategoryNames (GDALRasterBandH hBand, char xx
papszNames)

See also:

GDALRasterBand::SetCategoryNames() (p. ??)

References GDALSetRasterCategoryNames().
Referenced by GDALSetRasterCategoryNames().

40.9.4.96 CPLErr GDALSetRasterColorInterpretation (GDALRasterBandH % Band,
GDALColorInterp eColorInterp)

See also:

GDALRasterBand::SetColorInterpretation() (p.??)

References GDALSetRasterColorInterpretation().
Referenced by GDALSetRasterColorInterpretation().

40.9.4.97 CPLErr GDALSetRasterColorTable (GDALRasterBandH hBand, GDALColorTableH
hCT)
See also:

GDALRasterBand::SetColorTable() (p.??)

References GDALSetRasterColorTable().
Referenced by GDALSetRasterColorTable().

40.9 gdal.h File Reference 373

40.9.4.98 CPLErr GDALSetRasterNoDataValue (GDALRasterBandH hBand, double dfValue)

See also:

GDALRasterBand::SetNoDataValue() (p. ??)

References GDALSetRasterNoDataValue().
Referenced by GDALSetRasterNoDataValue().

40.9.4.99 void GDALSwapWords (void * pData, int nWordSize, int nWordCount, int nWordSkip)

Byte swap words in-place.

This function will byte swap a set of 2, 4 or 8 byte words "in place" in a memory array. No assumption
is made that the words being swapped are word aligned in memory. Use the CPL_LSB and CPL_MSB
macros from cpl_port.h (p. 2?) to determine if the current platform is big endian or little endian. Use The
macros like CPL_SWAP32() to byte swap single values without the overhead of a function call.

Parameters:
pData pointer to start of data buffer.
nWordSize size of words being swapped in bytes. Normally 2, 4 or 8.
nWordCount the number of words to be swapped in this call.

nWordSkip the byte offset from the start of one word to the start of the next. For packed buffers this
is the same as nWordSize.

References GDALSwapWords().
Referenced by GDALSwapWords().

40.9.4.100 int GDALTermProgress (double dfComplete, const char x pszMessage, void x
pProgressArg)

Simple progress report to terminal.
This progress reporter prints simple progress report to the terminal window. The progress report generally

looks something like this:

0...10...20...30...40...50...60...70...80...90...100 - done.

Every 2.5% of progress another number or period is emitted. Note that GDALTermProgress() (p. 2?) uses
internal static data to keep track of the last percentage reported and will get confused if two terminal based
progress reportings are active at the same time.

The GDALTermProgress() (p. ??) function maintains an internal memory of the last percentage complete
reported in a static variable, and this makes it unsuitable to have multiple GDALTermProgress() (p. ??)’s
active eithin a single thread or across multiple threads.

Parameters:

dfComplete completion ratio from 0.0 to 1.0.
pszMessage optional message.

pProgressArg ignored callback data argument.

374 File Documentation

Returns:

Always returns TRUE indicating the process should continue.

References GDALTermProgress().
Referenced by GDALTermProgress().

40.9.4.101 const charx GDALVersionInfo (const char x pszRequest)

Get runtime version information.

Available pszRequest values:

e "VERSION_NUM": Returns GDAL_VERSION_NUM formatted as a string. ie. "1170"
o "RELEASE_DATE": Returns GDAL_RELEASE_DATE formatted as a string. ie. "20020416".
e "RELEASE_NAME": Returns the GDAL_RELEASE_NAME. ie. "1.1.7"

e "—version": Returns one line version message suitable for use in response to —version requests. ie.
"GDAL 1.1.7, released 2002/04/16"
Parameters:

pszRequest the type of version info desired, as listed above.

Returns:

an internal string containing the requested information.

References GDALVersionInfo(), VSIFCloseL(), VSIFOpenL(), VSIFReadl(), VSIFSeekL(), and
VSIFTellL().

Referenced by GDALGeneralCmdLineProcessor(), and GDALVersionInfo().

40.9.4.102 CPLErr GDALWriteBlock (GDALRasterBandH hBand, int nXOff, int nYOff, void *
pData)

See also:

GDALRasterBand::WriteBlock() (p. ??)

References GDALWTiteBlock(), and GDALRasterBand::WriteBlock().
Referenced by GDALWriteBlock().

40.10 gdal_alg.h File Reference 375

40.10 gdal_alg.h File Reference

#include "gdal.h"

#include "cpl_minixml.h"

#include "ogr_api.h"

Classes

struct GDALTransformerInfo

struct OGRContourWriterInfo

struct GDALGridInverseDistanceToA PowerOptions
struct GDALGridMovingAverageOptions

struct GDALGridNearestNeighborOptions

Typedefs

typedef int(* GDALTransformerFunc)(void xpTransformerArg, int bDstToSrc, int nPointCount,
double *x, double *y, double *z, int *panSuccess)

typedef CPLErr(x GDALContourWriter)(double dfl.evel, int nPoints, double xpadfX, double
xpadfy, void x)

typedef void * GDALContourGeneratorH

typedef void(x lIScanlineFunc)(void xpCBData, int nY, int nXStart, int nXEnd)

Enumerations

enum GDALGridAlgorithm { GGA_InverseDistanceToAPower = 1, GGA_MovingAverage = 2,
GGA_NearestNeighbor = 3 }

Functions

int GDALComputeMedianCutPCT (GDALRasterBandH hRed, GDALRasterBandH hGreen,
GDALRasterBandH hBlue, int(xpfnlncludePixel)(int, int, void), int nColors, GDALColorTableH
hColorTable, GDALProgressFunc pfnProgress, void xpProgressArg)

int GDALDitherRGB2PCT (GDALRasterBandH hRed, GDALRasterBandH hGreen, GDAL-
RasterBandH hBlue, GDALRasterBandH hTarget, GDALColorTableH hColorTable, GDALPro-
gressFunc pfnProgress, void xpProgressArg)

int GDALChecksumImage (GDALRasterBandH hBand, int nXOff, int nYOff, int nXSize, int nY-
Size)

void GDALDestroyTransformer (void xpTransformerArg)

void * GDALCreateGenlmgProjTransformer (GDALDatasetH hSrcDS, const char «pszSrcWKT,
GDALDatasetH hDstDS, const char xpszDstWKT, int bGCPUseOK, double dfGCPErrorThreshold,
int nOrder)

void GDALSetGenlmgProjTransformerDstGeoTransform (void *, const double)

void GDALDestroyGenlmgProjTransformer (void)

int GDALGenImgProjTransform (void xpTransformArg, int bDstToSrc, int nPointCount, double
*X, double xy, double *z, int xpanSuccess)

void * GDALCreateReprojectionTransformer (const char xpszSrcWKT, const char *pszDstWKT)
void GDALDestroyReprojectionTransformer (void *)

376

File Documentation

int GDALReprojectionTransform (void xpTransformArg, int bDstToSrc, int nPointCount, double
*X, double xy, double *z, int xpanSuccess)

void * GDALCreateGCPTransformer (int nGCPCount, const GDAL_GCP xpasGCPList, int
nReqOrder, int bReversed)

void GDALDestroyGCPTransformer (void *pTransformArg)

int GDALGCPTransform (void xpTransformArg, int bDstToSrc, int nPointCount, double *x, dou-
ble *y, double *z, int xpanSuccess)

void * GDALCreateTPSTransformer (int nGCPCount, const GDAL_GCP xpasGCPList, int bRe-
versed)

void GDALDestroyTPSTransformer (void «pTransformArg)

int GDALTPSTransform (void #pTransformArg, int bDstToSrc, int nPointCount, double *x, double
xy, double *z, int xpanSuccess)

void * GDALCreateRPCTransformer (GDALRPCInfo *psRPC, int bReversed, double dfPixEr-
rThreshold)

void GDALDestroyRPCTransformer (void #pTransformArg)

int GDALRPCTransform (void xpTransformArg, int bDstToSrc, int nPointCount, double *x, dou-
ble *y, double z, int xpanSuccess)

void * GDALCreateGeoLocTransformer (GDALDatasetH hBaseDS, char
sxpapszGeolocationInfo, int bReversed)

void GDALDestroyGeoLocTransformer (void #pTransformArg)

int GDALGeoLocTransform (void xpTransformArg, int bDstToSrc, int nPointCount, double x*x,
double xy, double *z, int xpanSuccess)

void * GDALCreateApproxTransformer (GDALTransformerFunc pfnRawTransformer, void
spRawTransformerArg, double dfMaxError)

void GDALApproxTransformerOwnsSubtransformer (void xpCBData, int bOwnFlag)

void GDALDestroyApproxTransformer (void «pApproxArg)

int GDALApproxTransform (void spTransformArg, int bDstToSrc, int nPointCount, double x*x,
double *y, double *z, int xpanSuccess)

int GDALSimpleImageWarp (GDALDatasetH hSrcDS, GDALDatasetH hDstDS, int nBandCount,
int *panBandList, GDALTransformerFunc pfnTransform, void *pTransformArg, GDALProgress-
Func pfnProgress, void xpProgressArg, char sxpapszWarpOptions)

