GDAL

Contents

Chapter 1

GDAL - Geospatial Data Abstraction
Library

Select language: [English] [Russian] [Portuguese] [French/Francais]

GDAL is a translator library for raster geospatial data formats that is released under
an X/MIT style Open Source license by the Open Source Geospatial -
Foundation. As a library, it presents a single abstract data model (p. ??) to the
calling application for all supported formats. It also comes with a variety of useful
commandline utilities (p. ??) for data translation and processing. The NEWS page
describes the November 2009 GDAL/OGR 1.6.3 release.

The related OGR library (which lives within the GDAL source tree) provides a similar
capability for simple features vector data.

Master: http://www.gdal.org

Download: ftp at remotesensing.org, http at download.osgeo.-
org

1.1 User Oriented Documentation

* Wiki - Various user and developer contributed documentation and hints
* Downloads - Ready to use binaries (executables)

* Supported Formats : GeoTIFF, Erdas Imagine, SDTS, ECW, MrSID, JPE-
G2000, DTED, NITF, ...

*« GDAL Utility Programs : gdalinfo, gdal_translate, gdaladdo, gdalwarp, ...
* GDAL FAQ
* GDAL Data Model

* GDAL/OGR Governance and Community Participation

2 GDAL - Geospatial Data Abstraction Library

* GDAL Service Provider Listings (not vetted)
* Sponsors, Acknowledgements and Credits

* Software Using GDAL

1.2 Developer Oriented Documentation

* Building GDAL From Source

* Downloads - source code

* APTI Reference Documentation
* GDAL API Tutorial

* GDAL Driver Implementation Tutorial
* GDAL Warp API Tutorial

* OGRSpatialReference Tutorial
* GDAL C API

* GDAL Algorithms C API

* GDALDataset C++ API

* GDALRasterBand C++ API

* GDAL for Windows CE

1.3 Conference

1.4 Mailing List

A gdal-announce mailing list subscription is a low volume way of keeping track of
major developments with the GDAL/OGR project.

The gdal-dev@lists.osgeo.org mailing list can be used for discussion of de-
velopment and user issues related to GDAL and related technologies. Subscriptions
can be done, and archives reviewed on the web. The mailing list is also available in
read-only format by NNTP at news : //news.gmane.org/gmane.comp.gis.—
gdal.devel and by HTTP at http://news.gmane.org/gmane.comp.—
gis.gdal.devel.

Some GDAL/OGR users and developers can also often be found in the #gdal IRC
channel on irc.freenode.net.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

1.5 Bug Reporting

1.5 Bug Reporting

GDAL bugs can be reported, and can be listed using Trac.

1.6 GDAL In Other Languages

The following bindings of GDAL in other languages are available:

* Perl

* Python

*+ VB6 Bindings (not using SWIG)

* GDAL Bindings into R by Timothy H. Keitt.
* Ruby

* Java

« C# / .Net

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

GDAL - Geospatial Data Abstraction Library

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 2

GDAL Virtual Format Tutorial

2.1 Introduction

The VRT driver is a format driver for GDAL that allows a virtual GDAL dataset to be com-
posed from other GDAL datasets with repositioning, and algorithms potentially applied
as well as various kinds of metadata altered or added. VRT descriptions of datasets
can be saved in an XML format normally given the extension .vrt.

An example of a simple .vrt file referring to a 512x512 dataset with one band loaded
from utm.tif might look like this:

<VRTDataset rasterXSize="512" raster¥Size="512">
<GeoTransform>440720.0, 60.0, 0.0, 3751320.0, 0.0, -60.0</GeoTransform>
<VRTRasterBand dataType="Byte" band="1">
<ColorInterp>Gray</ColorInterp>
<SimpleSource>
<SourceFilename relativeToVRT="1">utm.tif</SourceFilename>
<SourceBand>1</SourceBand>
<SrcRect xOff="0" yOff="0" xSize="512" ySize="512"/>
<DstRect xOff="0" yOff="0" xSize="512" ySize="512"/>
</SimpleSource>
</VRTRasterBand>
</VRTDataset>

Many aspects of the VRT file are a direct XML encoding of the GDAL Data Model
which should be reviewed for understanding of the semantics of various elements.

VRT files can be produced by translating to VRT format. The resulting file can then
be edited to modify mappings, add metadata or other purposes. VRT files can also be
produced programmatically by various means.

This tutorial will cover the .vrt file format (suitable for users editing .vrt files), and how
.vrt files may be created and manipulated programmatically for developers.

GDAL Virtual Format Tutorial

2.2

.vrt Format

Virtual files stored on disk are kept in an XML format with the following elements.

VRTDataset (p. ??): This is the root element for the whole GDAL dataset. It must have
the attributes rasterXSize and rasterYSize describing the width and height of the dataset
in pixels. It may have SRS, GeoTransform, GCPList, Metadata, and VRTRasterBand
(p- ??) subelements.

<VRTDataset rasterXSize="512" raster¥Size="512">

The allowed subelements for VRTDataset (p. ??) are :

» SRS: This element contains the spatial reference system (coordinate system) in

OGC WKT format. Note that this must be appropriately escaped for XML, so
items like quotes will have the ampersand escape sequences substituted. As as
well WKT, and valid input to the SetFromUserInput() method (such as well known
GEOGCS names, and PROJ.4 format) is also allowed in the SRS element.

<SRS>PROJCS ["NAD27 / UTM zone 11N",GEOGCS["NAD27" ,DATUM[&
quot;North_American_Datum_1927" , SPHEROID ["Clarke 1866", 6378206.4,
294.9786982139006, AUTHORITY [" ; EPSG" , " 7008" 1], AUTHORITY ["
EPSG", " 6267"]], PRIMEM[" Greenwich", 0], UNIT[" degree&
quot;,0.0174532925199433], AUTHORITY [" EPSG", "4267" 1],
PROJECTION [" Transverse_Mercator"],PARAMETER[" latitude_of_originé&quc
PARAMETER["central_meridian",-117],PARAMETER["scale_factor",
0.9996],PARAMETER[" false_easting",500000], PARAMETER ["
false_northing",0],UNIT["metre", 1, AUTHORITY [" EPSG" , "
11,AUTHORITY [" EPSG", "26711"]]1</SRS>

GeoTransform: This element contains a six value affine geotransformation for
the dataset, mapping between pixel/line coordinates and georeferenced coordi-
nates.

<GeoTransform>440720.0, 60, 0.0, 3751320.0, 0.0, -60.0</GeoTransform>

Metadata: This element contains a list of metadata name/value pairs associated
with the VRTDataset (p. ??) as a whole, or a VRTRasterBand (p. ??). It has
<MDI> (metadata item) subelements which have a "key" attribute and the value
as the data of the element.

<Metadata>
<MDI key="md_key">Metadata value</MDI>
</Metadata>

VRTRasterBand (p. ??): This represents one band of a dataset. It will have a ata-
Type attribute with the type of the pixel data associated with this band (use names
Byte, UInt16, Int16, UInt32, Int32, Float32, Float64, CInt16, CInt32, CFloat32 or
CFloat64) and the band this element represents (1 based). This element may
have Metadata, Colorinterp, NoDataValue, HideNoDataValue, ColorTable, and -
Description subelements as well as the various kinds of source elements such
as SimpleSource. A raster band may have many "sources" indicating where the

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

2.2 .vrt Format 7

actual raster data should be fetched from, and how it should be mapped into the
raster bands pixel space.

