next | previous | forward | backward | up | top | index | toc | home

isPommaretBasis -- check whether or not a given Janet basis is also a Pommaret basis

Synopsis

Description

i1 : R = QQ[x,y]

o1 = R

o1 : PolynomialRing
i2 : I = ideal(x^3,y^2)

             3   2
o2 = ideal (x , y )

o2 : Ideal of R
i3 : J = janetBasis I

o3 = InvolutiveBasis{0 => | y2 xy2 x3 x2y2 |                                                          }
                     1 => {HashTable{x => 0}, HashTable{x => 0}, HashTable{x => 1}, HashTable{x => 0}}
                                     y => 1             y => 1             y => 1             y => 1

o3 : InvolutiveBasis
i4 : isPommaretBasis J

o4 = true
i5 : R = QQ[x,y]

o5 = R

o5 : PolynomialRing
i6 : I = ideal(x*y,y^2)

                  2
o6 = ideal (x*y, y )

o6 : Ideal of R
i7 : J = janetBasis I

o7 = InvolutiveBasis{0 => | y2 xy |                             }
                     1 => {HashTable{x => 0}, HashTable{x => 1}}
                                     y => 1             y => 1

o7 : InvolutiveBasis
i8 : isPommaretBasis J

o8 = false

See also

Ways to use isPommaretBasis :