next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
DGAlgebras :: killCycles

killCycles -- Adjoins variables to make non-bounding cycles boundaries in the lowest positive degree with nontrivial homology.

Synopsis

Description

i1 : R = ZZ/101[a,b,c,d]/ideal{a^3,b^3,c^3-d^4}

o1 = R

o1 : QuotientRing
i2 : A = koszulComplexDGA(R)

o2 = {Ring => R                              }
      Underlying algebra => R[T , T , T , T ]
                               1   2   3   4
      Differential => {a, b, c, d}
      isHomogeneous => false

o2 : DGAlgebra
i3 : A.diff

o3 = map(R[T , T , T , T ],R[T , T , T , T ],{a, b, c, d, a, b, c, d})
            1   2   3   4     1   2   3   4

o3 : RingMap R[T , T , T , T ] <--- R[T , T , T , T ]
                1   2   3   4          1   2   3   4
i4 : B = killCycles(A)

o4 = {Ring => R                                              }
      Underlying algebra => R[T , T , T , T , T , T , T ]
                               1   2   3   4   5   6   7
                                    2     2       2      3
      Differential => {a, b, c, d, a T , b T , - c T  + d T }
                                      1     2       3      4
      isHomogeneous => false

o4 : DGAlgebra
i5 : B.diff

                                                                                   2     2       2      3
o5 = map(R[T , T , T , T , T , T , T ],R[T , T , T , T , T , T , T ],{a, b, c, d, a T , b T , - c T  + d T , a, b, c, d})
            1   2   3   4   5   6   7     1   2   3   4   5   6   7                  1     2       3      4

o5 : RingMap R[T , T , T , T , T , T , T ] <--- R[T , T , T , T , T , T , T ]
                1   2   3   4   5   6   7          1   2   3   4   5   6   7

Ways to use killCycles :