CPLErr GDALSuggestedWarpOutput (GDALDatasetH hSrcDS, GDALTransformerFunc pfn-
Transformer, void *pTransformArg, double xpadfGeoTransformOut, int s*pnPixels, int *pnLines)
CPLErr GDALSuggestedWarpOutput2 (GDALDatasetH hSrcDS, GDALTransformerFunc pfn-
Transformer, void *pTransformArg, double xpadfGeoTransformOut, int xpnPixels, int *pnLines,
double spadfExtents, int nOptions)

CPLXMLNode =+ GDALSerializeTransformer (GDALTransformerFunc pfnFunc, void
xpTransformArg)

CPLErr GDALDeserializeTransformer (CPLXMLNode sxpsTree, GDALTransformerFunc
xppfnFunc, void sxppTransformArg)

GDALContourGeneratorH GDAL_CG_Create (int nWidth, int nHeight, int bNoDataSet, double
dfNoDataValue, double dfContourlnterval, double dfContourBase, GDALContourWriter pfnWriter,
void ¥*pCBData)

CPLErr GDAL_CG_FeedLine (GDALContourGeneratorH hCG, double xpadfScanline)

void GDAL_CG_Destroy (GDALContourGeneratorH hCG)

CPLErr OGRContourWriter (double, int, double *, double *, void *pInfo)

CPLErr GDALContourGenerate (GDALRasterBandH hBand, double dfContourlnterval, double
dfContourBase, int nFixedLevelCount, double xpadfFixedLevels, int bUseNoData, double dfN-
oDataValue, void xhLayer, int iIDField, int iElevField, GDALProgressFunc pfnProgress, void
*pProgressArg)

void GDALdIIImageFilledPolygon (int nRasterXSize, int nRasterYSize, int nPartCount, int
xpanPartSize, double xpadfX, double xpadfy, lIScanlineFunc pfnScanlineFunc, void «pCBData)

40.10 gdal_alg.h File Reference 377

¢ CPLErr GDALRasterizeGeometries (GDALDatasetH hDS, int nBandCount, int xpanBandList, int
nGeomCount, OGRGeometryH xpahGeometries, GDALTransformerFunc pfnTransformer, void
spTransformArg, double xpadfGeomBurnValue, char *xpapszOptions, GDALProgressFunc pfn-
Progress, void «pProgressArg)

¢ CPLErr GDALGridCreate (GDALGridAlgorithm, const void x, GUInt32, const double *, const
double *, const double *, double, double, double, double, GUInt32, GUInt32, GDALDataType,
void *, GDALProgressFunc, void *)

40.10.1 Detailed Description

Public (C callable) GDAL algorithm entry points, and definitions.

40.10.2 Typedef Documentation
40.10.2.1 int GDALTransformerFunc

Generic signature for spatial point transformers.

This function signature is used for a variety of functions that accept passed in functions used to transform
point locations between two coordinate spaces.

The GDALCreateGenlmgProjTransformer() (p.??), GDALCreateReprojectionTransformer()
(p-??), GDALCreateGCPTransformer() (p.??) and GDALCreateApproxTransformer() (p.??)
functions can be used to prepare argument data for some built-in transformers. As well, applications can
implement their own transformers to the following signature.

typedef int
(xGDALTransformerFunc) (void xpTransformerArg,
int bDstToSrc, int nPointCount,
double xx, double xy, double %z, int xpanSuccess);

Parameters:

pTransformerArg application supplied callback data used by the transformer.

bDstToSrc if TRUE the transformation will be from the destination coordinate space to the source
coordinate system, otherwise the transformation will be from the source coordinate system to the
destination coordinate system.

nPointCount number of points in the X, y and z arrays.
x input X coordinates. Results returned in same array.
y input Y coordinates. Results returned in same array.
Z input Z coordinates. Results returned in same array.

panSuccess array of ints in which success (TRUE) or failure (FALSE) flags are returned for the trans-
lation of each point.

Returns:

TRUE if the overall transformation succeeds (though some individual points may have failed) or
FALSE if the overall transformation fails.

40.10.3 Enumeration Type Documentation
40.10.3.1 enum GDALGridAlgorithm

Gridding Algorithms

378 File Documentation

Enumerator:

GGA_InverseDistanceToAPower Inverse distance to a power
GGA_MovingAverage Moving Average
GGA_NearestNeighbor Nearest Neighbor

40.10.4 Function Documentation

40.10.4.1 int GDALApproxTransform (void x pCBData, int bDstToSrc, int nPoints, double * x,
double * y, double * z, int * panSuccess)

Perform approximate transformation.

Actually performs the approximate transformation described in GDALCreateApproxTransformer()
(p-??). This function matches the GDALTransformerFunc() (p. ??) signature. Details of the arguments
are described there.

References GDALApproxTransform().

Referenced by GDALApproxTransform(), GDALAutoCreateWarpedVRT(), GDALCreate ApproxTrans-
former(), and GDALReprojectimage().

40.10.4.2 int GDALChecksumImage (GDALRasterBandH hBand, int nXOff, int nYOff, int
nXSize, int nYSize)

Compute checksum for image region.

Computes a 16bit (0-65535) checksum from a region of raster data on a GDAL supported band. Floating
point data is converted to 32bit integer so decimal portions of such raster data will not affect the checksum.
Real and Imaginary components of complex bands influence the result.

Parameters:

hBand the raster band to read from.
nXOff pixel offset of window to read.
nYOff line offset of window to read.
nXSize pixel size of window to read.

nYSize line size of window to read.

Returns:

Checksum value.

References GDALChecksumImage(), GDALDataTypelsComplex(), GDALGetRasterDataType(), GDAL-
RasterIO(), GDT_CInt32, GDT_Int32, and GF_Read.

Referenced by GDALChecksumImage().

40.10.4.3 int GDALComputeMedianCutPCT (GDALRasterBandH /#Red, GDALRasterBandH
hGreen, GDALRasterBandH 7 Blue, int(x)(int, int, void *) pfnlncludePixel, int
nColors, GDALColorTableH kColorTable, GDALProgressFunc pfnProgress, void x
pProgressArg)

Compute optimal PCT for RGB image.

40.10 gdal_alg.h File Reference 379

This function implements a median cut algorithm to compute an "optimal" pseudocolor table for represent-
ing an input RGB image. This PCT could then be used with GDALDitherRGB2PCT() (p. ??) to convert
a 24bit RGB image into an eightbit pseudo-colored image.

This code was based on the tiffmedian.c code from libtiff (www.libtiff.org) which was based on a paper by
Paul Heckbert:

* "Color 1Image Quantization for Frame Buffer Display", Paul
* Heckbert, SIGGRAPH proceedings, 1982, pp. 297-307.

*

The red, green and blue input bands do not necessarily need to come from the same file, but they must be
the same width and height. They will be clipped to 8bit during reading, so non-eight bit bands are generally
inappropriate.

Parameters:

hRed Red input band.
hGreen Green input band.
hBlue Blue input band.

pfnlncludePixel function used to test which pixels should be included in the analysis. At this time
this argument is ignored and all pixels are utilized. This should normally be NULL.

nColors the desired number of colors to be returned (2-256).
hColorTable the colors will be returned in this color table object.

pfnProgress callback for reporting algorithm progress matching the GDALProgressFunc() semantics.
May be NULL.

pProgressArg callback argument passed to pfnProgress.

Returns:

returns CE_None on success or CE_Failure if an error occurs.

References GDALColorEntry::cl, GDALColorEntry::c2, GDALColorEntry::c3, GDALColorEntry::c4,
GDALComputeMedianCutPCT(), GDALGetRasterBandXSize(), GDALGetRasterBandY Size(), GDAL-
RasterIO(), GDT_Byte, and GF_Read.

Referenced by GDALComputeMedianCutPCT().

40.10.4.4 CPLErr GDALContourGenerate (GDALRasterBandH hBand, double
dfContourlInterval, double dfContourBase, int nFixedLevelCount, double x
padfFixedLevels, int bUseNoData, double dfNoDataValue, void « hLayer, int ilDField,
int iElevField, GDALProgressFunc pfnProgress, void x pProgressArg)

Create vector contours from raster DEM.

This algorithm will generate contours vectors for the input raster band on the requested set of contour
levels. The vector contours are written to the passed in OGR vector layer. Also, a NODATA value may be
specified to identify pixels that should not be considered in contour line generation.

The gdal/apps/gdal_contour.cpp mainline can be used as an example of how to use this function.
ALGORITHM RULES

For contouring purposes raster pixel values are assumed to represent a point value at the center of the
corresponding pixel region. For the purpose of contour generation we virtually connect each pixel center to

380 File Documentation

the values to the left, right, top and bottom. We assume that the pixel value is linearly interpolated between
the pixel centers along each line, and determine where (if any) contour lines will appear onlong these line
segements. Then the contour crossings are connected.

