
OpenMS Tutorial
Version: 1.11.1

Contents
1 Introduction 2

1.1 Class search engine . 2

2 Basic classes and concepts 6
2.1 Basic data types . 6
2.2 The OpenMS namespace . 6
2.3 Exception handling in OpenMS . 6
2.4 Condition macros . 7
2.5 The OpenMS string implementation . 8
2.6 D-dimensional coordinates . 8
2.7 D-dimensional ranges . 8
2.8 Param . 9
2.9 Elements . 10
2.10 EmpiricalFormula . 10
2.11 Residue . 10
2.12 AASequence . 11
2.13 TheoreticalSpectrumGenerator . 11
2.14 Raw data point, Peak, Feature, ... 12
2.15 Spectra . 12
2.16 Maps . 13
2.17 MetaInfo . 15
2.18 Meta data of a map . 15
2.19 Meta data of a spectrum . 16
2.20 Meta data associated to peaks . 17
2.21 File adapter classes . 18
2.22 DB access . 18
2.23 PeakFileOptions . 18

3 Algorithms 19
3.1 Baseline filters . 19
3.2 Smoothing filters . 19
3.3 Calibration . 20
3.4 Peak picking . 21
3.5 Feature detection . 22
3.6 Feature grouping for label-free quantitation . 24
3.7 Feature grouping for isotope-labeled quantitation . 24

4 Advanced tutorials 25
4.1 1D view . 25
4.2 Visual editing of parameters . 25
4.3 Inputdata . 26
4.4 Clustering . 26
4.5 Output . 26
4.6 Background . 27
4.7 Machine learning details . 27
4.8 About the training data . 27
4.9 How to use PIP . 27
4.10 Example code . 28
4.11 References . 28
4.12 Creating a new algorithm . 29

1

1 Introduction
This tutorial gives an introduction to the OpenMS core datastructures and algorithms. It is intended to
allow for a quick start in writing your own applications based on the OpenMS framework.

The structure of this tutorial is similar to the modules of the class documentation. First, the basic
concepts and datastructures of OpenMS are explained. The next chapter is about the kernel datastructures.
These datastructures represent the actual mass spectronomy data: raw data, peaks, spectra and maps. In the
following chapters, the more sophisticated datastructures and algorithms, e.g. those used for peak picking,
feature finding and identification are presented.

All the example programs used in this tutorial, can be found in OpenMS/source/EXAMPLES/.
If you are looking for C++ literature, we recommend the following books:

• C++: C++ Primer, Effective C++

• STL: Generic Programming and the STL, Effective STL, The C++ Standard Library

• Qt: C++ GUI Programming with Qt 4

1.1 Class search engine
You can search for Classes in the OpenMS documentation using the the class search engine that can be
found at http://open-ms.sourceforge.net/documentation.php .

The search engine can e.g. be used to

• find all classes matching a keyword.

• find the exact include path, when you know the class name only.

2

http://open-ms.sourceforge.net/documentation.php

The following image shows the overall structure of OpenMS:

Figure 1: Overall design of OpenMS.

Without looking into the details of OpenMS the situation is very simple. Applications can be im-
plemented using OpenMS, which in turn relies on several external libraries: Qt provides visualization,
database support and a platform abstraction layer. Xerces allows XML file parsing. libSVM is used for
machine learning tasks. The Computational Geometry Algorithms Library (CGAL) provides data struc-
tures and algorithms for geometric computation. The GNU Scientific Library(GSL) is used for different
mathematical and statistical tasks.

OpenMS can itself be subdivided into several layers. At the very bottom are the foundation classes
which implement low-level concepts and data structures. They include basic concepts (e.g. factory pattern,
exception handling), basic data structures (e.g. string, points, ranges) and system-specific classes (e.g.
file system, time). The kernel classes, which capture the actual MS data and metadata, are built upon the
foundation classes. Finally, there is a layer of higher-level functionality that relies on the kernel classes.
This layer contains database I/O, file I/O supporting several file formats, data reduction functionality and
all other analysis algorithms. The following terms for MS-related data are used in this tutorial and the

3

OpenMS class documentation:

• raw data point
An unprocessed data point as measured by the instrument.

• peak
Data point that is the result of some kind of peak detection algorithm. Peaks are often referred to as
sticks or centroided data as well.

• spectrum / scan
A mass spectrum containing raw data points (raw spectrum) or peaks (peak spectrum).

Figure 2: Part of a raw spectrum (blue) with three peaks (red)

• map
A collection of spectra generated by a HPLC-MS experiment. Depending on what kinds of spec-
tra are contained, we use the terms raw map or peak map. Often a map is also referred to as an
experiment.

• feature
The signal caused by a chemical entity detected in an HPLC-MS experiment, typically a peptide.

4

Figure 3: Peak map with a marked feature (red)

5

2 Basic classes and concepts
This chapter covers some very basic concepts needed to understand OpenMS code. It describes OpenMS
primitive types, namespaces, exceptions and important preprocessor macros. The classes described in this
section can be found in the CONCEPT folder.

2.1 Basic data types
OpenMS has its own names for the C++ primitive types. The integer types of OpenMS are Int (int) and
UInt (unsigned int). For floating point numbers, Real (float) and DoubleReal (double) are used.