The allowed subelements for VRTRasterBand (p. ??) are :

— ColorInterp: The data of this element should be the name of a color in-
terpretation type. One of Gray, Palette, Red, Green, Blue, Alpha, Hue, -
Saturation, Lightness, Cyan, Magenta, Yellow, Black, or Unknown.

<ColorInterp>Gray</ColorInterp>:

— NoDataValue: If this element exists a raster band has a nodata value asso-
ciated with, of the value given as data in the element.

<NoDataValue>-100.0</NoDataValue>

— HideNoDataValue: If this value is 1, the nodata value will not be reported.
Essentially, the caller will not be aware of a nodata pixel when it reads one.
Any datasets copied/translated from this will not have a nodata value. This
is useful when you want to specify a fixed background value for the dataset.
The background will be the value specified by the NoDataValue element.

Default value is 0 when this element is absent.

<HideNoDataValue>1</HideNoDataValue>

— ColorTable: This element is parent to a set of Entry elements defining the
entries in a color table. Currently only RGBA color tables are supported with
c1 being red, c2 being green, ¢3 being blue and ¢4 being alpha. The entries
are ordered and will be assumed to start from color table entry 0.

<ColorTable>
<Entry cl="0" c2="0" c3="0" c4="255"/>
<Entry cl="145" c2="78" c3="224" c4="255"/>
</ColorTable>

— Description: This element contains the optional description of a raster band
as it’s text value.

<Description>Crop Classification Layer</Description>

— UnitType: This optional element contains the vertical units for elevation
band data. One of "m" for meters or "ft" for feet. Default assumption is
meters.

<UnitType>ft</UnitType>

— Offset: This optional element contains the offset that should be applied
when computing "real" pixel values from scaled pixel values on a raster
band. The default is 0.0.

<Offset>0.0</0Offset>

— Scale: This optional element contains the scale that should be applied when
computing "real" pixel values from scaled pixel values on a raster band. The
default is 1.0.

<Scale>0.0</Scale>

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

GDAL Virtual Format Tutorial

— CategoryNames: This optional element contains a list of Category subele-
ments with the names of the categories for classified raster band.

<CategoryNames>
<Category>Missing</Category>
<Category>Non-Crop</Category>
<Category>Wheat</Category>
<Category>Corn</Category>
<Category>Soybeans</Category>

</CategoryNames>

— SimpleSource: The SimpleSource indicates that raster data should be read
from a separate dataset, indicating the dataset, and band to be read from,
and how the data should map into this bands raster space. The Simple-
Source may have the SourceFilename, SourceBand, SrcRect, and DstRect
subelements. The SrcRect element will indicate what rectangle on the in-
dicated source file should be read, and the DstRect element indicates how
that rectangle of source data should be mapped into the VRTRasterBands
space.

The relativeToVRT attribute on the SourceFilename indicates whether the
filename should be interpreted as relative to the .vrt file (value is 1) or not
relative to the .vrt file (value is 0). The default is 0.

Some characteristics of the source band can be specified in the optional
SourceProperties tag to enable the VRT driver to differ the opening of the
source dataset until it really needs to read data from it. This is particu-
larly useful when building VRTs with a big number of source datasets. The
needed parameters are the raster dimensions, the size of the blocks and
the data type. If the SourceProperties tag is not present, the source dataset
will be opened at the same time as the VRT itself.

<SimpleSource>
<SourceFilename relativeToVRT="1">utm.tif</SourceFilename>
<SourceBand>1</SourceBand>
<SourceProperties RasterXSize="512" RasterYSize="512" DataType="Byte"
BlockXSize="128" BlockYSize="128"/>
<SrcRect xOff="0" yOff="0" xSize="512" ySize="512"/>
<DstRect xOff="0" yOff="0" xSize="512" ySize="512"/>

</SimpleSource>

— AveragedSource: The AveragedSource is derived from the SimpleSource
and shares the same properties except that it uses an averaging resampling
instead of a nearest neighbour algorithm as in SimpleSource, when the size
of the destination rectangle is not the same as the size of the source rect-
angle

— ComplexSource: The ComplexSource is derived from the SimpleSource
(so it shares the SourceFilename, SourceBand, SrcRect and DestRect ele-
ments), but it provides support to rescale and offset the range of the source
values. Certain regions of the source can be masked by specifying the NO-
DATA value.

The ComplexSource supports adding a custom lookup table to transform
the source values to the destination. The LUT can be specified using the
following form:

<LUT>[src value 1]:[dest value 1], [src value 2]:[dest value 2],...</LUT>

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

2.3 .vrt Descriptions for Raw Files 9

The intermediary values are calculated using a linear interpolation between
the bounding destination values of the corresponding range.

The ComplexSource supports fetching a color component from a source
raster band that has a color table. The ColorTableComponent value is the
index of the color component to extract : 1 for the red band, 2 for the green
band, 3 for the blue band or 4 for the alpha band.

When transforming the source values the operations are executed in the
following order:

Nodata masking

Color table expansion

Applying the scale ratio

Applying the scale offset

Table lookup

o s 0b

<ComplexSource>
<SourceFilename relativeToVRT="1">utm.tif</SourceFilename>
<SourceBand>1</SourceBand>
<ScaleOffset>0</ScaleOffset>
<ScaleRatio>1</ScaleRatio>
<ColorTableComponent>1</ColorTableComponent>
<LUT>0:0,2345.12:64,56789.5:128,2364753.02:255</LUT>
<NODATA>0</NODATA>
<SrcRect xOff="0" yOff="0" xSize="512" ySize="512"/>
<DstRect xOff="0" yOff="0" xSize="512" ySize="512"/>
</ComplexSource>

— KernelFilteredSource: This is a pixel source derived from the Simple -
Source (so it shares the SourceFilename, SourceBand, SrcRect and Dest-
Rect elements, but it also passes the data through a simple filtering kernel
specified with the Kernel element. The Kernel element should have two child
elements, Size and Coefs and optionally the boolean attribute normalized
(defaults to false=0). The size must always be an odd number, and the
Coefs must have Size * Size entries separated by spaces.

<KernelFilteredSource>
<SourceFilename>/debian/home/warmerda/openev/utm.tif</SourceFilename>
<SourceBand>1</SourceBand>
<Kernel normalized="1">
<Size>3</Size>
<Coefs>0.11111111 0.11111111 0.11111111 O0.11111111 0.11111111 O0.1111111
10.11111111 0.11111111 0.11111111</Coefs>
</Kernel>
</KernelFilteredSource>

2.3 .vrt Descriptions for Raw Files

So far we have described how to derive new virtual datasets from existing files supports
by GDAL. However, it is also common to need to utilize raw binary raster files for which
the regular layout of the data is known but for which no format specific driver exists. This
can be accomplished by writing a .vrt file describing the raw file.

For example, the following .vrt describes a raw raster file containing floating point com-
plex pixels in a file called /2p3hhsso.img. The image data starts from the first byte

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

10 GDAL Virtual Format Tutorial

(ImageOffset=0). The byte offset between pixels is 8 (PixelOffset=8), the size of a C-
Float32. The byte offset from the start of one line to the start of the next is 9376 bytes
(LineOffset=9376) which is the width (1172) times the size of a pixel (8).

<VRTDataset rasterXSize="1172" raster¥Size="1864">
<VRTRasterBand dataType="CFloat32" band="1" subClass="VRTRawRasterBand">
<SourceFilename relativetoVRT="1">12p3hhsso.img</SourceFilename>
<ImageOffset>0</ImageOffset>
<PixelOffset>8</PixelOffset>
<LineOffset>9376</LineOffset>
<ByteOrder>MSB</ByteOrder>
</VRTRasterBand>
</VRTDataset>

Some things to note are that the VRTRasterBand (p. ??) has a subClass specifier of
"VRTRawRasterBand". Also, the VRTRawRasterBand (p. ??) contains a number of
previously unseen elements but no "source" information. VRTRawRasterBands may
never have sources (ie. SimpleSource), but should contain the following elements in
addition to all the normal "metadata” elements previously described which are still sup-
ported.