This means that contour lines nodes won’t actually be on pixel edges, but rather along vertical and hori-
zontal lines connecting the pixel centers.

General Case:

5 | | 3
oy o
\ |
\ |
\ |
\ I

10 +
I\ |
I\ I
i e + -
12 | 10 | 1

5 | | 12
—— +—— 4+ —=
| A
\ \
| +

|
+
I\ |
I\ |
—— + + —-
12 | |1
or
5 | | 12
—_— +—— 4+ ——
| _/ |
| _/ |
|/ _+
|/ _/
+/ _/ |
| _/ |
| i/ |
—— 4 + —=
12 | |1
Nodata:

In the "nodata" case we treat the whole nodata pixel as a no-mans land. We extend the corner pixels near
the nodata out to half way and then construct extra lines from those points to the center which is assigned
an averaged value from the two nearby points (in this case (12+3+5)/3).

40.10 gdal_alg.h File Reference 381

12 | 12 (nodata)

Parameters:

hBand The band to read raster data from. The whole band will be processed.
dfContourlInterval The elevation interval between contours generated.

dfContourBase The "base" relative to which contour intervals are applied. This is normally zero, but
could be different. To generate 10m contours at 5, 15, 25, ... the ContourBase would be 5.

nFixedLevelCount The number of fixed levels. If this is greater than zero, then fixed levels will be
used, and ContourInterval and ContourBase are ignored.

padfFixedLevels The list of fixed contour levels at which contours should be generated. It will contain
FixedLevelCount entries, and may be NULL if fixed levels are disabled (FixedLevelCount = 0).

bUseNoData 1If TRUE the dfNoDataValue will be used.

dfNoDataValue the value to use as a "nodata" value. That is, a pixel value which should be ignored
in generating contours as if the value of the pixel were not known.

hLayer the layer to which new contour vectors will be written. Each contour will have a
LINESTRING geometry attached to it. This is really of type OGRLayerH, but void * is used
to avoid pulling the ogr_api.h file in here.

iIDField if not -1 this will be used as a field index to indicate where a unique id should be written for
each feature (contour) written.

iElevField if not -1 this will be used as a field index to indicate where the elevation value of the
contour should be written.

pfnProgress a GDALProgressFunc that may be used to report progress to the user, or to interrupt the
algorithm. May be NULL if not required.

pProgressArg the callback data for the pfnProgress function.

Returns:

CE_None on success or CE_Failure if an error occurs.

References GDALGetBandDataset(), GDALGetGeoTransform(), GDALGetRasterBandXSize(), GDAL-
GetRasterBandYSize(), GDALRasterIO(), GDT_Float64, and GF_Read.

40.10.4.5 void+ GDALCreateApproxTransformer (GDALTransformerFunc pfnBaseTransformer,
void *x pBaseTransformArg, double dfMaxError)

Create an approximating transformer.

This function creates a context for an approximated transformer. Basically a high precision transformer is
supplied as input and internally linear approximations are computed to generate results to within a defined
precision.

The approximation is actually done at the point where GDALApproxTransform() (p. ??) calls are made,
and depend on the assumption that the roughly linear. The first and last point passed in must be the extreme
values and the intermediate values should describe a curve between the end points. The approximator
transforms and center using the approximate transformer, and then compares the true middle transformed
value to a linear approximation based on the end points. If the error is within the supplied threshold then
the end points are used to linearly approximate all the values otherwise the inputs points are split into two
smaller sets, and the function recursively called till a sufficiently small set of points if found that the linear
approximation is OK, or that all the points are exactly computed.

382 File Documentation

This function is very suitable for approximating transformation results from output pixel/line space to input
coordinates for warpers that operate on one input scanline at a time. Care should be taken using it in other
circumstances as little internal validation is done, in order to keep things fast.

Parameters:
pfnBaseTransformer the high precision transformer which should be approximated.
pBaseTransformArg the callback argument for the high precision transformer.

dfMaxError the maximum cartesian error in the "output" space that is to be accepted in the linear
approximation.

Returns:

callback pointer suitable for use with GDALApproxTransform() (p.??). It should be deallocated
with GDALDestroyApproxTransformer() (p.??).

References GDALApproxTransform(), GDALCreateApproxTransformer(), and GDALDestroy Approx-
Transformer().

Referenced by GDALAutoCreateWarpedVRT(), GDALCreate ApproxTransformer(), and GDALReprojec-
tImage().

40.10.4.6 void+ GDALCreateGCPTransformer (int nGCPCount, const GDAL_GCP x pasGCPList,
int nReqOrder, int bReversed)

Create GCP based polynomial transformer.

Computes least squares fit polynomials from a provided set of GCPs, and stores the coefficients for later
transformation of points between pixel/line and georeferenced coordinates.

The return value should be used as a TransformArg in combination with the transformation function GDAL-
GCPTransform which fits the GDALTransformerFunc signature. The returned transform argument should
be deallocated with GDALDestroyGCPTransformer when no longer needed.

This function may fail (returning NULL) if the provided set of GCPs are inadequate for the requested order,
the determinate is zero or they are otherwise "ill conditioned".

Note that 2nd order requires at least 6 GCPs, and 3rd order requires at least 10 gcps. If nReqOrder is O the
highest order possible with the provided gcp count will be used.

Parameters:
nGCPCount the number of GCPs in pasGCPList.
pasGCPList an array of GCPs to be used as input.
nReqOrder the requested polynomial order. It should be 1, 2 or 3.

Returns:

the transform argument or NULL if creation fails.

References GDAL_GCP::dfGCPLine, GDAL_GCP::dfGCPPixel, GDAL_GCP::dfGCPX, GDAL_-
GCP::dfGCPY, GDALCreateGCPTransformer(), GDALDestroyGCPTransformer(), and GDALGCP-
Transform().

Referenced by GDALCreateGCPTransformer(), and GDALCreateGenlmgProjTransformer().

40.10 gdal_alg.h File Reference 383

40.10.4.7 voidx GDALCreateGenlmgProjTransformer (GDALDatasetH ASrcDS, const char
x pszSrc WKT, GDALDatasetH hDstDS, const char x pszDstWKT, int b(GCPUseOK,
double dfGCPErrorThreshold, int nOrder)

Create image to image transformer.

This function creates a transformation object that maps from pixel/line coordinates on one image to
pixel/line coordinates on another image. The images may potentially be georeferenced in different co-
ordinate systems, and may used GCPs to map between their pixel/line coordinates and georeferenced co-
ordinates (as opposed to the default assumption that their geotransform should be used).

This transformer potentially performs three concatenated transformations.

The first stage is from source image pixel/line coordinates to source image georeferenced coordinates, and
may be done using the geotransform, or if not defined using a polynomial model derived from GCPs. If
GCPs are used this stage is accomplished using GDALGCPTransform() (p. ??).

The second stage is to change projections from the source coordinate system to the destination coordinate
system, assuming they differ. This is accomplished internally using GDALReprojectionTransform()
(P-??7).

The third stage is converting from destination image georeferenced coordinates to destination image co-
ordinates. This is done using the destination image geotransform, or if not available, using a polynomial
model derived from GCPs. If GCPs are used this stage is accomplished using GDALGCPTransform()
(p- ??). This stage is skipped if hDstDS is NULL when the transformation is created.

Parameters:
hSrcDS source dataset, or NULL.

pszSrcWKT the coordinate system for the source dataset. If NULL, it will be read from the dataset
itself.

hDstDS destination dataset (or NULL).

pszDstWKT the coordinate system for the destination dataset. If NULL, and hDstDS not NULL, it
will be read from the destination dataset.

bGCPUseOK TRUE if GCPs should be used if the geotransform is not available on the source dataset
(not destination).

dfGCPErrorThreshold the maximum error allowed for the GCP model to be considered valid. Exact
semantics not yet defined.

nOrder the maximum order to use for GCP derived polynomials if possible. Use O to autoselect, or -1
for thin plate splines.

Returns:

handle suitable for use GDALGenImgProjTransform() (p. ??), and to be deallocated with GDALDe-
stroyGenImgProjTransformer() (p. ??).

References GDALCreateGCPTransformer(), GDALCreateGenlmgProjTransformer(), GDALCreateRe-
projectionTransformer(), =~ GDALCreateTPSTransformer(), = GDALDestroyGenlmgProjTransformer(),
GDALGenImgProjTransform(), GDALGetDescription(), GDALGetGCPCount(), GDALGetGCPs(),
GDALGetGeoTransform(), GDALGetMetadata(), GDALGetProjectionRef(), and GDALInvGeoTrans-
form().

Referenced by GDALAutoCreateWarpedVRT(), GDALCreateGenlmgProjTransformer(), GDALRaster-
izeGeometries(), and GDALReprojectImage().

384 File Documentation

40.10.4.8 void+ GDALCreateReprojectionTransformer (const char * pszSrcWKT, const char *
pszDstWKT)
Create reprojection transformer.