These and more types are defined in OpenMS/CONCEPT/Types.h. The typeAsString() function can be
used to find out the actual type of an object, e.g. if typedefs are used.

2.2 The OpenMS namespace
The main classes of OpenMS are implemented in the namespace OpenMS. There are several sub-namespaces
to the OpenMS namespace. The most important ones are:

• OpenMS::Constants contains nature constants.

• OpenMS::Math contains math functions and classes.

• OpenMS::Exception contains the OpenMS exceptions.

• OpenMS::Internal contains certain auxiliary classes that are typically used by only one class of the
OpenMS namespace and not by the user directly.

There are several more namespaces. For a detailed description have a look at the class documentation.

2.3 Exception handling in OpenMS
All exceptions are defined in the namespace OpenMS::Exception. The Base class for all OpenMS excep-
tions is Base. This base class provides three members for storing the source file, the line number and the
function name where the exception occurred. All derived exceptions provide a constructor that takes at
least these arguments. The following code snippet shows the handling of an index overflow:

// header
void someMethod(UInt index);

// C file
void someMethod(UInt index)
{
if (index >= size())
{

throw Exception::IndexOverflow(FILE , LINE , PRETTY FUNCTION , index, size()-1);
}
// do something

};

Note the first three arguments given to the constructor: FILE and LINE are built-in preprocessor macros
that hold the file name and the line number. PRETTY FUNCTION is replaced by the GNU g++ compiler
with the demangled name of the current function (including the class name and argument types). For other
compilers we define it as ”<unknown>”. For an index overflow exception, there are two further arguments:
the invalid index and the maximum allowed index.

The file name, line number and function name are very useful in debugging. However, OpenMS also
implements its own exception handler which allows to turn each uncaught exception into a segmentation
fault. With gcc this mechanism allows developers to trace the source of an exception with a debugger
more effectively. To use this feature, set the environment variable OPENMS DUMP CORE. For Visual
Studio you should set a breakpoint in GlobalExceptionHandler::newHandler() in Exception.C, otherwise
you might loose the stacktrace to pinpoint the inital exception.

6

2.4 Condition macros
In order to enforce algorithmic invariants, the two preprocessor macros OPENMS PRECONDITION and
OPENMS POSTCONDITION are provided. These macros are enabled only if debug info is enabled and
optimization is disabled in cmake. Otherwise they are removed by the preprocessor, so they won’t cost any
performance.

The macros throw Exception::Precondition or Exception::Postcondition respectively if the condition
fails. The example from section Exception handling in OpenMS could have been implemented like that:

void someMethod(UInt index)
{

OPENMS PRECONDITION(index < size(),"Precondition not met!");
//do something

};

7

This section contains a short introduction to three datastructures you will definitely need when program-
ming with OpenMS. The datastructures module of the class documentation contains many more classes,
which are not mentioned here in detail. The classes described in this section can be found in the DATAST-
RUCTURES folder.

2.5 The OpenMS string implementation
The OpenMS string implementation String is based on the STL std::string. In order to make the OpenMS
string class more convenient, a lot of methods have been implemented in addition to the methods provided
by the base class. A selection of the added functionaliy is given here:

• Checking for a substring (suffix, prefix, substring, char)

• Extracting a substring (suffix, prefix, substring)

• Trimming (left, right, both sides)

• Concatenation of string and other primitive types with operator+

• Construction from QString and conversion to QString

2.6 D-dimensional coordinates
Many OpenMS classes, especially the kernel classes, need to store some kind of d-dimensional coordinates.
The template class DPosition is used for that purpose. The interface of DPosition is pretty straightforward.
The operator[] is used to access the coordinate of the different dimensions. The dimensionality is stored
in the enum value DIMENSION. The following example (Tutorial DPosition.C) shows how to print a D-
Position to the standard output stream.

First we need to include the header file for DPosition and iostream. Then we import all the OpenMS
symbols to the scope with the using directive.

The first commands in the main method initialize a 2-dimensional DPosition :

Finally we print the content of the DPosition to the standard output stream:

The output of our first little OpenMS program is the following:

Dimension 0: 8.15
Dimension 1: 47.11

2.7 D-dimensional ranges
Another important datastructure we need to look at in detail is DRange. It defines a d-dimensional, half-
open interval through its two DPosition members. These members are accessed by the minPosition() and
maxPosition() methods and can be set by the setMin() and setMax() methods.

DRange maintains the invariant that minPosition() is geometrically less or equal to maxPosition(), i.-
e. minPosition()[x] ≤ maxPosition()[x] for each dimension x. The following example (Tutorial D-
Range.C) demonstrates this behavior.

This time, we skip everything before the main method. In the main method, we create a range and
assign values to min and max. Note that the the minimum value of the first dimension is larger than the
maximum value.

8

Then we print the content of range :

The output is:

min 0: 1
max 0: 1
min 1: 3
max 1: 5

As you can see, the minimum value of dimension one was adjusted in order to make the maximum of 1
conform with the invariant.

DIntervalBase is the closed interval counterpart (and base class) of DRange. Another class derived
from DIntervalBase is DBoundingBox. It also represents a closed interval, but differs in the methods.
Please have a look at the class documentation for details.

2.8 Param
Most algorithms of OpenMS and some of the TOPP tools have many parameters. The parameters are stored
in instances of Param. This class is similar to a Windows INI file. The actual parameters (type, name and
value) are stored in sections. Sections can contain parameters and sub-sections, which leads to a tree-like
structure. The values are stored in DataValue.

