weka.classifiers.mi
Class MIBoost

java.lang.Object
  extended by weka.classifiers.Classifier
      extended by weka.classifiers.SingleClassifierEnhancer
          extended by weka.classifiers.mi.MIBoost
All Implemented Interfaces:
java.io.Serializable, java.lang.Cloneable, CapabilitiesHandler, MultiInstanceCapabilitiesHandler, OptionHandler, RevisionHandler, TechnicalInformationHandler

public class MIBoost
extends SingleClassifierEnhancer
implements OptionHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler

MI AdaBoost method, considers the geometric mean of posterior of instances inside a bag (arithmatic mean of log-posterior) and the expectation for a bag is taken inside the loss function.

For more information about Adaboost, see:

Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996.

BibTeX:

 @inproceedings{Freund1996,
    address = {San Francisco},
    author = {Yoav Freund and Robert E. Schapire},
    booktitle = {Thirteenth International Conference on Machine Learning},
    pages = {148-156},
    publisher = {Morgan Kaufmann},
    title = {Experiments with a new boosting algorithm},
    year = {1996}
 }
 

Valid options are:

 -D
  Turn on debugging output.
 -B <num>
  The number of bins in discretization
  (default 0, no discretization)
 -R <num>
  Maximum number of boost iterations.
  (default 10)
 -W <class name>
  Full name of classifier to boost.
  eg: weka.classifiers.bayes.NaiveBayes
 -D
  If set, classifier is run in debug mode and
  may output additional info to the console

Version:
$Revision: 1.6 $
Author:
Eibe Frank (eibe@cs.waikato.ac.nz), Xin Xu (xx5@cs.waikato.ac.nz)
See Also:
Serialized Form

Constructor Summary
MIBoost()
           
 
Method Summary
 void buildClassifier(Instances exps)
          Builds the classifier
 java.lang.String discretizeBinTipText()
          Returns the tip text for this property
 double[] distributionForInstance(Instance exmp)
          Computes the distribution for a given exemplar
 Capabilities getCapabilities()
          Returns default capabilities of the classifier.
 int getDiscretizeBin()
          Get the number of bins in discretization
 int getMaxIterations()
          Get the maximum number of boost iterations
 Capabilities getMultiInstanceCapabilities()
          Returns the capabilities of this multi-instance classifier for the relational data.
 java.lang.String[] getOptions()
          Gets the current settings of the classifier.
 java.lang.String getRevision()
          Returns the revision string.
 TechnicalInformation getTechnicalInformation()
          Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
 java.lang.String globalInfo()
          Returns a string describing this filter
 java.util.Enumeration listOptions()
          Returns an enumeration describing the available options
static void main(java.lang.String[] argv)
          Main method for testing this class.
 java.lang.String maxIterationsTipText()
          Returns the tip text for this property
 void setDiscretizeBin(int bin)
          Set the number of bins in discretization
 void setMaxIterations(int maxIterations)
          Set the maximum number of boost iterations
 void setOptions(java.lang.String[] options)
          Parses a given list of options.
 java.lang.String toString()
          Gets a string describing the classifier.
 
Methods inherited from class weka.classifiers.SingleClassifierEnhancer
classifierTipText, getClassifier, setClassifier
 
Methods inherited from class weka.classifiers.Classifier
classifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, setDebug
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

MIBoost

public MIBoost()
Method Detail

globalInfo

public java.lang.String globalInfo()
Returns a string describing this filter

Returns:
a description of the filter suitable for displaying in the explorer/experimenter gui

getTechnicalInformation

public TechnicalInformation getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.

Specified by:
getTechnicalInformation in interface TechnicalInformationHandler
Returns:
the technical information about this class

listOptions

public java.util.Enumeration listOptions()
Returns an enumeration describing the available options

Specified by:
listOptions in interface OptionHandler
Overrides:
listOptions in class SingleClassifierEnhancer
Returns:
an enumeration of all the available options

setOptions

public void setOptions(java.lang.String[] options)
                throws java.lang.Exception
Parses a given list of options.

Valid options are:

 -D
  Turn on debugging output.
 -B <num>
  The number of bins in discretization
  (default 0, no discretization)
 -R <num>
  Maximum number of boost iterations.
  (default 10)
 -W <class name>
  Full name of classifier to boost.
  eg: weka.classifiers.bayes.NaiveBayes
 -D
  If set, classifier is run in debug mode and
  may output additional info to the console

Specified by:
setOptions in interface OptionHandler
Overrides:
setOptions in class SingleClassifierEnhancer
Parameters:
options - the list of options as an array of strings
Throws:
java.lang.Exception - if an option is not supported

getOptions

public java.lang.String[] getOptions()
Gets the current settings of the classifier.

Specified by:
getOptions in interface OptionHandler
Overrides:
getOptions in class SingleClassifierEnhancer
Returns:
an array of strings suitable for passing to setOptions

maxIterationsTipText

public java.lang.String maxIterationsTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setMaxIterations

public void setMaxIterations(int maxIterations)
Set the maximum number of boost iterations

Parameters:
maxIterations - the maximum number of boost iterations

getMaxIterations

public int getMaxIterations()
Get the maximum number of boost iterations

Returns:
the maximum number of boost iterations

discretizeBinTipText

public java.lang.String discretizeBinTipText()
Returns the tip text for this property

Returns:
tip text for this property suitable for displaying in the explorer/experimenter gui

setDiscretizeBin

public void setDiscretizeBin(int bin)
Set the number of bins in discretization

Parameters:
bin - the number of bins in discretization

getDiscretizeBin

public int getDiscretizeBin()
Get the number of bins in discretization

Returns:
the number of bins in discretization

getCapabilities

public Capabilities getCapabilities()
Returns default capabilities of the classifier.

Specified by:
getCapabilities in interface CapabilitiesHandler
Overrides:
getCapabilities in class SingleClassifierEnhancer
Returns:
the capabilities of this classifier
See Also:
Capabilities

getMultiInstanceCapabilities

public Capabilities getMultiInstanceCapabilities()
Returns the capabilities of this multi-instance classifier for the relational data.

Specified by:
getMultiInstanceCapabilities in interface MultiInstanceCapabilitiesHandler
Returns:
the capabilities of this object
See Also:
Capabilities

buildClassifier

public void buildClassifier(Instances exps)
                     throws java.lang.Exception
Builds the classifier

Specified by:
buildClassifier in class Classifier
Parameters:
exps - the training data to be used for generating the boosted classifier.
Throws:
java.lang.Exception - if the classifier could not be built successfully

distributionForInstance

public double[] distributionForInstance(Instance exmp)
                                 throws java.lang.Exception
Computes the distribution for a given exemplar

Overrides:
distributionForInstance in class Classifier
Parameters:
exmp - the exemplar for which distribution is computed
Returns:
the classification
Throws:
java.lang.Exception - if the distribution can't be computed successfully

toString

public java.lang.String toString()
Gets a string describing the classifier.

Overrides:
toString in class java.lang.Object
Returns:
a string describing the classifer built.

getRevision

public java.lang.String getRevision()
Returns the revision string.

Specified by:
getRevision in interface RevisionHandler
Returns:
the revision

main

public static void main(java.lang.String[] argv)
Main method for testing this class.

Parameters:
argv - should contain the command line arguments to the scheme (see Evaluation)