Creates a callback data structure suitable for use with GDALReprojectionTransformation() to represent a
transformation from one geographic or projected coordinate system to another. On input the coordinate
systems are described in OpenGIS WKT format.

Internally the OGRCoordinateTransformation object is used to implement the reprojection.

Parameters:
pszSrcWKT the coordinate system for the source coordinate system.
pszDstWKT the coordinate system for the destination coordinate system.
Returns:
Handle for use with GDALReprojectionTransform() (p. 2?), or NULL if the system fails to initialize
the reprojection.
References GDALCreateReprojectionTransformer(), GDALDestroyReprojectionTransformer(), and
GDALReprojectionTransform().
Referenced by GDALCreateGenlmgProjTransformer(), and GDALCreateReprojectionTransformer().

40.10.4.9 void+ GDALCreateTPSTransformer (int ntGCPCount, const GDAL_GCP x pasGCPList,
int bReversed)

Create Thin Plate Spline transformer from GCPs.

The thin plate spline transformer produces exact transformation at all control points and smoothly varying
transformations between control points with greatest influence from local control points. It is suitable for
for many applications not well modelled by polynomial transformations.

Creating the TPS transformer involves solving systems of linear equations related to the number of control
points involved. This solution is computed within this function call. It can be quite an expensive operation
for large numbers of GCPs. For instance, for reference, it takes on the order of 10s for 400 GCPs on a
2GHz Athlon processor.

TPS Transformers are serializable.

The GDAL Thin Plate Spline transformer is based on code provided by Gilad Ronnen on behalf of VIZRT
Inc (http://www.visrt.com). Incorporation of the algorithm into GDAL was supported by the Cen-
tro di Ecologia Alpina (http://www.cealp.it).

Parameters:
nGCPCount the number of GCPs in pasGCPList.
pasGCPList an array of GCPs to be used as input. bReversed
Returns:
the transform argument or NULL if creation fails.
References GDAL_GCP::dfGCPLine, GDAL_GCP::dfGCPPixel, GDAL_GCP::dfGCPX, GDAL_-

GCP::dfGCPY, GDALCreateTPSTransformer(), GDALDestroyTPSTransformer(), and GDALTPSTrans-
form().

Referenced by GDALCreateGenlmgProjTransformer(), and GDALCreateTPSTransformer().

40.10 gdal_alg.h File Reference 385

40.10.4.10 void GDALDestroyApproxTransformer (void « pCBData)

Cleanup approximate transformer.

Deallocates the resources allocated by GDALCreateApproxTransformer() (p. ??).

Parameters:

pPCBData callback data originally returned by GDALCreateApproxTransformer() (p. ??).

References GDALDestroy ApproxTransformer().

Referenced by GDALCreateApproxTransformer(), GDALDestroyApproxTransformer(), and GDALRe-
projectlmage().

40.10.4.11 void GDALDestroyGCPTransformer (void * pTransformArg)

Destroy GCP transformer.

This function is used to destroy information about a GCP based polynomial transformation created with
GDALCreateGCPTransformer() (p.??).

Parameters:

pTransformArg the transform arg previously returned by GDALCreateGCPTransformer() (p. ??).

References GDALDestroyGCPTransformer().

Referenced by GDALCreateGCPTransformer(), GDALDestroyGCPTransformer(), and GDALDestroy-
GenlmgProjTransformer().

40.10.4.12 void GDALDestroyGenImgProjTransformer (void * hTransformArg)

GenImgProjTransformer deallocator.

This function is used to deallocate the handle created with GDALCreateGenlmgProjTransformer()
(P-??7).

Parameters:

hTransformArg the handle to deallocate.

References GDALDestroyGCPTransformer(), GDALDestroyGenlmgProjTransformer(), GDALDe-
stroyReprojectionTransformer(), and GDALDestroyTPSTransformer().

Referenced by GDALCreateGenlmgProjTransformer(), GDALDestroyGenlmgProjTransformer(), and
GDALReprojectImage().

40.10.4.13 void GDALDestroyReprojectionTransformer (void * pTransformAlg)
Destroy reprojection transformation.

Parameters:

pTransformArg the transformation handle returned by GDALCreateReprojectionTransformer()
P.72.

386 File Documentation

References GDALDestroyReprojectionTransformer().

Referenced by GDALCreateReprojectionTransformer(), GDALDestroyGenlmgProjTransformer(), and
GDALDestroyReprojectionTransformer().

40.10.4.14 void GDALDestroyTPSTransformer (void « pTransformArg)

Destroy TPS transformer.
This function is used to destroy information about a GCP based polynomial transformation created with
GDALCreateTPSTransformer() (p. 2?).

Parameters:

pTransformArg the transform arg previously returned by GDALCreateTPSTransformer() (p. ??).

References GDALDestroyTPSTransformer().

Referenced by GDALCreateTPSTransformer(), GDALDestroyGenlmgProjTransformer(), and GDALDe-
stroyTPSTransformer().

40.10.4.15 int GDALDitherRGB2PCT (GDALRasterBandH #Red, GDALRasterBandH hGreen,
GDALRasterBandH hBlue, GDALRasterBandH h7arget, GDALColorTableH
hColorTable, GDALProgressFunc pfnProgress, void x pProgressArg)

24bit to 8bit conversion with dithering.

This functions utilizes Floyd-Steinberg dithering in the process of converting a 24bit RGB image into a
pseudocolored 8bit image using a provided color table.

The red, green and blue input bands do not necessarily need to come from the same file, but they must be
the same width and height. They will be clipped to 8bit during reading, so non-eight bit bands are generally
inappropriate. Likewise the hTarget band will be written with 8bit values and must match the width and
height of the source bands.

The color table cannot have more than 256 entries.

Parameters:

hRed Red input band.

hGreen Green input band.

hBlue Blue input band.

hTarget Output band.

hColorTable the color table to use with the output band.

pfnProgress callback for reporting algorithm progress matching the GDALProgressFunc() semantics.
May be NULL.

pProgressArg callback argument passed to pfnProgress.
Returns:
CE_None on success or CE_Failure if an error occurs.
References GDALColorEntry::cl, GDALColorEntry::c2, GDALColorEntry::c3, = GDALDither-

RGB2PCT(), GDALGetRasterBandXSize(), GDALGetRasterBandYSize(), GDALRasterIO(), GDT_-
Byte, GF_Read, and GF_Write.

Referenced by GDALDitherRGB2PCTY().

40.10 gdal_alg.h File Reference 387

40.10.4.16 int GDALGCPTransform (void * pTransformArg, int bDstToSrc, int nPointCount,
double x x, double xy, double * z, int x panSuccess)

Transforms point based on GCP derived polynomial model.

This function matches the GDALTransformerFunc signature, and can be used to transform one or more
points from pixel/line coordinates to georeferenced coordinates (SrcToDst) or vice versa (DstToSrc).

Parameters:

pTransformArg return value from GDALCreateGCPTransformer() (p. ??).

bDstToSrc TRUE if transformation is from the destination (georeferenced) coordinates to pixel/line
or FALSE when transforming from pixel/line to georeferenced coordinates.

nPointCount the number of values in the X, y and z arrays.
x array containing the X values to be transformed.
y array containing the Y values to be transformed.
z array containing the Z values to be transformed.

panSuccess array in which a flag indicating success (TRUE) or failure (FALSE) of the transformation
are placed.

Returns:

TRUE.

References GDALGCPTransform().

Referenced by GDALCreateGCPTransformer(), GDALGCPTransform(), and GDALGenImgProjTrans-
form().

40.10.4.17 int GDALGenImgProjTransform (void * pTransformArg, int bDstToSrc, int
nPointCount, double x padfX, double * padfY, double x padfZ, int x panSuccess)

Perform general image reprojection transformation.

Actually performs the transformation setup in GDALCreateGenlmgProjTransformer() (p.??). This
function matches the signature required by the GDALTransformerFunc() (p.??), and more details on
the arguments can be found in that topic.

References GDALGCPTransform(), GDALGenImgProjTransform(), GDALReprojectionTransform(), and
GDALTPSTransform().

Referenced by GDALAutoCreateWarpedVRT(), GDALCreateGenlmgProjTransformer(), GDALGenImg-
ProjTransform(), GDALRasterizeGeometries(), and GDALReprojectImage().

40.10.4.18 CPLErr GDALGridCreate (GDALGridAlgorithm eAlgorithm, const void x poOptions,
GUlInt32 nPoints, const double x pdfX, const double x pdfY, const double * pdfZ,
double dfXMin, double dfXMax, double dfYMin, double dfYMax, GUInt32 nXSize,
GUInt32 nYSize, GDALDataType eType, void « pData, GDALProgressFunc
pfnProgress, void x pProgressArg)

Create regular grid from the scattered data.

This fucntion takes the arrays of X and Y coordinates and corresponding Z values as input and computes
regular grid (or call it a raster) from these scattered data. You should supply geometry and extent of the
output grid and allocate array sufficient to hold such a grid.