Parameter names are given as a string including the sections and subsections in which ’:’ is used as a
delimiter.

The following example (Tutorial Param.C) shows how a file description is given.

9

Especially for peptide/protein identification, a lot of data and data structures for chemical entities are
needed. OpenMS offers classes for elements, formulas, peptides, etc. The classes described in this section
can be found in the CHEMISTRY folder.

2.9 Elements
There is a representation of Elements implemented in OpenMS. The correcsponding class is named Ele-
ment. This class stores the relevant information about an element. The handling of the Elements is done
by the class ElementDB, which is implemented as a singleton. This means there is only one instance of
the class in OpenMS. This is straightforward because the Elements do not change during execution. Data
stored in an Element spans its name, symbol, atomic weight, and isotope distribution beside others.

Example (Tutorial Element.C):

Elements can be accessed by the ElementDB class. As it is implemented as a singleton, only a pointer
of the singleton can be used, via getInstance(). The example program writes the following output to the
console.
Carbon C 12 12.0107

2.10 EmpiricalFormula
The Elements described in the section above can be combined to empirical formulas. Application are the
exact weights of molecules, like peptides and their isotopic distributions. The class supports a large number
of operations like addition and subtraction. A simple example is given in the next few lines of code.

Example (Tutorial EmpiricalFormula.C):

Two instances of empirical formula are created. They are summed up, and some information about the
new formula is printed to the terminal. The next lines show how to create and handle a isotopic distribution
of a given formula.

The isotopic distribution can be simply accessed by the getIsotopeDistribution() function. The param-
eter of this function describes how many isotopes should be reported. In our case, 3 are enough, as the
following numbers get very small. On larger molecules, or when one want to have the exact distribution,
this number can be set much higher. The output of the code snipped might look like this.
O2CH6 1 50.0571
50 0.98387
51 0.0120698
52 0.00406

2.11 Residue
A residue is represented in OpenMS by the class Residue. It provides a container for the amino acids
as well as some functionality. The class is able to provide information such as the isotope distribution
of the residue, the average and monoisotopic weight. The residues can be identified by their full name,
their three letter abbreviation or the single letter abreviation. The residue can also be modified, which is
implemented in the Modification class. Additional less frequently used parameters of a residue like the
gas-phase basicity and pk values are also available.

Example (Tutorial Residue.C):

This small example show how to create a instance of ResidueDB were all Residues are stored in. The
amino acids themselves can be accessed via the getResidue function. ResidueDB reads its amino acid and
modification data from share/OpenMS/CHEMISTRY/.

The output of the example would look like this
Lysine LYS K 146.188

10

2.12 AASequence
This class handles the amino acid sequences in OpenMS. A string of amino acid residues can be turned
into a instance of AASequence to provide some commonly used operations and data. The implementation
supports mathematical operations like addition or subtraction. Also, average and mono isotopic weight and
isotope distributions are accessible.

Weights, formulas and isotope distribution can be calculated depending on the charge state (additional
proton count in case of positive ions) and ion type. Therefore, the class allows for a flexible handling of
amino acid strings.

A very simple example of handling amino acid sequence with AASequence is given in the next few
lines.

Example (Tutorial AASequence.C):

Not only the prefix, suffix and subsequence accession is supported, but also most of the features of
EmpiricalFormulas and Residues given above. Additionally, a number of predicates like hasSuffix are
supported. The output of the code snippet looks like this.

DFPIANGER DFPI ANGER 1018.08

2.13 TheoreticalSpectrumGenerator
This class implements a simple generator which generates tandem MS spectra from a given peptide charge
combination. There are various options which influence the occurring ions and their intensities.

Example (Tutorial TheoreticalSpectrumGenerator.C)

The example shows how to put peaks of a certain type, y-ions in this case, into a spectrum. Spectrum
2 is filled with a complete spectrum of all peaks (a-, b-, y-ions and losses). The TheoreticalSpectrum-
Generator has many parameters which have a detailed description located in the class documentation. The
output of the program looks like the following two lines.

Spectrum 1 has 8 peaks.
Spectrum 2 has 32 peaks.

11

The OpenMS kernel contains the datastructures that store the actual MS data, i.e. raw data points,
peaks, features, spectra, maps. The classes described in this section can be found in the KERNEL folder.

2.14 Raw data point, Peak, Feature, ...
In general, there are three types of data points: raw data points, peaks and picked peaks. Raw data points
provide members to store position (mass-to-charge ratio, retention time, ...) and intensity. Peaks are derived
from raw data points and add an interface to store meta information. Picked peaks are derived from peaks
and have additional members for peak shape information: charge, width, signal-to-noise ratio and many
more.

The kernel data points exist in three versions: one-dimensional, two-dimensional and d-dimensional.

