![]() |
Prev | Next | Runge45.cpp | Headings |
X : \R \rightarrow \R^n
by
\[
X_i (t) = t^{i+1}
\]
for
i = 1 , \ldots , n-1
.
It follows that
\[
\begin{array}{rclr}
X_i(0) & = & 0 & {\rm for \; all \;} i \\
X_i ' (t) & = & 1 & {\rm if \;} i = 0 \\
X_i '(t) & = & (i+1) t^i = (i+1) X_{i-1} (t) & {\rm if \;} i > 0
\end{array}
\]
The example tests Runge45 using the relations above:
# include <cstddef> // for size_t
# include <cppad/runge_45.hpp> // for CppAD::Runge45
# include <cppad/near_equal.hpp> // for CppAD::NearEqual
# include <cppad/vector.hpp> // for CppAD::vector
namespace {
class Fun {
public:
// constructor
Fun(bool use_x_) : use_x(use_x_)
{ }
// set f = x'(t)
void Ode(
const double &t,
const CppAD::vector<double> &x,
CppAD::vector<double> &f)
{ size_t n = x.size();
double ti = 1.;
f[0] = 1.;
size_t i;
for(i = 1; i < n; i++)
{ ti *= t;
if( use_x )
f[i] = (i+1) * x[i-1];
else f[i] = (i+1) * ti;
}
}
private:
const bool use_x;
};
}
bool Runge45(void)
{ bool ok = true; // initial return value
size_t i; // temporary indices
size_t n = 5; // number components in X(t) and order of method
size_t M = 2; // number of Runge45 steps in [ti, tf]
double ti = 0.; // initial time
double tf = 2.; // final time
// xi = X(0)
CppAD::vector<double> xi(n);
for(i = 0; i <n; i++)
xi[i] = 0.;
size_t use_x;
for( use_x = 0; use_x < 2; use_x++)
{ // function object depends on value of use_x
Fun F(use_x > 0);
// compute Runge45 approximation for X(tf)
CppAD::vector<double> xf(n), e(n);
xf = CppAD::Runge45(F, M, ti, tf, xi, e);
double check = tf;
for(i = 0; i < n; i++)
{ // check that error is always positive
ok &= (e[i] >= 0.);
// 5th order method is exact for i < 5
if( i < 5 ) ok &=
CppAD::NearEqual(xf[i], check, 1e-10, 1e-10);
// 4th order method is exact for i < 4
if( i < 4 )
ok &= (e[i] <= 1e-10);
// check value for next i
check *= tf;
}
}
return ok;
}