388 File Documentation

Parameters:
eAlgorithm Gridding method.
poOptions Options to control choosen gridding method.
nPoints Number of elements in input arrays.
pdfX Input array of X coordinates.
pdfY Input array of Y coordinates.
pdfZ Input array of Z values.
dfXMin Lowest X border of output grid.
dfXMax Highest X border of output grid.
dfYMin Lowest Y border of output grid.
dfYMax Highest Y border of output grid.
nXSize Number of columns in output grid.
nYSize Number of rows in output grid.
eType Data type of output array.
pData Pointer to array where the computed grid will be stored.
pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns:

CE_None on success or CE_Failure if something goes wrong.

References GDALGridCreate(), GDT_Byte, GDT_Float32, GDT_Float64, GDT_Int16, GDT_Int32,
GDT_UlInt16, GDT_UlInt32, GGA_InverseDistanceToAPower, GGA_MovingAverage, and GGA_-
NearestNeighbor.

Referenced by GDALGridCreate().

40.10.4.19 CPLErr GDALRasterizeGeometries (GDALDatasetH 2DS, int nBandCount,
int * panBandList, int nGeomCount, OGRGeometryH x pahGeometries,
GDALTransformerFunc pfnTransformer, void x pTransformArg, double x
padfGeomBurnValue, char xx papszOptions, GDALProgressFunc pfnProgress, void *
pProgressArg)

Burn geometries into raster.

Rasterize a list of geometric objects into a raster dataset. The geometries are passed as an array of OGR-
Geometry objects.

If the geometries are in the georferenced coordinates of the raster dataset, then the pfnTransform may be
passed in NULL and one will be derived internally from the geotransform of the dataset. The transform
needs to transform the geometry locations into pixel/line coordinates on the raster dataset.

The output raster may be of any GDAL supported datatype, though currently internally the burning is done
either as GDT_Byte or GDT_Float32. This may be improved in the future. An explicit list of burn values
for each geometry for each band must be passed in.

Currently only polygon, multipolygon and geometrycollections of polygons or multipolygons are sup-
ported. In the future support for points and lines may be added.

40.10 gdal_alg.h File Reference 389

Parameters:

hDS output data, must be opened in update mode.

nBandCount the number of bands to be updated.

panBandList the list of bands to be updated.

nGeomCount the number of geometries being passed in pahGeometries.
pahGeometries the array of geometries to burn in.

pfnTransformer transformation to apply to geometries to put into pixel/line coordinates on raster. If
NULL a geotransform based one will be created internally.

pTransformerArg callback data for transformer.

padfGeomBurnValue the array of values to burn into the raster. There should nBandCount values for
each geometry.

papszOption special options controlling rasterization, currently none are defined.
pfnProgress the progress function to report completion.

pProgressArg callback data for progress function.

Returns:

CE_None on success or CE_Failure on error.

References =~ GDALCreateGenlmgProjTransformer(), GDALGenImgProjTransform(), GDAL-
GetDataTypeSize(), GDALRasterizeGeometries(), GDT_Byte, GDT_Float32, GDAL-
Dataset::GetRasterBand(), GDALRasterBand::GetRasterDataType(), GDALDataset::GetRasterXSize(),
GDALDataset::GetRasterYSize(), = GDALRasterBand::GetXSize(), = GDALRasterBand::GetYSize(),
GF_Read, GF_Write, and GDALDataset::RasterIO().

Referenced by GDALRasterizeGeometries().

40.10.4.20 int GDALReprojectionTransform (void * pTransformArg, int bDstToSrc, int
nPointCount, double x padfX, double x padfY, double * padfZ, int x panSuccess)

Perform reprojection transformation.

Actually performs the reprojection transformation described in GDALCreateReprojectionTransformer()
(p- ??). This function matches the GDALTransformerFunc() (p. ??) signature. Details of the arguments
are described there.

References GDALReprojectionTransform().

Referenced by GDALCreateReprojectionTransformer(), GDALGenIlmgProjTransform(), and GDALRe-
projectionTransform().

40.10.4.21 void GDALSetGenlmgProjTransformerDstGeoTransform (void x hTransformArg,
const double x padfGeoTransform)

Set GenlmgProj output geotransform.

Normally the "destination geotransform", or transformation between georeferenced output coordinates and
pixel/line coordinates on the destination file is extracted from the destination file by GDALCreateGen-
ImgProjTransformer() (p.??) and stored in the GenlmgProj private info. However, sometimes it is in-
convenient to have an output file handle with appropriate geotransform information when creating the
transformation. For these cases, this function can be used to apply the destination geotransform.

390 File Documentation

Parameters:

hTransformArg the handle to update.

padfGeoTransform the destination geotransform to apply (six doubles).

References GDALInvGeoTransform(), and GDALSetGenlmgProjTransformerDstGeoTransform().

Referenced by GDALAutoCreateWarpedVRT(), and GDALSetGenlmgProjTransformerDstGeoTrans-
form().

40.10.4.22 int GDALSimpleImageWarp (GDALDatasetH hSrcDS, GDALDatasetH hDstDS, int
nBandCount, int * panBandList, GDALTransformerFunc pfnTransform, void
x pTransformArg, GDALProgressFunc pfnProgress, void x pProgressArg, char xx
papszWarpOptions)

Perform simple image warp.

Copies an image from a source dataset to a destination dataset applying an application defined transforma-
tion. This algorithm is called simple because it lacks many options such as resampling kernels (other than
nearest neighbour), support for data types other than 8bit, and the ability to warp images without holding
the entire source and destination image in memory.

The following option(s) may be passed in papszWarpOptions.

e "INIT=v[,v...]": This option indicates that the output dataset should be initialized to the indicated
value in any area valid data is not written. Distinct values may be listed for each band separated by
columns.

Parameters:

hSrcDS the source image dataset.

hDstDS the destination image dataset.

nBandCount the number of bands to be warped. If zero, all bands will be processed.
panBandList the list of bands to translate.

pfnTransform the transformation function to call. See GDALTransformerFunc() (p. ??).
pTransformArg the callback handle to pass to pfnTransform.

pfnProgress the function used to report progress. See GDALProgressFunc().
DpProgressArg the callback handle to pass to pfnProgress.

papszWarpOptions additional options controlling the warp.

Returns:

TRUE if the operation completes, or FALSE if an error occurs.
References GDALGetRasterBand(), GDALGetRasterCount(), GDALGetRasterXSize(), GDALGe-
tRasterYSize(), GDALRasterlO(), GDALSimpleImageWarp(), GDT_Byte, GF_Read, and GF_Write.
Referenced by GDALSimpleImageWarp().

40.10.4.23 CPLErr GDALSuggestedWarpOutput (GDALDatasetH iSrcDS,
GDALTransformerFunc pfuTransformer, void x pTransformArg, double x
padfGeoTransformQut, int x pnPixels, int x pnLines)

Suggest output file size.

40.10 gdal_alg.h File Reference 391

This function is used to suggest the size, and georeferenced extents appropriate given the indicated trans-
formation and input file. It walks the edges of the input file (approximately 20 sample points along each
edge) transforming into output coordinates in order to get an extents box.

Then a resolution is computed with the intent that the length of the distance from the top left corner of
the output imagery to the bottom right corner would represent the same number of pixels as in the source
image. Note that if the image is somewhat rotated the diagonal taken isnt of the whole output bounding
rectangle, but instead of the locations where the top/left and bottom/right corners transform. The output
pixel size is always square. This is intended to approximately preserve the resolution of the input data in
the output file.

The values returned in padfGeoTransformOut, pnPixels and pnLines are the suggested number of pixels and
lines for the output file, and the geotransform relating those pixels to the output georeferenced coordinates.

The trickiest part of using the function is ensuring that the transformer created is from source file pixel/line
coordinates to output file georeferenced coordinates. This can be accomplished with GDALCreateGenlm-
ProjTransformer() by passing a NULL for the hDstDS.

Parameters:
hSrcDS the input image (it is assumed the whole input images is being transformed).
pfnTransformer the transformer function.
pTransformArg the callback data for the transformer function.
padfGeoTransformQOut the array of six doubles in which the suggested geotransform is returned.
pnPixels int in which the suggest pixel width of output is returned.

pnLines int in which the suggest pixel height of output is returned.

Returns:

CE_None if successful or CE_Failure otherwise.

References GDALSuggestedWarpOutput(), and GDALSuggestedWarpOutput2().
Referenced by GDALAutoCreateWarpedVRT(), and GDALSuggestedWarpOutput().

40.10.4.24 CPLErr GDALSuggestedWarpOutput2 (GDALDatasetH hSrcDS,
GDALTransformerFunc pfnTransformer, void x pTransformArg, double x
padfGeoTransformQOut, int x pnPixels, int x pnLines, double x padfExtent, int
nOptions)

Suggest output file size.