Figure 4: Data structures for MS data points

one-dimensional data points

The one-dimensional data points are most important, the two-dimensional and d-dimensional data
points are needed rarely. The base class of the one-dimensional data points is Peak1D. It provides
members to store the mass-to-charge ratio (getMZ and setMZ) and the intensity (getIntensity and set-
Intensity).
RichPeak1D is derived from Peak1D and adds an interface for metadata (see MetaInfo).

two-dimensional data points

The two-dimensional data points are needed when geometry algorithms are applied to the data points.
A special case is the Feature class, which needs a two-dimensional position (m/z and RT).
The base class of the two-dimensional data points is Peak2D. It provides the same interface as Peak1D
and additional members for the retention time (getRT and setRT).
RichPeak2D is derived from Peak2D and adds an interface for metadata.
Feature is derived from RichPeak2D and adds information about the convex hull of the feature, fitting
quality and so on.

d-dimensional data points

The d-dimensional data points are needed only in special cases, e.g. in template classes that must
operate on any number of dimensions.
The base class of the d-dimensional data points is DPeak. The methods to access the position are
getPosition and setPosition.
Note that the one-dimensional and two-dimensional data points also have the methods getPosition and
setPosition. They are needed in order to be able to write algorithms that can operate on all data point
types. It is, however, recommended not to use these members unless you really write such a generic
algorithm.

2.15 Spectra
The most important container for raw data and peaks is MSSpectrum. It is a template class that takes the
peak type as template argument. The default peak type is RichPeak1D. Possible other peak types are classes
derived from Peak1D or classes providing the same interface.

12

MSSpectrum is a container for 1-dimensional peak data. It is derived from SpectrumSettings, a container
for the meta data of a spectrum. Here, only MS data handling is explained, SpectrumSettings is described
in section Meta data of a spectrum.

In the following example (Tutorial MSSpectrum.C) program, a MSSpectrum is filled with peaks, sorted
according to mass-to-charge ratio and a selection of peak positions is displayed.

First we create a spectrum and insert peaks with descending mass-to-charge ratios:

Then we sort the peaks according to ascending mass-to-charge ratio.

Finally we print the peak positions of those peaks between 800 and 1000 Thomson. For printing all the
peaks in the spectrum, we simply would have used the STL-conform methods begin() and end().

Typedefs

For convenience, the following type definitions are defined in OpenMS/KERNEL/StandardTypes.h.

typedef MSSpectrum<RichPeak1D> RichPeakSpectrum;
typedef MSSpectrum<Peak1D> PeakSpectrum;

2.16 Maps
Although raw data maps, peak maps and feature maps are conceptually very similar. They are stored in
different data types. For raw data and peak maps, the default container is MSExperiment, which is an
array of MSSpectrum instances. Just as MSSpectrum it is a template class with the peak type as template
parameter.

In contrast to raw data and peak maps, feature maps are no collection of one-dimensional spectra, but an
array of two-dimensional Feature instances. The main datastructure for feature maps is called FeatureMap.

Although MSExperiment and FeatureMap differ in the data they store, they also have things in common.
Both store meta data that is valid for the whole map, i.e. sample description and instrument description.
This data is stored in the common base class ExperimentalSettings.

MSExperiment

The following figure shows the big picture of the kernel datastructures. MSExperiment is derived
from ExperimentalSettings (meta data of the experiment) and from vector<MSSpectrum>. The one-
dimensional spectrum MSSpectrum is derived from SpectrumSettings (meta data of a spectrum.
Since MSSpectrum can store different peak types derived from Peak1D, all the data containers are
template classes that take the peak type as template argument.

Figure 5: Overview of the main kernel datastructures

13

Typedefs

For convenience, the following map types are defined in OpenMS/KERNEL/StandardTypes.h.

typedef MSExperiment<RichPeak1D> RichPeakMap;
typedef MSExperiment<Peak1D> PeakMap;

The following example program (Tutorial MSExperiment.C) creates a MSExperiment containing four M-
SSpectrum instances. Then it iterates over an area and prints the peak positions in the area:

First we create the spectra in a for-loop and set the retention time and MS level. Survey scans have a
MS level of 1, MS/MS scans would have a MS level of 2, and so on.

Then we fill each spectrum with several peaks. As all spectra would have the same peaks otherwise, we
add the retention time to the mass-to-charge ratio of each peak.

Finally, we iterate over the RT range (2,3) and the m/z range (603,802) and print the peak positions.

The output of this loop is:

2 - 702
2 - 802
3 - 603
3 - 703

For printing all the peaks in the experiment, we could have used the STL-iterators of the experiment to
iterate over the spectra and the STL-iterators of the spectra to iterate over the peaks:

FeatureMap

FeatureMap, the container for features, is simply a vector<Feature>. Additionally, it is derived from
ExperimentalSettings, to store the meta information. Just like MSExperiment, it is a template class. It
takes the feature type as template argument.

The following example (Tutorial FeatureMap.C) shows how to insert two features into a map and iterate
over the features.

RangeManager

All peak and feature containers (MSSpectrum, MSExperiment, FeatureMap) are also derived from
RangeManager. This class facilitates the handling of MS data ranges. It allows to calculate and store
both the position range and the intensity range of the container.

The following example (Tutorial RangeManager.C) shows the functionality of the class RangeManger
using a FeatureMap. First a FeatureMap with two features is created, then the ranges are calulated and
printed:

The output of this program is:

Int: 461.3 - 12213.5
RT: 15 - 23.3
m/z: 571.3 - 1311.3

14

The meta informations about an HPLC-MS experiment are stored in ExperimentalSettings and Spectrum-
Settings. All information that is not covered by these classes can be stored in the type-name-value datas-
tructure MetaInfo. All classes described in this section can be found in the METADATA folder.