+ SourceFilename: The name of the raw file containing the data for this band. The
relativeTOVRT attribute can be used to indicate if the SourceFilename is relative
to the .vrt file (1) or not (0).

» ImageOffset: The offset in bytes to the beginning of the first pixel of data of this
image band. Defaults to zero.

» PixelOffset: The offset in bytes from the beginning of one pixel and the next on
the same line. In packed single band data this will be the size of the dataType in
bytes.

» LineOffset: The offset in bytes from the beginning of one scanline of data and
the next scanline of data. In packed single band data this will be PixelOffset
rasterXSize.

» ByteOrder: Defines the byte order of the data on disk. Either LSB (Least -
Significant Byte first) such as the natural byte order on Intel x86 systems or MSB
(Most Significant Byte first) such as the natural byte order on Motorola or Sparc
systems. Defaults to being the local machine order.

A few other notes:
» The image data on disk is assumed to be of the same data type as the band

dataType of the VRTRawRasterBand (p. ??).

« All the non-source attributes of the VRTRasterBand (p. ??) are supported, in-
cluding color tables, metadata, nodata values, and color interpretation.

+ The VRTRawRasterBand (p. ??) supports in place update of the raster, whereas
the source based VRTRasterBand (p. ??) is always read-only.

» The OpenEV tool includes a File menu option to input parameters describing a
raw raster file in a GUI and create the corresponding .vrt file.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

2.4 Programatic Creation of VRT Datasets 11

+ Multiple bands in the one .vrt file can come from the same raw file. Just en-
sure that the ImageOffset, PixelOffset, and LineOffset definition for each band is
appropriate for the pixels of that particular band.

Another example, in this case a 400x300 RGB pixel interleaved image.

<VRTDataset rasterXSize="400" raster¥Size="300">

<VRTRasterBand dataType="Byte" band="1" subClass="VRTRawRasterBand">
<ColorInterp>Red</ColorInterp>
<SourceFilename relativetoVRT="1">rgb.raw</SourceFilename>
<ImageOffset>0</ImageOffset>
<PixelOffset>3</PixelOffset>
<LineOffset>1200</LineOffset>

</VRTRasterBand>

<VRTRasterBand dataType="Byte" band="2" subClass="VRTRawRasterBand">
<ColorInterp>Green</ColorInterp>
<SourceFilename relativetoVRT="1">rgb.raw</SourceFilename>
<ImageOffset>1</ImageOffset>
<PixelOffset>3</PixelOffset>
<LineOffset>1200</LineOffset>

</VRTRasterBand>

<VRTRasterBand dataType="Byte" band="3" subClass="VRTRawRasterBand">
<ColorInterp>Blue</ColorInterp>
<SourceFilename relativetoVRT="1">rgb.raw</SourceFilename>
<ImageOffset>2</ImageOffset>
<PixelOffset>3</PixelOffset>
<LineOffset>1200</LineOffset>

</VRTRasterBand>

</VRTDataset>

2.4 Programatic Creation of VRT Datasets

The VRT driver supports several methods of creating VRT datasets. As of GDAL 1.2.0
the vrtdataset.h (p. ??) include file should be installed with the core GDAL include files,
allowing direct access to the VRT classes. However, even without that most capabilities
remain available through standard GDAL interfaces.

To create a VRT dataset that is a clone of an existing dataset use the CreateCopy()
method. For example to clone utm.tif into a wrk.vrt file in C++ the following could be
used:

GDALDriver xpoDriver = (GDALDriver =) GDALGetDriverByName ("VRT");
GDALDataset xpoSrcDS, *poVRIDS;

poSrcDS = (GDALDataset %) GDALOpenShared("utm.tif", GA_ReadOnly);

pPoVRTIDS poDriver->CreateCopy("wrk.vrt", poSrcDS, FALSE, NULL, NULL, NULL)

’

GDALClose ((GDALDatasetH) poVRTDS) ;
GDALClose ((GDALDatasetH) poSrcDS);

Note the use of GDALOpenShared() (p. ??) when opening the source dataset. It is
advised to use GDALOpenShared() (p.??) in this situation so that you are able to
release the explicit reference to it before closing the VRT dataset itself. In other words,

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

12 GDAL Virtual Format Tutorial

in the previous example, you could also invert the 2 last lines, whereas if you open the
source dataset with GDALOpen() (p. ??), you'd need to close the VRT dataset before
closing the source dataset.

To create a virtual copy of a dataset with some attributes added or changed such as
metadata or coordinate system that are often hard to change on other formats, you
might do the following. In this case, the virtual dataset is created "in memory" only by
virtual of creating it with an empty filename, and then used as a modified source to pass
to a CreateCopy() written out in TIFF format.

POVRTDS = poDriver->CreateCopy("", poSrcDS, FALSE, NULL, NULL, NULL);

POVRTIDS->SetMetadataltem("SourceAgency", "United States Geological Survey");
POVRIDS->SetMetadatalItem("SourceDate", "July 21, 2003");

PoVRIDS->GetRasterBand(1)->SetNoDataValue(-999.0);

GDALDriver xpoTIFFDriver = (GDALDriver =) GDALGetDriverByName ("GTiff");
GDALDataset *xpoTiffDS;

poTiffDS = poTIFFDriver—->CreateCopy("wrk.tif", poVRIDS, FALSE, NULL, NULL,
NULL) ;

GDALClose ((GDALDatasetH) poTiffDS);

In the above example the nodata value is set as -999. You can set the HideNoDataValue
element in the VRT dataset’s band using SetMetadataltem() on that band.

POVRTDS->GetRasterBand(1)->SetMetadataltem("HideNoDataValue" , "1");

In this example a virtual dataset is created with the Create() method, and adding bands
and sources programmatically, but still via the "generic" API. A special attribute of VRT
datasets is that sources can be added to the VRTRasterBand (p. ??) (but not to VRT-
RawRasterBand (p. ??)) by passing the XML describing the source into SetMetadata()
on the special domain target "new_vrt_sources". The domain target "vrt_sources" may
also be used, in which case any existing sources will be discarded before adding the
new ones. In this example we construct a simple averaging filter source instead of using
the simple source.

// construct XML for simple 3x3 average filter kernel source.
const char *pszFilterSourceXML =
"<KernelFilteredSource>"
" <SourceFilename>utm.tif</SourceFilename><SourceBand>1</SourceBand>"
" <Kernel>"
" <Size>3</Size>"
" <Coefs>0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111</Coefs>"
" </Kernel>"
"</KernelFilteredSource>";

// Create the virtual dataset.

