next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

               2      2   2 2      2   2 2     2   2   2         2 2     
o2 = ideal (p*w  - s*w , g m  - s*w , b m w - j , e r*s  - b, j*m r  - u,
     ------------------------------------------------------------------------
      2 2 2    2   2 2 2 2
     t w x  - n , b n r t  - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 4 3   2     3 4 2 3   4 2 3 3   4    3 3 3 3   4 4 4 2 4  
o3 = ideal (i k l s*t w - c d f u , b e h i q*v  - a l n x , h i l t w  -
     ------------------------------------------------------------------------
      3 3 3 3 4   4 4 3 4 2   2    3 3 2
     b d f m s , a h j q r s*t  - f o w )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.