2.17 MetaInfo
DataValue is a data structure that can store any numerical or string information. It also supports casting of
the stored value back to its original type.

MetaInfo is used to easily store information of any type, that does not fit into the the other classes. It
implements type-name-value triplets. The main datastructure is an associative container that stores Data-
Value instances as values associated to string keys. Internally, the string keys are converted to integer keys
for performance resaons i.e. a map<UInt,DataValue> is used.

The MetaInfoRegistry associates the string keys used in MetaValue with the integer values that are used
for internal storage. The MetaInfoRegistry is a singleton.

If you want a class to have a MetaInfo member, simply derive it from MetaInfoInterface. This class
provides a MetaInfo member and the interface to access it.

Figure 6: The classes involved in meta information storage

The following example (Tutorial MetaInfo.C) shows how to use Metadata. We can simply set values
for the string keys, and setMetaValue registers these names automatically. In order to access the values, we
can either use the registered name or the index of the name. The getMetaValue method returns a DataValue,
which has to be casted to the right type. If you do not know the type, you can use the DataValue::value-
Type() method.

2.18 Meta data of a map
This class holds meta information about the experiment that is valid for the whole experiment:

• sample description

• source files

• contact persons

• MS instrument

• HPLC settings

• protein identifications

15

Figure 7: Map meta information

2.19 Meta data of a spectrum
This class contains meta information about settings specific to one spectrum:

• spectrum-specific instrument settings

• source file

• information on the acquisition

• precursor information (e.g. for MS/MS spectra)

• product information (e.g. for SRM spectra)

• processing performed on the data

• peptide identifications

Figure 8: Spectrum meta information

16

2.20 Meta data associated to peaks
If you want to annotate the peaks or raw data points in your spectra with meta information, there are three
different ways to do this with different advantages and disadvantages.

If each peak is annotated with the same type of information (e.g. width of a peak):

• Use the meta data arrays provided by MSSpectrum (recommended)

– Advantages: Independent of peak type, information automatically stored in mzML files

– Disadvantages: Information can be accessed through index only

• Derive a new peak type that contains members for the additional information

– Advantages: Very fast

– Disadvantages: Information not automatically stored in mzML files, Custom peak type are not
supported by all algorithms

If you need to annotate only a small subset of the peaks with meta information:

• Use the MetaInfoInterface of RichPeak1D

– Advantages: Each peak can be annotated with individual information

– Disadvantages: Quite slow, Information not automatically stored in mzML files

17

All classes for file and database IO can be found in the FORMAT folder.

2.21 File adapter classes
The interface of most file adapter classes is very similar. They implement a load and a store method, that
take a file name and the appropriate data structure.

The following example (Tutorial FileIO.C) demonstrates the use of MzMLFile and MzXMLFile to con-
vert one format into another using MSExperiment to hold the temporary data:

FileHandler

In order to make the handling of different file types easier, the class FileHandler can be used. It loads
a file into the appropriate data structure independently of the file type. The file type is determined from
the file extension or the file contents:

MSExperiment<> in;
FileHandler handler();
handler.loadExperiment("input.mzML",in);

2.22 DB access
For database access, the class DBAdapter is used. As its interface is very similar to the interface of the file
adapters, no example is shown here.

2.23 PeakFileOptions
In order to have more control over loading data from files or databases, most adapters can be configured
using PeakFileOptions. The following options are available:

• only a specific retention time range is loaded

• only a specific mass-to.charge ratio range is loaded

• only a specific intensity range is loaded

• only spectra with a given MS level are loaded

• only meta data of the whole experiment is loaded (ExperimentalSettings)

18

3 Algorithms
OpenMS offers several filters for the reduction of noise and baseline which disturb LC-MS measurements.
These filters work spectra-wise and can therefore be applied to a whole raw data map as well as to a
single raw spectrum. All filters offer functions for the filtering of raw data containers (e.g. PeakSpectrum)
”filter” as well as functions for the processing of a collection of raw data containers (e.g. PeakMap) ”filter-
Experiment”. The functions ”filter” and ”filterExperiment” can both be invoked with an input container
along with an output container or with iterators that define a range on the input container along with an
output container. The classes described in this section can be found in the FILTERING folder.

3.1 Baseline filters
Baseline reduction can be perfomed by the TopHatFilter. The top-hat filter is a morphological filter which
uses the basic morphological operations ”erosion” and ”dilatation” to remove the baseline in raw data.
Because both operations are implemented as described by Van Herk the top-hat filter expects equally spaced
raw data points. If your data is not uniform yet, please use the LinearResampler to generate equally spaced
data.

The TopHatFilter removes signal structures in the raw data which are broader than the size of the
structuring element.

The following example (Tutorial MorphologicalFilter.C) shows how to instantiate a tophat filter, set
the length of the structuring element and remove the base line in a raw LC-MS map.

Note

In order to remove the baseline, the width of the structuring element should be greater than the width
of a peak.

3.2 Smoothing filters
We offer two smoothing filters to reduce noise in LC-MS measurements.

3.2.1 Gaussian filter

The class GaussFilter is a gaussian filter. The wider the kernel width, the smoother the signal (the more
detail information gets lost).

We show in the following example (Tutorial GaussFilter.C) how to smooth a raw data map. The gaus-
sian kernel width is set to 1 m/z.