POVRIDS = poDriver->Create("", 512, 512, 1, GDT_Byte, NULL);

POVRTDS->GetRasterBand (1) ->SetMetadataltem("source_0",pszFilterSourceXML,
"new_vrt_sources");

A more general form of this that will produce a 3x3 average filtered clone of any input
datasource might look like the following. In this case we deliberately set the filtered

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

2.4 Programatic Creation of VRT Datasets

13

int nBand;

GDALDriver xpoDriver =

GDALDataset xpoSrcDS,

poSrcDS =

poVRTDS =

for(nBand = 1;

{

nBand <= poVRTDS->GetRasterCount () ;

(GDALDriver =x)
*poVRTIDS;

(GDALDataset =)

poDriver—->CreateCopy (

GDALOpenShared(pszSourceFilename,

nu
14

char szFilterSourceXML[10000];

GDALRasterBand *poBand =

sprintf (szFilterSourceXML,
"<KernelFilteredSource>"
" <SourceFilename>%s</SourceFilename><SourceBand>%d</SourceBand>"
" <Kernel>"
" <Size>3</Size>"
" <Coefs>0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
0.111</Coefs>"
" </Kernel>"
"</KernelFilteredSource>",

pszSourceFilename,

poBand->SetMetadataltem(

nBand) ;

"source_0",

poSrcDS,

GDALGetDriverByName (

FALSE, NULL, NULL,

nBand++

szFilterSourceXML,

datasource as in the "vrt_sources" domain to override the SimpleSource created by the
CreateCopy() method. The fact that we used CreateCopy() ensures that all the other
metadata, georeferencing and so forth is preserved from the source dataset ... the only
thing we are changing is the data source for each band.

"VRT") ;

NULL) ;

)

POVRTDS—->GetRasterBand(nBand);

"vrt_sources"

The VRTDataset (p. ??) class is one of the few dataset implementations that supports
the AddBand() method. The options passed to the AddBand() method can be used to
control the type of the band created (VRTRasterBand (p. ??), VRTRawRasterBand

(p. ??), VRTDerivedRasterBand (p. ??)), and in the case of the VRTRawRasterBand
(p- ??) to set its various parameters. For standard VRTRasterBand (p. ??), sources

should be specified with the above SetMetadata() / SetMetadataltem() examples.

GA_ReadOnly);

’

)i

//

GDALDriver xpoDriver = (GDALDriver =) GDALGetDriverByName ("VRT");

GDALDataset *poVRIDS;

POVRTDS = poDriver->Create("out.vrt", 512, 512, 0, GDT_Byte, NULL);

charxx papszOptions = NULL;

papszOptions = CSLAddNameValue (papszOptions, "subclass", "VRTRawRasterBand");
// 1f not specified, default to VRTRasterBand

papszOptions = CSLAddNameValue (papszOptions, "SourceFilename", "src.tif");
mandatory

papszOptions = CSLAddNameValue (papszOptions, "ImageOffset", "156"); //
optionnal. default = 0

papszOptions = CSLAddNameValue (papszOptions, "PixelOffset", "2"); //
optionnal. default = size of band type

papszOptions = CSLAddNameValue (papszOptions, "LineOffset", "1024"); //
optionnal. default = size of band type * width

papszOptions = CSLAddNameValue (papszOptions, "ByteOrder", "LSB"); //
optionnal. default = machine order

papszOptions = CSLAddNameValue (papszOptions, "RelativeToVRT", "true"); //
optionnal. default = false

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

14 GDAL Virtual Format Tutorial

POVRTDS->AddBand (GDT_Byte, papszOptions);
CSLDestroy (papszOptions) ;

delete poVRTDS;

Using Derived Bands

A specialized type of band is a ‘derived’ band which derives its pixel information from
its source bands. With this type of band you must also specify a pixel function, which
has the responsibility of generating the output raster. Pixel functions are created by an
application and then registered with GDAL using a unique key.

Using derived bands you can create VRT datasets that manipulate bands on the fly
without having to create new band files on disk. For example, you might want to gen-
erate a band using four source bands from a nine band input dataset (x0, x3, x4, and
x8):

band_value = sqgrt ((x3*x3+x4+x4)/(x0%x8));

You could write the pixel function to compute this value and then register it with GDAL
with the name "MyFirstFunction”. Then, the following VRT XML could be used to display
this derived band:

<VRTDataset rasterXSize="1000" raster¥Size="1000">
<VRTRasterBand dataType="Float32" band="1" subClass="VRTIDerivedRasterBand">
<Description>Magnitude</Description>
<PixelFunctionType>MyFirstFunction</PixelFunctionType>
<SimpleSource>
<SourceFilename relativeToVRT="1">nine_band.dat</SourceFilename>
<SourceBand>1</SourceBand>
<SrcRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
<DstRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
</SimpleSource>
<SimpleSource>
<SourceFilename relativeToVRT="1">nine_band.dat</SourceFilename>
<SourceBand>4</SourceBand>
<SrcRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
<DstRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
</SimpleSource>
<SimpleSource>
<SourceFilename relativeToVRT="1">nine_band.dat</SourceFilename>
<SourceBand>5</SourceBand>
<SrcRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
<DstRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
</SimpleSource>
<SimpleSource>
<SourceFilename relativeToVRT="1">nine_band.dat</SourceFilename>
<SourceBand>9</SourceBand>
<SrcRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
<DstRect xOff="0" yOff="0" xSize="1000" ySize="1000"/>
</SimpleSource>
</VRTRasterBand>
</VRTDataset>

In addition to the subclass specification (VRTDerivedRasterBand (p.??)) and the -
PixelFunctionType value, there is another new parameter that can come in handy: -
SourceTransferType. Typically the source rasters are obtained using the data type of

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

2.4 Programatic Creation of VRT Datasets 15

the derived band. There might be times, however, when you want the pixel function to
have access to higher resolution source data than the data type being generated. For
example, you might have a derived band of type "Float", which takes a single source of
type "CFloat32" or "CFloat64", and returns the imaginary portion. To accomplish this,
set the SourceTransferType to "CFloat64". Otherwise the source would be converted to
"Float" prior to calling the pixel function, and the imaginary portion would be lost.

<VRTDataset rasterXSize="1000" raster¥Size="1000">
<VRTRasterBand dataType="Float32" band="1" subClass="VRIDerivedRasterBand">
<Description>Magnitude</Description>
<PixelFunctionType>MyFirstFunction</PixelFunctionType>
<SourceTransferType>"CFloat64"</SourceTransferType>

Writing Pixel Functions
To register this function with GDAL (prior to accessing any VRT datasets with derived
bands that use this function), an application calls GDALAddDerivedBandPixelFunc with

a key and a GDALDerivedPixelFunc:

GDALAddDerivedBandPixelFunc ("MyFirstFunction", TestFunction);

A good time to do this is at the beginning of an application when the GDAL drivers are
registered.

GDALDerivedPixelFunc is defined with a signature similar to IRasterlO:

Parameters

papo- | A pointer to packed rasters; one per source. The datatype of all will be
Sources | the same, specified in the eSrcType parameter.

nSources | The number of source rasters.

pData | The buffer into which the data should be read, or from which it should
be written. This buffer must contain at least nBufXSize * nBufYSize
words of type eBufType. It is organized in left to right, top to bottom
pixel order. Spacing is controlled by the nPixelSpace, and nLineSpace
parameters.
nBufXSize | The width of the buffer image into which the desired region is to be read,
or from which it is to be written.
nBufYSize | The height of the buffer image into which the desired region is to be
read, or from which it is to be written.
eSrcType | The type of the pixel values in the papoSources raster array.
eBufType | The type of the pixel values that the pixel function must generate in the
pData data buffer.
nPixelSpace | The byte offset from the start of one pixel value in pData to the start
of the next pixel value within a scanline. If defaulted (0) the size of the
datatype eBufType is used.
nLineSpace | The byte offset from the start of one scanline in pData to the start of the
next.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

16 GDAL Virtual Format Tutorial

Returns

CE_Failure on failure, otherwise CE_None.

typedef CPLErr

(*GDALDerivedPixelFunc) (void **papoSources, int nSources, void =*pData,
int nXSize, int nY¥Size,
GDALDataType eSrcType, GDALDataType eBufType,
int nPixelSpace, int nLineSpace);

