i2 : A = acyclicClosure(R,EndDegree=>3)
o2 = {Ring => R }
Underlying algebra => R[T , T , T , T , T , T , T ]
1 2 3 4 5 6 7
2 2 3 2
Differential => {a, b, c, d, a T , b T , c T - d T }
1 2 3 4
isHomogeneous => false
o2 : DGAlgebra
|
i3 : A.diff
2 2 3 2
o3 = map(R[T , T , T , T , T , T , T ],R[T , T , T , T , T , T , T ],{a, b, c, d, a T , b T , c T - d T , a, b, c, d})
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4
o3 : RingMap R[T , T , T , T , T , T , T ] <--- R[T , T , T , T , T , T , T ]
1 2 3 4 5 6 7 1 2 3 4 5 6 7
|