This function is used to suggest the size, and georeferenced extents appropriate given the indicated trans-
formation and input file. It walks the edges of the input file (approximately 20 sample points along each
edge) transforming into output coordinates in order to get an extents box.

Then a resolution is computed with the intent that the length of the distance from the top left corner of
the output imagery to the bottom right corner would represent the same number of pixels as in the source
image. Note that if the image is somewhat rotated the diagonal taken isnt of the whole output bounding
rectangle, but instead of the locations where the top/left and bottom/right corners transform. The output
pixel size is always square. This is intended to approximately preserve the resolution of the input data in
the output file.

The values returned in padfGeoTransformOut, pnPixels and pnLines are the suggested number of pixels and
lines for the output file, and the geotransform relating those pixels to the output georeferenced coordinates.

392 File Documentation

The trickiest part of using the function is ensuring that the transformer created is from source file pixel/line
coordinates to output file georeferenced coordinates. This can be accomplished with GDALCreateGenlm-
ProjTransformer() by passing a NULL for the hDstDS.

Parameters:

hSrcDS the input image (it is assumed the whole input images is being transformed).
pfnTransformer the transformer function.

pTransformArg the callback data for the transformer function.

padfGeoTransformQut the array of six doubles in which the suggested geotransform is returned.
pnPixels int in which the suggest pixel width of output is returned.

pnLines int in which the suggest pixel height of output is returned.

padfExtent Four entry array to return extents as (xmin, ymin, Xmax, ymax).

nOptions Options, currently always zero.

Returns:

CE_None if successful or CE_Failure otherwise.

References GDALGetRasterXSize(), GDALGetRasterYSize(), and GDALSuggestedWarpOutput2().
Referenced by GDALSuggestedWarpOutput(), and GDALSuggestedWarpOutput2().

40.10.4.25 int GDALTPSTransform (void * pTransformArg, int bDstToSrc, int nPointCount,
double * x, double xy, double x z, int x panSuccess)

Transforms point based on GCP derived polynomial model.

This function matches the GDALTransformerFunc signature, and can be used to transform one or more
points from pixel/line coordinates to georeferenced coordinates (SrcToDst) or vice versa (DstToSrc).

Parameters:

pTransformArg return value from GDALCreateTPSTransformer() (p. ??).

bDstToSrc TRUE if transformation is from the destination (georeferenced) coordinates to pixel/line
or FALSE when transforming from pixel/line to georeferenced coordinates.

nPointCount the number of values in the X, y and z arrays.
x array containing the X values to be transformed.
y array containing the Y values to be transformed.
Z array containing the Z values to be transformed.

panSuccess array in which a flag indicating success (TRUE) or failure (FALSE) of the transformation
are placed.

Returns:

TRUE.

References GDALTPSTransform().

Referenced by GDALCreateTPSTransformer(), GDALGenImgProjTransform(), and GDALTPSTrans-
form().

40.11 gdal_vrt.h File Reference 393

40.11 gdal_vrt.h File Reference

#include "gdal.h"
#include "cpl_port.h"
#include "cpl_error.h"

#include "cpl_minixml.h"

Defines

* #define VRT_NODATA_UNSET -1234.56

Typedefs

* typedef CPLErr(x+ VRTImageReadFunc)(void xhCBData, int nXOff, int nYOff, int nXSize, int
nYSize, void xpData)

¢ typedef void * VRTDriverH

¢ typedef void * VRTSourceH

* typedef void * VRTSimpleSourceH

¢ typedef void * VRTAveragedSourceH

¢ typedef void * VRTComplexSourceH

¢ typedef void * VRTFilteredSourceH

¢ typedef void * VRTKernelFilteredSourceH
¢ typedef void * VRTAverageFilteredSourceH
¢ typedef void * VRTFuncSourceH

* typedef void * VRTDatasetH

* typedef void * VRTWarpedDatasetH

* typedef void * VRTRasterBandH

* typedef void * VRTSourcedRasterBandH

¢ typedef void * VRTWarpedRasterBandH

* typedef void * VRTDerivedRasterBandH

¢ typedef void * VRTRawRasterBandH

Functions

¢ void GDALRegister_VRT (void)

¢ VRTDatasetH VRT Create (int, int)

¢ void VRTFlushCache (VRTDatasetH)

¢ CPLXMLNode * VRTSerializeToXML (VRTDatasetH, const char)

* int VRTAddBand (VRTDatasetH, GDALDataType, char xx)

¢ CPLErr VRTAddSource (VRTSourcedRasterBandH, VRTSourceH)

¢ CPLErr VRTAddSimpleSource (VRTSourcedRasterBandH, GDALRasterBandH, int, int, int, int,
int, int, int, int, const char *, double)

¢ CPLErr VRTAddComplexSource (VRTSourcedRasterBandH, GDALRasterBandH, int, int, int, int,
int, int, int, int, double, double, double)

e CPLErr VRTAddFuncSource (VRTSourcedRasterBandH, VRTImageReadFunc, void *, double)

394 File Documentation

40.11.1 Detailed Description

Public (C callable) entry points for virtual GDAL dataset objects.

40.11.2 Function Documentation

40.11.2.1 int VRTAddBand (VRTDatasetH hDataset, GDALDataType eType, char xx
papszOptions)
See also:

VRTDataset::VRTAddBand() (p. ??).

References VRTAddBand().
Referenced by VRTAddBand().

40.11.2.2 CPLErr VRTAddComplexSource (VRTSourcedRasterBandH hVRTBand,
GDALRasterBandH hSrcBand, int nSrcXOff, int nSrcYOff, int nSrcXSize, int
nSrcYSize, int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, double dfScaleOff,
double dfScaleRatio, double dfNoDataValue)

See also:

VRTSourcedRasterBand:: AddComplexSource().

References VRTAddComplexSource().
Referenced by VRTAddComplexSource().

40.11.2.3 CPLErr VRTAddFuncSource (VRTSourcedRasterBandH ZVRTBand,
VRTImageReadFunc pfnReadFunc, void x pCBData, double dfNoDataValue)
See also:

VRTSourcedRasterBand:: AddFuncSource().

References VRTAddFuncSource().
Referenced by VRTAddFuncSource().

40.11.2.4 CPLErr VRTAddSimpleSource (VRTSourcedRasterBandH #VRTBand,
GDALRasterBandH hSrcBand, int nSrcXOff, int nSrcYOff, int nSrcXSize, int
nSrcYSize, int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, const char x
pszResampling, double dfNoDataValue)

See also:

VRTSourcedRasterBand::AddSimpleSource().

References VRTAddSimpleSource().
Referenced by VRTAddSimpleSource().

40.11 gdal_vrt.h File Reference 395

40.11.2.5 CPLErr VRTAddSource (VRTSourcedRasterBandH 2VRTBand, VRTSourceH
hNewSource)

See also:

VRTSourcedRasterBand::AddSource().

References VRTAddSource().
Referenced by VRTAddSource().

40.11.2.6 VRTDatasetH VRTCreate (int nXSize, int nYSize)

See also:

VRTDataset:: VRTDataset()

References VRTCreate().
Referenced by VRTCreate().

40.11.2.7 void VRTFlushCache (VRTDatasetH hDataset)

See also:

VRTDataset::FlushCache()

References VRTFlushCache().
Referenced by VRTFlushCache().

40.11.2.8 CPLXMLNodex VRTSerializeToXML (VRTDatasetH kDataset, const char x
PpszVRTPath)

See also:

VRTDataset::SerializeToXML()

References VRTSerializeToXML().
Referenced by VRTSerializeToXMLJ().

396 File Documentation

40.12 gdalgrid.h File Reference

#include "gdal_alg.h"

Typedefs

¢ typedef CPLErr(x+ GDALGridFunction)(const void %, GUInt32, const double %, const double ,
const double *, double, double, double x)

Functions

¢ CPLErr GDALGridInverseDistanceToAPower (const void *, GUInt32, const double *, const dou-
ble *, const double *, double, double, double *)

¢ CPLErr GDALGridInverseDistanceToAPowerNoSearch (const void %, GUInt32, const double x*,
const double *, const double *, double, double, double *)

¢ CPLErr GDALGridMovingAverage (const void *, GUInt32, const double *, const double *, const
double *, double, double, double *)

¢ CPLErr GDALGridNearestNeighbor (const void x, GUInt32, const double *, const double *, const
double *, double, double, double *)

40.12.1 Detailed Description

GDAL gridder related entry points and definitions.

40.12.2 Function Documentation

40.12.2.1 CPLErr GDALGridInverseDistanceToAPower (const void * poOptions, GUInt32
nPoints, const double x pdfX, const double x pdfY, const double * pdfZ, double
dfXPoint, double dfYPoint, double * pdfValue)

Inverse distance to a power.

The Inverse Distance to a Power gridding method is a weighted average interpolator. You should supply
the input arrays with the scattered data values including coordinates of every data point and output grid
geometry. The function will compute interpolated value for the given position in output grid.