The following is an implementation of the pixel function:

#include "gdal.h"

CPLErr TestFunction (void x*papoSources, int nSources, void xpData,
int nXSize, int nYSize,
GDALDataType eSrcType, GDALDataType eBufType,
int nPixelSpace, int nLineSpace)

int ii, iLine, iCol;
double pix_val;
double x0, x3, x4, x8;

// ———— Init --—--

if (nSources != 4) return CE_Failure;

// —-—-—-— Set pixels —-——-—

for(iLine = 0; iLine < nYSize; iLine++)

{
for(iCol = 0; iCol < nXSize; iCol++)
{
ii = iLine » nXSize + iCol;
/% Source raster pixels may be obtained with SRCVAL macro x/
x0 = SRCVAL (papoSources[0], eSrcType, 1ii);

[
x3 = SRCVAL (papoSources[1l], eSrcType, 1ii);
x4 = SRCVAL (papoSources[2], eSrcType, 1ii);
x8 = SRCVAL (papoSources[3], eSrcType, 1ii);
pix_val = sqgrt ((x3+x3+x4+x4)/(x0%x8));

GDALCopyWords (&pix_val, GDT_Floaté64, O,
((GByte x)pData) + nLineSpace % iLine + iCol =
nPixelSpace,
eBufType, nPixelSpace, 1);

// —--- Return success —-—-—
return CE_None;

2.5 Multi-threading issues

When using VRT datasets in a multi-threading environment, you should be careful to
open the VRT dataset by the thread that will use it afterwards. The reason for that is
that the VRT dataset uses GDALOpenShared when opening the underlying datasets.
So, if you open twice the same VRT dataset by the same thread, both VRT datasets will
share the same handles to the underlying datasets.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 3

Sponsors, Acknowledgements and
Credits

There are too many people who have helped since GDAL/OGR was launched in late
1998 for me to thank them all. | have received moral support, financial support, code
contributions, sample datasets, and bug reports from literally hundreds of people. -
However, below | would like to single out a few people and organizations who have
supported GDAL over the years. Forgive me for all those | left out.

Frank Warmerdam

3.1 Sponsorship

Sponsors help fund maintenance, development and promotion of GDAL/OGR. If your
organization depends on GDAL/OGR consider becoming a sponsor.

3.1.1 Silver Sponsors

3.1.2 Other Sponsors

* MicroImages Inc.

3.2 Personal

+ Andrey Kiselev: my right hand man on GDAL for several years. He is primarily
responsible for the HDF, MrSID, L1B, and PCIDSK drivers. He has also relieved
me of most libtiff maintenance work.

+ Daniel Morissette: for his key contributions to CPL library, and development of
the Mapinfo TAB translator.

18

Sponsors, Acknowledgements and Credits

3.3

Howard Butler: for substantial improvements to the python bindings.
Ken Shih: for the bulk of the implementation of the OLE DB provider.

Markus Neteler: for various contributions to GDAL documentation and general
supportiveness.

Silke Reimer: for work on Debian, and RPM packaging as well as the GDAL man
pages.

Alessandro Amici: for work on configuration and build system, and for the initial
Debian packaging.

Stephane Villeneuve: for development of the Mapinfo MIF translator.

Marin Byrne: for producing the current GDAL icon set (based on the earlier
version by Martin Daly).

Darek Krawczyk: for producing design of the GDAL Team Member t-shirt
(based on Marin’s and Martin’s graphics).

Corporate

Applied Coherent Technologies: Supported implementation of the -
GDAL contour generator, as well as various improvements to HDF drivers.

Atlantis Scientific: Supported the development of the CEQOS, and a
variety of other radar oriented format drivers as well as development of OpenEV,
my day-to-day GDAL image viewer.

A.U.G. Signals: Supported work on the HDF, NITF and ODBC drivers.

Avenza Systems: Supported development of dgnlib, the basis of OGR
dgn support, as well as preliminary work on image warping in GDAL.

Cadcorp: Supported development of the Virtual Warped Raster capability.

DM Solutions Group: Supported the development of the DGN driver,
the OGR Arc/Info Binary Coverage driver, OGR WCTS (Web Coordinate -
Transformation Server), OGR VRT driver, ODBC driver, MySQL driver, SQLite
driver, OGR JOIN and OGR C API.

ERMapper: provided primary sponsorship for GDAL from February 2005 to -
November 2006 to support work on GDAL improvement efforts not focused on
any particular client project.

Geological Survey of Canada, Natural Resources Canada: -
Supported the initial development of the ArcSDE raster driver.

0SGIS and the Geo-Information and ICT Department of the Ministry of Transport,
Public Works and Water Management: Funded the DWG/DXF writing driver in -
OGR.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

3.3 Corporate 19

* Geosoft: Supported improvements to libtiff (RGBA Strip/Tile access), and the
Arc/Info Binary Grid driver.

* Geospace Inc, Supported the development of write functionality for the OGR
ArcSDE driver.

* GeoTango: Supported OGR Memory driver, Virtual Raster Filtering, and NITF
RPC capabilities.

+ i—cubed: Supported the MrSID driver.
* Intergraph: Supported development of the Erdas Imagine driver.

* Keyhole: Supported development of Erdas Imagine driver, and the GDAL Warp
APL.

* OPeNDAP: Supported development of the OGR OPeNDAP Driver.
* PCI Geomatics: Supported development of the JPEG2000 (JP2KAK) driver.
* Pixia: Supported NITF/JPEG2000 read support.

* UN FAO: Supported development of the IDA (WinDisp) driver, and GDAL VB6
bindings.

* SoftMap: Supported initial development of OGR as well as the OGR Maplnfo
integration.

* SRC: Supported development of the OGR OCI (Oracle Spatial) driver.

* Safe Software: Supported development of the OGR OLE DB provider, TI-
GER/Line driver, S-57 driver, DTED driver, FMEODbjects driver, SDTS driver and
NTF driver.

* Yukon Department of the Environment: Supported development of
CDED / USGS DEM Writer.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

20

Sponsors, Acknowledgements and Credits

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 4

GDAL Downloads

This page has been moved to the wiki with a topic on downloading binaries
(pre-built executables and a topic on downloading source.

22

GDAL Downloads

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 5

Simple C Example: gdalinfo.c

/ *

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

LR R R R RS R R R SRR SRR SR R R R R i i S I S S S I S S S

$Id: gdalinfo.c 18576 2010-01-17 22:32:24Z rouault $

Project: GDAL Utilities
Purpose: Commandline application to list info about a file.
Author: Frank Warmerdam, warmerdam@pobox.com

LR R R R R R R R R R R I i I S S S S S I S S

Copyright (c) 1998, Frank Warmerdam

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

ok Kk Kk Kk ko ko ko ok ko Kk Kk Kk Kk ko ko ko ko ko ko Kk Kk ko ko ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok kR kR ok kK ok ok ok ok ok /)

#include "gdal.h"

#include "gdal_alg.h"
#include "ogr_srs_api.h"
#include "cpl_string.h"
#include "cpl_conv.h"
#include "cpl_multiproc.h"

CPL_CVSID("$Id: gdalinfo.c 18576 2010-01-17 22:32:24Z rouault $");

static int
GDALInfoReportCorner (GDALDatasetH hDataset,

OGRCoordinateTransformationH hTransform,
const char % corner_name,

24 Simple C Example: gdalinfo.c

double x, double vy);
/**/
/ * Usage () */

/**/

void Usage ()

printf("Usage: gdalinfo [--help-general] [-mm] [-stats] [-hist] [-nogcp]
[-nomd] \n"
" [-norat] [-noct] [-checksum] [-mdd domain]*
datasetname\n");
exit(1);

