next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc :: factor(Module)

factor(Module) -- factor a ZZ-module

Synopsis

Description

The ring of M must be ZZ.

In the following example we construct a module with a known (but disguised) factorization.

i1 : f = random(ZZ^6, ZZ^4)

o1 = | 7 0 9 7 |
     | 7 5 5 0 |
     | 7 8 6 1 |
     | 5 2 0 5 |
     | 3 9 7 1 |
     | 4 5 2 2 |

              6        4
o1 : Matrix ZZ  <--- ZZ
i2 : M = subquotient ( f * diagonalMatrix{2,3,8,21}, f * diagonalMatrix{2*11,3*5*13,0,21*5} )

o2 = subquotient (| 14 0  72 147 |, | 154 0    0 735 |)
                  | 14 15 40 0   |  | 154 975  0 0   |
                  | 14 24 48 21  |  | 154 1560 0 105 |
                  | 10 6  0  105 |  | 110 390  0 525 |
                  | 6  27 56 21  |  | 66  1755 0 105 |
                  | 8  15 16 42  |  | 88  975  0 210 |

                                 6
o2 : ZZ-module, subquotient of ZZ
i3 : factor M

          ZZ   ZZ    ZZ
o3 = ZZ + -- + -- + ----
           5   11   5*13

o3 : Expression of class Sum