For every grid node the resulting value Z will be calculated using formula:

Ny
-3
ﬂ‘

3

where

* ris a distance from the grid node to point ¢,
e Z; is a known value at point 7,

* pis a weighting power.

40.12 gdalgrid.h File Reference 397

In this method the weighting factor w is

Parameters:

poOptions Algorithm parameters. This should point to GDALGridInverseDistanceToAPowerOp-
tions (p. ??) object.

nPoints Number of elements in input arrays.
pdfX Input array of X coordinates.

pdfY Input array of Y coordinates.

pdfZ Input array of Z values.

dfXPoint X coordinate of the point to compute.
dfYPoint Y coordinate of the point to compute.
nXPoint X position of the point to compute.
nYPoint Y position of the point to compute.

pdfValue Pointer to variable where the computed grid node value will be returned.

Returns:

CE_None on success or CE_Failure if something goes wrong.

40.12.2.2 CPLErr GDALGridInverseDistanceToAPowerNoSearch (const void * poOptions,
GUInt32 nPoints, const double * pdfX, const double x pdfY, const double * pdfZ,
double dfXPoint, double dfYPoint, double * pdfValue)

Inverse distance to a power for whole data set.

This is somewhat optimized version of the Inverse Distance to a Power method. It is used when the search
ellips is not set. The algorithm and parameters are the same as in GDALGridInverseDistanceToAPower()
(p. 7?), but this implementation works faster, because of no search.

See also:

GDALGridInverseDistanceToAPower() (p. ??)

40.12.2.3 CPLErr GDALGridMovingAverage (const void * poOptions, GUInt32 nPoints, const
double * pdfX, const double x pdfY, const double x pdfZ, double dfXPoint, double
dfYPoint, double * pdfValue)

Moving average.

The Moving Average is a simple data averaging algorithm. It uses a moving window of elliptic form to
search values and averages all data points within the window. Search ellipse can be rotated by specified
angle, the center of ellipse located at the grid node. Also the minimum number of data points to average
can be set, if there are not enough points in window, the grid node considered empty and will be filled with
specified NODATA value.

398 File Documentation

Parameters:

poOptions Algorithm parameters. This should point to GDALGridMovingAverageOptions (p. ??)
object.

nPoints Number of elements in input arrays.
pdfX Input array of X coordinates.

pdfY Input array of Y coordinates.

pdfZ Input array of Z values.

dfXPoint X coordinate of the point to compute.
dfYPoint Y coordinate of the point to compute.

pdfValue Pointer to variable where the computed grid node value will be returned.

Returns:

CE_None on success or CE_Failure if something goes wrong.

40.12.2.4 CPLErr GDALGridNearestNeighbor (const void * poOptions, GUInt32 nPoints, const
double * pdfX, const double * pdfY, const double x pdfZ, double dfXPoint, double
dfYPoint, double x pdfValue)

Nearest neighbor.

The Nearest Neighbor method doesn’t perform any interpolation or smoothing, it just takes the value of
nearest point found in grid node search ellipse and returns it as a result. If there are no points found, the
specified NODATA value will be returned.

Parameters:

poOptions Algorithm parameters. This should point to GDALGridNearestNeighborOptions (p. ??)
object.

nPoints Number of elements in input arrays.
pdfX Input array of X coordinates.

pdfY Input array of Y coordinates.

pdfZ Input array of Z values.

dfXPoint X coordinate of the point to compute.
dfYPoint Y coordinate of the point to compute.

pdfValue Pointer to variable where the computed grid node value will be returned.

Returns:

CE_None on success or CE_Failure if something goes wrong.

40.13 gdalwarper.h File Reference

399

40.13 gdalwarper.h File Reference

#include "gdal_alg.h"

#include "cpl_minixml.h"

Classes

* struct GDALWarpOptions
¢ class GDALWarpKernel
¢ class GDALWarpOperation

Typedefs

¢ typedef int(+ GDALMaskFunc)(void xpMaskFuncArg, int nBandCount, GDALDataType eType,
int nXOff, int nYOff, int nXSize, int nYSize, GByte **papabylmageData, int bMaskIsFloat, void

+pMask)
¢ typedef void * GDALWarpOperationH

Enumerations

e enum GDALResampleAlg {
GRA _NearestNeighbour = 0, GRA_Bilinear = 1, GRA_Cubic = 2, GRA_CubicSpline = 3,
GRA_Lanczos =4 }

Functions

e CPLErr GDALWarpNoDataMasker (void xpMaskFuncArg, int nBandCount, GDALDataType
eType, int nXOff, int nYOAT, int nXSize, int nYSize, GByte *xpapabylmageData, int bMasklIsFloat,

void xpValidityMask)

e CPLErr GDALWarpDstAlphaMasker (void xpMaskFuncArg, int nBandCount, GDALDataType
eType, int nXOff, int nYOff, int nXSize, int nYSize, GByte **, int bMaskIsFloat, void

xp ValidityMask)

e CPLErr GDALWarpSrcAlphaMasker (void xpMaskFuncArg, int nBandCount, GDALDataType
eType, int nXOff, int nYOff, int nXSize, int nYSize, GByte *x, int bMaskIsFloat, void

xp ValidityMask)
¢ GDALWarpOptions x GDALCreateWarpOptions (void)
¢ void GDALDestroyWarpOptions (GDALWarpOptions)
* GDALWarpOptions « GDALCloneWarpOptions (const GDALWarpOptions x)
* CPLXMLNode * GDALSerializeWarpOptions (const GDALWarpOptions x)
* GDALWarpOptions x GDALDeserializeWarpOptions (CPLXMLNode *)

e CPLErr GDALReprojectimage (GDALDatasetH hSrcDS, const char *pszSrcWKT, GDAL-
DatasetH hDstDS, const char *pszDstWKT, GDALResampleAlg eResampleAlg, double dfWarp-
MemoryLimit, double dfMaxError, GDALProgressFunc pfnProgress, void #pProgressArg, GDAL-

WarpOptions «psOptions)

¢ CPLErr GDALCreateAndReprojectimage (GDALDatasetH hSrcDS, const char #pszSrcWKT,

const char xpszDstFilename, const char xpszDstWKT, GDALDriverH hDstDriver,

char

xxpapszCreateOptions, GDALResampleAlg eResampleAlg, double dfWarpMemoryLimit, dou-
ble dfMaxError, GDALProgressFunc pfnProgress, void spProgressArg, GDALWarpOptions

*xpsOptions)

400 File Documentation

e GDALDatasetH GDALAutoCreateWarpedVRT (GDALDatasetH hSrcDS, const char
xpszSrcWKT, const char xpszDstWKT, GDALResampleAlg eResampleAlg, double dfMax-
Error, const GDALWarpOptions #psOptions)

¢ GDALDatasetH GDALCreateWarpedVRT (GDALDatasetH hSrcDS, int nPixels, int nLines, dou-
ble xpadfGeoTransform, GDALWarpOptions +psOptions)

e CPLErr GDALInitializeWarpedVRT (GDALDatasetH hDS, GDALWarpOptions xpsWO)

¢ GDALWarpOperationH GDALCreateWarpOperation (const GDALWarpOptions x)

¢ void GDALDestroyWarpOperation (GDALWarpOperationH)

¢ CPLErr GDALChunkAndWarpImage (GDALWarpOperationH, int, int, int, int)

¢ CPLErr GDALChunkAndWarpMulti (GDALWarpOperationH, int, int, int, int)

¢ CPLErr GDALWarpRegion (GDALWarpOperationH, int, int, int, int, int, int, int, int)

¢ CPLErr GDALWarpRegionToBuffer (GDALWarpOperationH, int, int, int, int, void %, GDAL-
DataType, int, int, int, int)

40.13.1 Detailed Description

GDAL warper related entry points and definitions. Eventually it is expected that this file will be mostly
private to the implementation, and the public C entry points will be available in gdal_alg.h (p. ??).

40.13.2 Enumeration Type Documentation
40.13.2.1 enum GDALResampleAlg
Warp Resampling Algorithm

Enumerator:

GRA_NearestNeighbour Nearest neighbour (select on one input pixel)
GRA_Bilinear Bilinear (2x2 kernel)

GRA_Cubic Cubic Convolution Approximation (4x4 kernel)
GRA_CubicSpline Cubic B-Spline Approximation (4x4 kernel)

GRA_Lanczos Lanczos windowed sinc interpolation (6x6 kernel)

40.13.3 Function Documentation

40.13.3.1 GDALDatasetH GDALAutoCreateWarpedVRT (GDALDatasetH hSrcDS, const char
* pszSrcWKT, const char x pszDstWKT, GDALResampleAlg eResampleAlg, double
dfMaxError, const GDALWarpOptions * psOptionsIn)

Create virtual warped dataset automatically.