/**/
/% main () */

/**/

int main(int argc, char *x argv)

GDALDatasetH hDataset;

GDALRasterBandH hBand;

int i, iBand;

double adfGeoTransform[6];

GDALDriverH hDriver;

char **papszMetadata;

int bComputeMinMax = FALSE, bSample = FALSE;

int bShowGCPs = TRUE, bShowMetadata = TRUE, bShowRAT=TRUE;
int bStats = FALSE, bApproxStats = TRUE, iMDD;

int bShowColorTable = TRUE, bComputeChecksum = FALSE;
int bReportHistograms = FALSE;

const char *pszFilename = NULL;

char *xpapszExtraMDDomains = NULL, x*xpapszFileList;
const char xpszProjection = NULL;

OGRCoordinateTransformationH hTransform = NULL;

/+ Check that we are running against at least GDAL 1.5 */
/+ Note to developers : if we use newer API, please change the requirement
*/
if (atoi (GDALVersionInfo ("VERSION_NUM")) < 1500)
{
fprintf (stderr, "At least, GDAL >= 1.5.0 is required for this version
of %s, "
"which was compiled against GDAL %s\n", argv[0],
GDAL_RELEASE_NAME) ;
exit (1);

/* Must process GDAL_SKIP before GDALAllRegister (), but we can’t call */
/* GDALGeneralCmdLineProcessor before it needs the drivers to be registered

*/
/* for the --format or --formats options =/
for(i =1; 1 < argc; i++)
{
if (EQUAL (argv[i],"--config") && i + 2 < argc && EQUAL(argv[i + 1], "
GDAL_SKIP"))

{
CPLSetConfigOption(argv[i+l], argv[i+2]);

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

25

i += 2;

GDALAllRegister();

argc = GDALGeneralCmdLineProcessor (argc, &argv, 0);
if(arge < 1)

exit (—argc);
—— */
Parse arguments. */
—— *x/
for(i = 1; 1 < argc; i++)
{
if (EQUAL(argv([i], "--utility_version"))

{

printf ("$s was compiled against GDAL %$s and is running against GDAL

%s\n",
argv([0], GDAL_RELEASE_NAME, GDALVersionInfo ("RELEASE_NAME"))
7
return O;
}
else if(EQUAL (argv[i], "-mm"))

bComputeMinMax = TRUE;
else if(EQUAL(argv[i], "-hist"))
bReportHistograms = TRUE;
else if(EQUAL(argv[i], "-stats"))
{
bStats = TRUE;
bApproxStats = FALSE;
}
else if(EQUAL(argv[i], "-approx_stats"))
{
bStats = TRUE;
bApproxStats = TRUE;
}

else if (EQUAL(argv[i], "-sample"))
bSample = TRUE;
else if(EQUAL(argv[i], "-checksum"))

bComputeChecksum = TRUE;

else if(EQUAL(argv[i], "-nogcp"))
bShowGCPs = FALSE;

else if(EQUAL(argv[i], "-nomd"))
bShowMetadata = FALSE;

else if (EQUAL(argv[i], "-norat"))
bShowRAT = FALSE;

else if (EQUAL(argv[i], "-noct"))
bShowColorTable = FALSE;

else if(EQUAL (argv[i], "-mdd") && i < argc-1)
papszExtraMDDomains = CSLAddString(papszExtraMDDomains,

argv[++i]);
else if(argv[i][0] == "-")
Usage () ;
else if(pszFilename == NULL)
pszFilename = argv[i];
else
Usage () ;
}
if(pszFilename == NULL)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

26

Simple C Example: gdalinfo.c

hDataset = GDALOpen(pszFilename, GA_ReadOnly);
if (hDataset == NULL)
{
fprintf (stderr,
"gdalinfo failed - unable to open ’'%s’.\n",
pszFilename);
CSLDestroy(argv);
GDALDumpOpenDatasets (stderr);

GDALDestroyDriverManager () ;

CPLDumpSharedList (NULL) ;

Report general info.
hDriver = GDALGetDatasetDriver (hDataset);
printf ("Driver: %$s/%$s\n",
GDALGetDriverShortName (hDriver),
GDALGetDriverLongName (hDriver));

papszFileList = GDALGetFilelList (hDataset);
if (CSLCount (papszFilelList) == 0)
{
printf("Files: none associated\n");
}
else
{
printf("Files: %s\n", papszFileList[O0]);

for(i = 1; papszFileList[i] != NULL; i++)
printf(" $s\n", papszFileList[i]);

}
CSLDestroy (papszFileList);

printf("Size is %d, %d\n",
GDALGetRasterXSize (hDataset),
GDALGetRasterYSize (hDataset));

if (GDALGetProjectionRef (hDataset) != NULL)

OGRSpatialReferenceH hSRS;
char *pszProjection;

pszProjection = (char x) GDALGetProjectionRef (hDataset);
hSRS = OSRNewSpatialReference (NULL) ;

if (OSRImportFromWkt (hSRS, &pszProjection) == CE_None)
{

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

«/
x/

x/
x/
«/

27

char *pszPrettyWkt = NULL;

OSRExportToPrettyWkt (hSRS, &pszPrettyWkt, FALSE
printf ("Coordinate System is:\n%s\n", pszPrettyWkt);

CPLFree (pszPrettyWkt);
}
else
printf ("Coordinate System is ‘%s’\n",
GDALGetProjectionRef (hDataset));

OSRDestroySpatialReference (hSRS);

[k e
/ * Report Geotransform.
ok e
if (GDALGetGeoTransform(hDataset, adfGeoTransform)
{
if (adfGeoTransform[2] == 0.0 && adfGeoTransform[4]
{
printf("Origin = (%.15f,%.15f)\n",
adfGeoTransform[0], adfGeoTransform[3]
printf("Pixel Size = (%.15f,%.15f)\n",
adfGeoTransform[1l], adfGeoTransform[5]
}
else
printf ("GeoTransform =\n"
" %.l6g, %.16g, %.l6g\n"
" %.l6g, %$.16g, %.l6g\n",
adfGeoTransform[0],
adfGeoTransform[1],
adfGeoTransform[2],
adfGeoTransform[3],
adfGeoTransform[4],
adfGeoTransform[5]);
}
ok e
/ * Report GCPs.
ok e

if (bShowGCPs && GDALGetGCPCount (hDataset) > 0)

if (GDALGetGCPProjection (hDataset) != NULL)
{
OGRSpatialReferenceH hSRS;
char *pszProjection;

pszProjection = (char) GDALGetGCPProjection(hDataset

hSRS = OSRNewSpatialReference (NULL) ;
if (OSRImportFromWkt (hSRS, &pszProjection)

{
char *pszPrettyWkt = NULL;

OSRExportToPrettyWkt (hSRS, &pszPrettyWkt, FALSE);
printf("GCP Projection = \n%s\n", pszPrettyWkt);
CPLFree(pszPrettyWkt);
}
else
printf("GCP Projection = %s\n",
GDALGetGCPProjection(hDataset));

)i

)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

28 Simple C Example: gdalinfo.c

OSRDestroySpatialReference (hSRS);

for(i = 0; 1 < GDALGetGCPCount (hDataset); i++)
{
const GDAL_GCP *psGCP;

PsGCP = GDALGetGCPs (hDataset) + 1i;

printf("GCP[%3d]: Id=%s, Info=%s\n"
" (%.159,%.159) —> (%.159,%.159,%.159)\n",
i, psGCP->pszId, psGCP->pszInfo,
psGCP->dfGCPPixel, psGCP->dfGCPLine,
psGCP->dfGCPX, psGCP->dfGCPY, psGCP->dfGCPZ);