Note

Use a gaussian filter kernel which has approximately the same width as your mass peaks.

3.2.2 Savitzky Golay filter

The Savitzky Golay filter is implemented in two ways SavitzkyGolaySVDFilter and SavitzkyGolayQRFilter.
Both filters come to the same result but in most cases the SavitzkyGolaySVDFilter has a better run time.
The Savitzky Golay filter works only on equally spaced data. If your data is not uniform use the Linear-
Resampler to generate equally spaced data. The smoothing degree depends on two parameters: the frame
size and the order of the polynomial used for smoothing. The frame size corresponds to the number of
filter coefficients, so the width of the smoothing interval is given by frame size∗spacing of the raw data.
The bigger the frame size or the smaller the order, the smoother the signal (the more detail information gets
lost!).

19

The following example (Tutorial SavitzkyGolayFilter.C) shows how to use a SavitzkyGolaySVDFilter
(the SavitzkyGolayQRFilter has the same interface) to smooth a single spectrum. The single raw data
spectrum is loaded and resampled to uniform data with a spacing of 0.01 /m/z. The frame size of the
Savitzky Golay filter is set to 21 data points and the polynomial order is set to 3. Afterwards the filter is
applied to the resampled spectrum.

3.3 Calibration
OpenMS offers methods for external and internal calibration of raw or peak data.

3.3.1 Internal Calibration

The InternalCalibration uses reference masses for calibration. At least two reference masses have to exist
in each spectrum, otherwise it is not calibrated. The data to be calibrated can be raw data or already picked
data. If we have raw data, a peak picking step is necessary. For the important peak picking parameters,
have a look at the Peak picking section.

The following example (Tutorial InternalCalibration.C) shows how to use the InternalCalibration for
raw data. First the data and reference masses are loaded.

Then we set the important peak picking parameters and run the internal calibration:

3.3.2 TOF Calibration

The TOFCalibration uses calibrant spectra to convert a spectrum containing time-of-flight values into one
with m/z values. For the calibrant spectra, the expected masses need to be known as well as the calibration
constants in order to convert the calibrant spectra tof into m/z (determined by the instrument). Using
the calibrant spectra’s tof and m/z-values, first a quadratic curve fitting is done. The remaining error
is estimated by a spline curve fitting. The quadratic function and the splines are used to determine the
calibration equation for the conversion of the experimental data.

The following example (Tutorial TOFCalibration.C) shows how to use the TOFCalibration for raw
data. First the spectra and reference masses are loaded.

Then we set the calibration constants for the calibrant spectra.

Finally, we set the important peak picking parameters and run the external calibration:

20

Data reduction in LC-MS analysis mostly consists of two steps. In the first step, called ”peak picking”,
important information of the mass spectrometric peaks (e.g. peaks’ mass centroid positions, their areas
under curve and full-width-at-half-maxima) are extracted from the raw LC-MS data. The second data
reduction step, called ”feature finding”, represents the quantitation of all peptides in a proteomic sample.
Therefore, the signals in a LC-MS map caused by all charge and isotopic variants of the peptide are detected
and summarized resulting in a list of compounds or features, each characterized by mass, retention time
and abundance. The classes described in this section can be found in the TRANSFORMATIONS folder.

Figure 9: A peptide feature at different stages of data reduction.

3.4 Peak picking
For peak picking, the class PeakPickerCWT or PeakPickerHiRes is used. Because this class detects and
extracts mass spectrometric peaks it is applicable to LC-MS as well as MALDI raw data.

The following example (Tutorial PeakPickerCWT.C) shows how to open a raw map, initialize a Peak-
PickerCWT object, set the most important parameters (the scale of the wavelet, a peak’s minimal height
and fwhm), and start the peak picking process.

The output of the program is:

Scale of the wavelet: 0.2
Minimal fwhm of a mass spectrometric peak: 0.1
Minimal intensity of a mass spectrometric peak 500

Number of picked peaks 14

21

Note

A rough standard value for the peak’s scale is the average fwhm of a mass spectrometric peak.

3.5 Feature detection
The FeatureFinders implement different algorithms for the detection and quantitation of peptides from L-
C-MS maps. In contrast to the previous step (peak picking), we do not only search for pronounced signals
(peak) in the LC-MS map but search explicitly for peptides which can be recognized by their isotopic
pattern.

OpenMS offers different algorithms for this task. Details of how to apply them are given in the TOPP
documentation. Please also refer to our publications on the OpenMS web page. TOPP contains multiple
command line programs which allow to execute our algorithms without writing a single line of code.

But you can also write your own FeatureFinder application. This gives you more flexibility and is
straightforward to do. A short example (Tutorial FeatureFinder.C) is given below. First we need to instan-
tiate the FeatureFinder, its parameters and the input/output data:

Then we run the FeatureFinder. The first argument is the algorithm name (here ’simple’). Using the
second and third parameter, the peak and feature data is handed to the algorithm. The fourth argument sets
the parameters used by the algorithm.

Now the FeatureMap is filled with the found features. OpenMS offers a number of map alignment

22

algorithms. The take several peak or feature maps and transform the retention time axis so that peak/feature
positions become comparable.