This function will create a warped virtual file representing the input image warped into the target coordinate
system. A GenlmgProj transformation is created to accomplish any required GCP/Geotransform warp and
reprojection to the target coordinate system. The output virtual dataset will be "northup" in the target
coordinate system. The GDALSuggestedWarpOutput() (p. ??) function is used to determine the bounds
and resolution of the output virtual file which should be large enough to include all the input image

Note that the constructed GDALDatasetH will acquire one or more references to the passed in hSrcDS.
Reference counting semantics on the source dataset should be honoured. That is, don’t just GDALClose()
(p. ??) it unless it was opened with GDALOpenShared() (p. ??).

40.13 gdalwarper.h File Reference 401

The returned dataset will have no associated filename for itself. If you want to write the virtual dataset
description to a file, use the GDALSetDescription() (p. ??) function (or SetDescription() method) on the
dataset to assign a filename before it is closed.

Parameters:
hSrcDS The source dataset.

pszSreWKT The coordinate system of the source image. If NULL, it will be read from the source
image.

pszDstWKT The coordinate system to convert to. If NULL no change of coordinate system will take
place.

eResampleAlg One of GRA_NearestNeighbour, GRA_Bilinear, GRA_Cubic or GRA_CubicSpline.
Controls the sampling method used.

dfMaxError Maximum error measured in input pixels that is allowed in approximating the transfor-
mation (0.0 for exact calculations).

psOptions Additional warp options, normally NULL.

Returns:

NULL on failure, or a new virtual dataset handle on success.

References GDALWarpOptions::eResampleAlg, GDALApproxTransform(), GDALAutoCreateWarped-
VRT(), GDALCreateApproxTransformer(), GDALCreateGenlmgProjTransformer(), GDALCreate-
WarpedVRT(), GDALGenImgProjTransform(), GDALGetGCPCount(), GDALGetGCPProjection(),
GDALGetProjectionRef(), GDALGetRasterCount(), GDALSetGenlmgProjTransformerDstGeoTrans-
form(), GDALSetProjection(), GDALSuggestedWarpOutput(), GDALWarpOptions::hSrcDS, GDAL-
WarpOptions::nBandCount, = GDALWarpOptions::panDstBands, = GDALWarpOptions::panSrcBands,
GDALWarpOptions::pfnTransformer, and GDALWarpOptions::pTransformerArg.

Referenced by GDALAutoCreateWarped VRT().
40.13.3.2 CPLErr GDALChunkAndWarpImage (GDALWarpOperationH hOperation, int
nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize)

See also:

GDALWarpOperation::ChunkAndWarpImage() (p.??)

References GDALWarpOperation::ChunkAndWarpImage(), and GDALChunkAndWarpImage().
Referenced by GDALChunkAndWarpImage().

40.13.3.3 CPLErr GDALChunkAndWarpMulti (GDALWarpOperationH hOperation, int
nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize)
See also:

GDALWarpOperation::ChunkAndWarpMulti() (p. 2?)

References GDALWarpOperation::ChunkAndWarpMulti(), and GDALChunkAndWarpMulti().
Referenced by GDALChunkAndWarpMulti().

402 File Documentation

40.13.3.4 GDALDatasetH GDALCreateWarpedVRT (GDALDatasetH iASrcDS, int nPixels, int
nLines, double x padfGeoTransform, GDALWarpOptions * psOptions)
Create virtual warped dataset.

This function will create a warped virtual file representing the input image warped based on a provided
transformation. Output bounds and resolution are provided explicitly.

Note that the constructed GDALDatasetH will acquire one or more references to the passed in hSrcDS.
Reference counting semantics on the source dataset should be honoured. That is, don’t just GDALClose()
(p- ??) it unless it was opened with GDALOpenShared() (p. ??).

Parameters:

hSrcDS The source dataset.

nOverviewLevels The number of "power of 2" overview levels to be built. If zero, no overview levels
will be managed.

psOptions Additional warp options, normally NULL.

Returns:

NULL on failure, or a new virtual dataset handle on success.
References GDALCreateWarpedVRT(), GDALGetRasterBand(), GDALRaster-
Band::GetRasterDataType(), GDALWarpOptions::hDstDS, and GDALWarpOptions::nBandCount.
Referenced by GDALAutoCreateWarped VRT(), and GDALCreateWarped VRT().

40.13.3.5 GDALWarpOperationH GDALCreateWarpOperation (const GDALWarpOptions *
psNewOptions)
See also:

GDALWarpOperation::Initialize() (p. ??)

References GDALCreateWarpOperation(), and GDALWarpOperation::Initialize().
Referenced by GDALCreate WarpOperation().

40.13.3.6 void GDALDestroyWarpOperation (GDALWarpOperationH hOperation)

See also:

GDALWarpOperation::~GDALWarpOperation()

References GDALDestroyWarpOperation().
Referenced by GDALDestroy WarpOperation().

40.13.3.7 CPLErr GDALInitializeWarpedVRT (GDALDatasetH DS, GDALWarpOptions *
psWO)

Set warp info on virtual warped dataset.

Initializes all the warping information for a virtual warped dataset.

This method is the same as the C++ method VRTWarpedDataset::Initialize().

40.13 gdalwarper.h File Reference 403

Parameters:

hDS dataset previously created with the VRT driver, and a SUBCLASS of "VRTWarpedDataset".

psWO the warp options to apply. Note that ownership of the transformation information is taken over
by the function though everything else remains the property of the caller.

Returns:

CE_None on success or CE_Failure if an error occurs.

References GDALInitializeWarpedVRT().
Referenced by GDALInitializeWarpedVRT().

40.13.3.8 CPLErr GDALReprojectlmage (GDALDatasetH hSrcDS, const char * pszSrc WKT,
GDALDatasetH hDstDS, const char x pszDstWKT, GDALResampleAlg eResampleAlg,
double dfWarpMemoryLimit, double dfMaxError, GDALProgressFunc pfnProgress,
void * pProgressArg, GDALWarpOptions * psOptions)

Reproject image.

This is a convenience function utilizing the GDALWarpOQOperation (p. ??) class to reproject an image from
a source to a destination. In particular, this function takes care of establishing the transformation function
to implement the reprojection, and will default a variety of other warp options.

By default all bands are transferred, with no masking or nodata values in effect. No metadata, projection
info, or color tables are transferred to the output file.

Parameters:

hSrcDS the source image file.

pszSrcWKT the source projection. If NULL the source projection is read from from hSrcDS.
hDstDS the destination image file.

pszDstWKT the destination projection. If NULL the destination projection will be read from hDstDS.
eResampleAlg the type of resampling to use.

dfWarpMemoryLimit the amount of memory (in bytes) that the warp API is allowed to use for
caching. This is in addition to the memory already allocated to the GDAL caching (as per
GDALSetCacheMax() (p. ??)). May be 0.0 to use default memory settings.

dfMaxError maximum error measured in input pixels that is allowed in approximating the transfor-
mation (0.0 for exact calculations).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.
psOptions warp options, normally NULL.

Returns:

CE_None on success or CE_Failure if something goes wrong.

References GDALWarpOperation::Chunk AndWarpImage(), GDALWarpOptions::eResampleAlg,
GDALApproxTransform(), GDALCreateApproxTransformer(), GDALCreateGenlmgProjTrans-
former(), GDALDestroyApproxTransformer(), =~ GDALDestroyGenlmgProjTransformer(), =~ GDAL-
GenlmgProjTransform(), = GDALGetRasterBand(), = GDALGetRasterCount(), = GDALGetRasterN-
oDataValue(), = GDALGetRasterXSize(), = GDALGetRasterYSize(), = GDALWarpOptions::hDstDS,

404 File Documentation

GDALWarpOptions::hSrcDS, GDALWarpOperation::Initialize(), =~ GDALWarpOptions::nBandCount,
GDALWarpOptions::padfSrcNoDatalmag, GDALWarpOptions::padfSrcNoDataReal, GDALWar-
pOptions::panDstBands, GDALWarpOptions::panSrcBands, GDALWarpOptions::pfnProgress,
GDALWarpOptions::pfnTransformer, GDALWarpOptions::pProgressArg, and GDALWarpOp-
tions::pTransformerArg.

40.13.3.9 CPLErr GDALWarpRegion (GDALWarpOperationH hOperation, int nDstXOff, int
nDstYOff, int nDstXSize, int nDstYSize, int nSrcXOff, int nSrcYOff, int nSrcXSize, int
nSrcYSize)

See also:

GDALWarpOperation:: WarpRegion() (p. 2?)

References GDALWarpRegion(), and GDALWarpOperation:: WarpRegion().
Referenced by GDALWarpRegion().

40.13.3.10 CPLErr GDALWarpRegionToBuffer (GDALWarpOperationH hOperation,
int nDstXOff, int nDstYOff, int nDstXSize, int nDstYSize, void x pDataBuf,
GDALDataType eBufDataType, int nSrcXOff, int nSrcYOff, int nSrcXSize, int
nSrcYSize)

See also:

GDALWarpOperation::WarpRegionToBuffer() (p. ??)

References GDALWarpRegionToBuffer(), and GDALWarpOperation::WarpRegionToBuffer().
Referenced by GDALWarpRegionToBuffer().