—— */
Report metadata. */

—— */

papszMetadata = (bShowMetadata) ? GDALGetMetadata(hDataset, NULL) : NULL;

if (bShowMetadata && CSLCount (papszMetadata) > 0)
{
printf ("Metadata:\n");

for(i = 0; papszMetadata[i] != NULL; i++)
{
printf(" $%$s\n", papszMetadatali]);

for(iMDD = 0; bShowMetadata && iMDD < CSLCount (papszExtraMDDomains); iMDD+
+)

papszMetadata = GDALGetMetadata (hDataset, papszExtraMDDomains[iMDD]);
if (CSLCount (papszMetadata) > 0)
{

printf ("Metadata (%s):\n", papszExtraMDDomains[iMDD]) ;

for(i = 0; papszMetadata[i] != NULL; i++)
{
printf(" $%$s\n", papszMetadatal[i]);
}
}
}
—— */
Report "IMAGE_STRUCTURE" metadata. */
—— */
papszMetadata = (bShowMetadata) ? GDALGetMetadata(hDataset, "
IMAGE_STRUCTURE") : NULL;
if (bShowMetadata && CSLCount (papszMetadata) > 0)
{
printf ("Image Structure Metadata:\n");
for(i = 0; papszMetadata[i] != NULL; i++)
{
printf(" $s\n", papszMetadatal[i]);
}
}
—— */
Report subdatasets. */
—— */

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

29

papszMetadata = GDALGetMetadata(hDataset, "SUBDATASETS");
if (CSLCount (papszMetadata) > 0)
{

printf("Subdatasets:\n");

for(i = 0; papszMetadata[i] != NULL; i++)
{
printf(" $s\n", papszMetadatali]);
}
}
ok e *x/
/% Report geolocation. */
[k */
papszMetadata = (bShowMetadata) ? GDALGetMetadata(hDataset, "GEOLOCATION"
) : NULL;

if (bShowMetadata && CSLCount (papszMetadata) > 0)
{

printf ("Geolocation:\n");
for(i = 0; papszMetadata[i] != NULL; i++)
{
printf(" $s\n", papszMetadatali]);
}
}
ok e *x/
/* Report RPCs x/
ok */
papszMetadata = (bShowMetadata) ? GDALGetMetadata(hDataset, "RPC") : NULL

7
if (bShowMetadata && CSLCount (papszMetadata) > 0)
{
printf ("RPC Metadata:\n");

for(i = 0; papszMetadata[i] != NULL; i++)
{
printf(" $s\n", papszMetadatal[i]);
}
}
ok e *x/
/ * Setup projected to lat/long transform if appropriate. x/
ok e *x/
if (GDALGetGeoTransform(hDataset, adfGeoTransform) == CE_None)

pszProjection = GDALGetProjectionRef (hDataset);
if(pszProjection != NULL && strlen(pszProjection) > 0)
OGRSpatialReferenceH hProj, hLatLong = NULL;
hProj = OSRNewSpatialReference(pszProjection);
if(hProj != NULL)
hLatLong = OSRCloneGeogCS(hProj);
if(hLatLong != NULL)
{
CPLPushErrorHandler (CPLQuietErrorHandler);
hTransform = OCTNewCoordinateTransformation(hProj, hLatLong);

CPLPopErrorHandler () ;

OSRDestroySpatialReference (hLatLong);

if(hProj != NULL)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

30

Simple C Example: gdalinfo.c

/ *
/%
/ *

OSRDestroySpatialReference(hProj);

printf ("Corner Coordinates:\n");

GDALInfoReportCorner (hDataset, hTransform, "Upper Left",
0.0, 0.0);

GDALInfoReportCorner (hDataset, hTransform, "Lower Left",
0.0, GDALGetRasterYSize (hDataset));

GDALInfoReportCorner (hDataset, hTransform, "Upper Right",
GDALGetRasterXSize (hDataset), 0.0);

GDALInfoReportCorner (hDataset, hTransform, "Lower Right",
GDALGetRasterXSize (hDataset),
GDALGetRasterYSize (hDataset));

GDALInfoReportCorner (hDataset, hTransform, "Center",
GDALGetRasterXSize (hDataset) /2.0,
GDALGetRasterYSize (hDataset) /2.0);

if(hTransform != NULL)

{
OCTDestroyCoordinateTransformation(hTransform);
hTransform = NULL;

Loop over bands.

for(iBand = 0; iBand < GDALGetRasterCount (hDataset); iBand++)
{

double dfMin, dfMax, adfCMinMax[2], dfNoData;
int bGotMin, bGotMax, bGotNodata, bSuccess;
int nBlockXSize, nBlockYSize, nMaskFlags;
double dfMean, dfStdDev;

GDALColorTableH hTable;

CPLErr eErr;

hBand = GDALGetRasterBand(hDataset, iBand+1l);

if (bSample)

{
float afSample[100007];
int nCount;

nCount = GDALGetRandomRasterSample (hBand, 10000, afSample

printf("Got %d samples.\n", nCount);

GDALGetBlockSize (hBand, &nBlockXSize, &nBlockYSize);

*/
*/
*/

)i

printf("Band %$d Block=%dx%d Type=%s, ColorInterp=%s\n", iBand+l,

nBlockXSize, nBlockYSize,

GDALGetDataTypeName (
GDALGetRasterDataType (hBand)),

GDALGetColorInterpretationName (
GDALGetRasterColorInterpretation (hBand)));

if (GDALGetDescription(hBand) != NULL
&& strlen (GDALGetDescription(hBand)) > 0)
printf(" Description = %$s\n", GDALGetDescription (hBand)

dfMin = GDALGetRasterMinimum(hBand, &bGotMin);

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

31

dfMax = GDALGetRasterMaximum(hBand, &bGotMax);
if(bGotMin || bGotMax || bComputeMinMax)
{
printf(" ");
if(bGotMin)
printf("Min=%.3f ", dfMin);
if (bGotMax)
printf("Max=%.3f ", dfMax);

if (bComputeMinMax)

CPLErrorReset () ;
GDALComputeRasterMinMax (hBand, FALSE, adfCMinMax);
if (CPLGetLastErrorType () == CE_None)
{
printf(" Computed Min/Max=%.3f,%.3f",
adfCMinMax [0], adfCMinMax([1l]);

printf("\n");

eErr = GDALGetRasterStatistics(hBand, bApproxStats, bStats,
&dfMin, &dfMax, &dfMean, &dfStdDev);
if (eErr == CE_None)
{
printf(" Minimum=%.3f, Maximum=%.3f, Mean=%.3f, StdDev=%.3f\n",
dfMin, dfMax, dfMean, dfStdDev);

if (bReportHistograms)
int nBucketCount, *panHistogram = NULL;

eErr = GDALGetDefaultHistogram(hBand, &dfMin, &dfMax,
&nBucketCount, &panHistogram,
TRUE, GDALTermProgress, NULL);

if(eErr == CE_None)

{

int iBucket;

printf(" %d buckets from %g to %g:\n ",
nBucketCount, dfMin, dfMax);
for (iBucket = 0; iBucket < nBucketCount; iBucket++)
printf("%d ", panHistogram[iBucket]);
printf ("\n");
CPLFree (panHistogram);

if (bComputeChecksum)
{
printf(" Checksum=%d\n",
GDALChecksumImage (hBand, 0, O,
GDALGetRasterXSize (hDataset),
GDALGetRasterYSize (hDataset)));

dfNoData = GDALGetRasterNoDataValue(hBand, &bGotNodata);
if (bGotNodata)
{

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Simple C Example: gdalinfo.c

printf(" NoData Value=%.18g\n", dfNoData);

if (GDALGetOverviewCount (hBand) > 0)

int iOverview;

printf(" Overviews: ");

for (iOverview = 0;
iOverview < GDALGetOverviewCount (hBand) ;
iOverview++)