The classes described in this section can be found in the ANALYSIS/MAPMATCHING folder.
All map alignment algorithms are derived from the common base class MapAlignmentAlgorithm and,

thus, share a common interface. That is why only one example (Tutorial MapAlignment.C) is shown here.
Other algorithms can be work accordingly.

First, we load two feature maps:

Then, we instanciate the algorithm and align the feature maps:

Finally, the aligned maps are written to files:

As an additional output the algorithms return one TransformationDescription per input file. This Transformation-
Description describes the transformation that was applied to the retention times.

Note

In order to align peak maps the method alignPeakMaps has to be used.

23

Based on the features found during the Feature detection, quantitation can be performed. OpenMS offers a
number of feature grouping algorithms. The take one or several feature maps and group feature in one map
or across maps, depending on the algorithm.

The classes described in this section can be found in the ANALYSIS/MAPMATCHING folder.
All feature grouping algorithms are derived from the common base class FeatureGroupingAlgorithm

and, thus, share a common interface. Currently two algorithms are implemented. One for isotope-labeled
experiments with two labels and another for label-free quantitation.

3.6 Feature grouping for label-free quantitation
The first example shows the label-free quantitation (Tutorial Unlabeled.C):

First, we load two feature maps:

In order to write the a valid output file, we need to set the input file names and sizes.

Then, we instanciate the algorithm and group the features:

Finally, we store the grouped features in a consensusXML file.

3.7 Feature grouping for isotope-labeled quantitation
The second example shows the isotope-labeled quantitation (Tutorial Labeled.C):

First, we load the feature map:

The isotope-labeled quantitation finds two types of features in the same map (heavy and light variant).
So we add two map descriptions with the same file name to the output and set the labels accordingly:

Then, we instanciate the algorithm and group the features:

Finally, we store the grouped features in a consensusXML file. In order to write a valid file, we need to
set the input file names and sizes.

24

4 Advanced tutorials
Visualization in OpenMS is based on Qt.

4.1 1D view
All types of peak or feature visualization share a common interface. So here only an example how to
visualize a single spectrum is given (Tutorial GUI Spectrum1D.C).

First we need to create a QApplication in order to be able to use Qt widgets in out application.

Then we load a DTA file (the first command line argument of our application).

Then we create a widget for 1D visualization and hand over the data.

Finally we start the application.

4.2 Visual editing of parameters
Param objects are used to set algorithm parameters in OpenMS. In order to be able to visually edit them,
the ParamEditor class can be used. The following example (Tutorial GUI ParamEditor.C) show how to
use it.

We need to create a QApplication, load the data from a file (e.g. the parameters file of any TOPP tool),
create the ParamEditor and execute the application:

When it is closed, we store the result back to the Param object and then to the file.

25

In OpenMS, generic hierarchical clustering is available, the example (Tutorial Clustering.C) shows
how to build a rudimental clustering pipeline.

4.3 Inputdata
All types of data can be clustered, as long as a SimilarityComparator for the type is provided. This Com-
parator has to produce a similarity measurment with the ()-operator in the range of [0,1] for each two ele-
ments of this type, so it can be transformed to a distance. Some SimilarityComparators are already imple-
mented, e.g. the baseclass for the PeakSpectrum-type SimilarityComparator is OpenMS::PeakSpectrum-
CompareFunctor.

This example of a SimilarityComparator is very basic and takes onedimensional input of doubles in the
range of [0,1]. Real input will generally be more complex and so has to be the corresponding Similarity-
Comparator. Note that similarity in the example is calculated by 1-distance, whereas generally distance is
obtained by getting the similarity and not the other way round.

4.4 Clustering
Clustering is conducted in the OpenMS::ClusterHierarchical class that offers an easy way to perform the
clustering.

The ClusterHierarchical functions will need at least these arguments, setting the threshold is optional
(per default set to 1,0). The template-arguments have to be set to the type of clustered data and the type of
CompareFunctor used. In this example double and LowLevelComparator.

This function will create a hirarchical clustering up to the threshold. See Output.

4.5 Output
If known, at what threshold (see OpenMS::ClusterHierarchical::cluster) a reasonable clustering is pro-
duced, the setting of the right threshold can potentually speed up the clustering process. After exceeding
the threshold, the resulting tree (std::vector of OpenMS::BinaryTreeNode) is filled with dummy nodes.
The tree represents the hirarchy of clusters by storing the stepwise merging process. It can eventually be
transformed to a tree-representation in Newick-format and/or be analyzed with other methods the OpenM-
S::ClusterAnalyzer class provides.

So the output will look something like this (may actually vary since random numbers are used in this
example):

(((((0 , 1) , (2 , (7 , 8))) , ((3 , 10) , (4 , 5))) , (6 , 9)) , 11)

For closer survey of the clustering process one can also view the whole hirarchy by viewing the tree in
Newick-format with a tree viewer such as TreeViewX. A visualization of a particular cluster step (which
gives rise to a certain partition of the data clustered) can be created with heatmaps (for example with
gnuplot 4.3 heatmaps and the corresponding distance matrix). This tutorial will give you an overview of

26

how to use the peak intensity prediction (PIP). In general, PIP allows you to predict the peak intensity of
a peptide relative to other peptides of the same abundance from its sequence alone. At the same time, this
value allows to correct peak intensities for peptide-specific instrument sensitivity in a label-free quantitation
application.

This method is still in an early phase: A proof of concept has been conducted and published in [1].
Peak intensities can be predicted with significant correlations, but application tests are yet to come.

4.6 Background
The sensitivity of a mass spectrometer depends on the analyzed peptides, among other factors. This
peptide-specific sensitivity causes peak heights of peptides with the same abundance to be generally differ-
ent. PIP incorporates a model that maps peptide sequences to peptide-specific sensitivities.

4.7 Machine learning details
The incorporated model has been adapted with a Local Linear Map [2] - a machine learning algorithm
that uses both supervised and unsupervised learning in its training, and which is fast and easy to implement.
Better results can be achieved with other learning architectures [3], however, these are not implemented
in this prototype stage yet.

4.8 About the training data
The model which the PIP module uses has been trained with data from a Bruker Ultraflex MALDI-TOF
instrument. Details about these data can be found with [3]. A Pearson’s squared correlation of 0.43 in ten-
fold cross-validation and of 0.34 across datasets from the same instrument (but with different settings and
operating persons) could be achieved. There is no experience yet about the performance across instruments.
So we would be pleased if you could share your experience with the model incorporated in PIP applied to
other datasets.

At this point, it is not possible to train a model with your own data, but it is a planned feature. It is as
of yet unknown how similar peptide-specific sensitivities behave between different MALDI instruments.

4.9 How to use PIP
PIP lets you predict intensities using peptide sequences as input. The output values have been normalized
to a mean of 0 and variance 1.

To test PIP with data from your instrument, MALDI spectra that contain only peptides of one protein
can be used:

1. Normalize your peak intensities with the sum of only the peptide’s peaks to make them comparable
to other spectra.

2. Logarithmize the resulting values.

3. Center and normalize your peak intensities by variance (of course, multiple spectra should be used
to find mean and variance), these value are referred to as tI in the following.

4. Predict the peptide’s peak intensities (referred to as pI in the following)

5. Calculate the correlation between the tI and pI. If you calculate exp(log(tI) - pI), it should give 1 as
a result in this test.

To calculate relative peptide abundance (relative to those of the other peptides in the mixture) from
intensities of a peptide mixture using values predicted by PIP, do above steps 2. to 4. Then calculate the
peptide level x = exp(log(tI) - pI). !!! The quantification with an actual protein mixture has never been
tested with this model.

27

4.10 Example code
There is a usage example for the PeakIntensityPredictor class in source/EXAMPLES/Tutorial -
PeakIntensityPredictor.C.

Sequences of peptides to be predicted should be stored in a vector of AASequence instances:

Then create an instance of the model, and predict the peak intensities of the peptides:

You can output AASequence instances like normal strings:

4.11 References
[1] :Wiebke Timm: Peak Intensity Prediction in Mass Spectra using Machine
Learning Methods, PhD Thesis (2008) [2] :Helge Ritter: Learning with Self-Organizing
Map, Artificial Neural Networks, In T. Kohonen et al., eds.: Artificial Neural Networks, Elsevier Science
Publishers (1991), 379-384 [3] :W. Timm, A. Scherbart, S. Böcker, O. Kohlbacher,
T.W. Nattkemper: Peak Intensity Prediction in MALDI-TOF Mass Spectrometry-
: A Machine Learning Study to support Quantitative Proteomics, BMC Bioinformatics
(2008)

28

http://bieson.ub.uni-bielefeld.de/frontdoor.php?source_opus=1370
http://bieson.ub.uni-bielefeld.de/frontdoor.php?source_opus=1370
http://www.biomedcentral.com/1471-2105/9/443
http://www.biomedcentral.com/1471-2105/9/443
http://www.biomedcentral.com/1471-2105/9/443
http://www.biomedcentral.com/1471-2105/9/443

4.12 Creating a new algorithm
Most of the algorithms in OpenMS share the following base classes:

• ProgressLogger is used to report the progress of the algorithm.

• DefaultParamHandler is used to make the handling of parameters (and their defaults) easy.

In most cases, you will not even need accessors for single parameters.

The interfaces of an algorithm depend on the datastructures it works on. For an algorithm that works on
peak data, a non-template class should be used that provides template methods operating on MSExperiment
or MSSpectrum, no matter which peak type is used. See PeakPickerCWT for an example.

For algorithms that do not work on peak data, templates should be avoided.

29

	Introduction
	Class search engine

	Basic classes and concepts
	Basic data types
	The OpenMS namespace
	Exception handling in OpenMS
	Condition macros
	The OpenMS string implementation
	D-dimensional coordinates
	D-dimensional ranges
	Param
	Elements
	EmpiricalFormula
	Residue
	AASequence
	TheoreticalSpectrumGenerator
	Raw data point, Peak, Feature, ...
	Spectra
	Maps
	MetaInfo
	Meta data of a map
	Meta data of a spectrum
	Meta data associated to peaks
	File adapter classes
	DB access
	PeakFileOptions

	Algorithms
	Baseline filters
	Smoothing filters
	Calibration
	Peak picking
	Feature detection
	Feature grouping for label-free quantitation
	Feature grouping for isotope-labeled quantitation

	Advanced tutorials
	1D view
	Visual editing of parameters
	Inputdata
	Clustering
	Output
	Background
	Machine learning details
	About the training data
	How to use PIP
	Example code
	References
	Creating a new algorithm