GDALRasterBandH hOverview;
const char xpszResampling = NULL;

if(iOverview != 0)
printf(", ");

hOverview = GDALGetOverview(hBand, iOverview);
printf ("%dx%d",
GDALGetRasterBandXSize (hOverview),

GDALGetRasterBandYSize (hOverview));
pszResampling =
GDALGetMetadataltem(hOverview, "RESAMPLING", "");
if(pszResampling != NULL

&& EQUALN (pszResampling, "AVERAGE_BIT2",12))
printf("x");

}

printf ("\n");

if (bComputeChecksum)
{
printf(" Overviews checksum: ");
for(iOverview = 0;
iOverview < GDALGetOverviewCount (hBand) ;
iOverview++)

GDALRasterBandH hOverview;

if(iOverview != 0)
printf(", ");

hOverview = GDALGetOverview(hBand, iOverview);
printf("%d",

GDALChecksumImage (hOverview, 0, O,
GDALGetRasterBandXSize (hOverview),
GDALGetRasterBand¥YSize (hOverview)));

}
printf("\n");

if (GDALHasArbitraryOverviews (hBand))
{

printf(" Overviews: arbitrary\n");

nMaskFlags = GDALGetMaskFlags (hBand);
if((nMaskFlags & (GMF_NODATA|GMF_ALL_VALID)) == 0)
{

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

33

GDALRasterBandH hMaskBand = GDALGetMaskBand (hBand) ;

printf(" Mask Flags: ");

if (nMaskFlags & GMF_PER_DATASET)
printf ("PER_DATASET ");

if (nMaskFlags & GMF_ALPHA)

printf("ALPHA ");
if (nMaskFlags & GMF_NODATA)
printf ("NODATA ");

if (nMaskFlags & GMF_ALL_VALID)
printf ("ALL_VALID ");
printf("\n");

if (hMaskBand != NULL &&
GDALGetOverviewCount (hMaskBand) > 0)

int iOverview;
printf(" Overviews of mask band: ");
for(iOverview = 0;
iOverview < GDALGetOverviewCount (hMaskBand) ;
iOverview++)
{
GDALRasterBandH hOverview;
if (iOverview != 0)
printf(", ");

hOverview = GDALGetOverview(hMaskBand, iOverview);
printf ("%dx%d",
GDALGetRasterBandXSize (hOverview),
GDALGetRasterBandYSize (hOverview));

}
printf ("\n");

if(strlen(GDALGetRasterUnitType (hBand)) > 0)

printf(" Unit Type: %s\n", GDALGetRasterUnitType (hBand));

if (GDALGetRasterCategoryNames (hBand) != NULL)

char xxpapszCategories = GDALGetRasterCategoryNames (hBand) ;

int i;
printf(" Categories:\n");
for(i = 0; papszCategories[i] != NULL; i++)
printf(" %$3d: %s\n", i, papszCategories[i]);
}
if (GDALGetRasterScale(hBand, &bSuccess) != 1.0
| | GDALGetRasterOffset (hBand, &bSuccess) != 0.0)
printf(" Offset: %.15g, Scale:%.15g\n",
GDALGetRasterOffset (hBand, &bSuccess),
GDALGetRasterScale (hBand, &bSuccess));
papszMetadata = (bShowMetadata) ? GDALGetMetadata(hBand, NULL) : NULL

if (bShowMetadata && CSLCount (papszMetadata) > 0)
{

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Simple C Example: gdalinfo.c

printf(" Metadata:\n");
for(1 0; papszMetadatal[i] != NULL; i++)
{
printf(" %$s\n", papszMetadatali]);
}
}
papszMetadata = (bShowMetadata) ? GDALGetMetadata(hBand, "
IMAGE_STRUCTURE") : NULL;

if (bShowMetadata && CSLCount (papszMetadata) > 0)
{

printf(" Image Structure Metadata:\n");
for(i = 0; papszMetadata[i] != NULL; i++)
{
printf(" $s\n", papszMetadatali]);
}
}
if (GDALGetRasterColorInterpretation (hBand) == GCI_PaletteIndex
&& (hTable = GDALGetRasterColorTable(hBand)) != NULL)
{
int i;
printf(" Color Table (%s with %d entries)\n",
GDALGetPaletteInterpretationName (
GDALGetPaletteInterpretation(hTable)),
GDALGetColorEntryCount (hTable));
if (bShowColorTable)
{
for(i = 0; 1 < GDALGetColorEntryCount (hTable); i++)
{
GDALColorEntry sEntry;
GDALGetColorEntryAsRGB(hTable, i, &sEntry);
printf(" %3d: %d,%d,%d, %d\n",
i,
sEntry.cl,
sEntry.c2,
sEntry.c3,
sEntry.cd);
}
}
}
if (bShowRAT && GDALGetDefaultRAT(hBand) != NULL)

GDALRasterAttributeTableH hRAT = GDALGetDefaultRAT(hBand);

GDALRATDumpReadable (hRAT, NULL);

GDALClose (hDataset);

CSLDestroy (papszExtraMDDomains);
CSLDestroy (argv);

GDALDumpOpenDatasets (stderr);

GDALDestroyDriverManager () ;

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

CPLDumpSharedList (NULL) ;
CPLCleanupTLS () ;

exit (0);

/**/

/ *

GDALInfoReportCorner ()

*/

/**/

static int
GDALInfoReportCorner (GDALDatasetH hDataset,

OGRCoordinateTransformationH hTransform,
const char x corner_name,
double x, double y)

double dfGeoX, dfGeoY;
double adfGeoTransform[6];

printf("%-11ls ", corner_name);

if (GDALGetGeoTransform(hDataset, adfGeoTransform) == CE_None
{
dfGeoX = adfGeoTransform[0] + adfGeoTransform[l] * x
+ adfGeoTransform[2] * y;
dfGeoY = adfGeoTransform([3] + adfGeoTransform[4] * x
+ adfGeoTransform[5] * y;

else

{
printf("(%7.1f,%7.1f)\n", x, v);
return FALSE;

if (ABS(dfGeoX) < 181 && ABS (dfGeoY) < 91)
{

printf("(%12.7£,%12.7f) ", dfGeoX, dfGeoY);
}
else
{

printf(" (%12.3£f,%12.3f) ", dfGeoX, dfGeoY);

if (hTransform != NULL
&& OCTTransform(hTransform, 1, &dfGeoX, &dfGeoY, NULL))

printf("(%s,", GDALDecToDMS(dfGeoX, "Long"
)

P20)i
", GDALDecToDMS(dfGeoY, "Lat", 2)

) i

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

*/
*/

*/
*/
*/

*/
*/

36

Simple C Example: gdalinfo.c

printf ("\n"

return TRUE;

)i

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 6

Standard Driver Registration:
gdalallregister.cpp

/% Kk %k Kk % ok ko ko ko ko kK ok ok kK Kk Kk Kk Kk ko ko ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok kR ko ko Kk ok ok ko ok ko ko ok ok kK ok kK

* $Id: gdalallregister.cpp 18207 2009-12-07 21:37:49Z rouault $

Project: GDAL Core
Purpose: Implementation of GDALAllRegister (), primary format registration.
Author: Frank Warmerdam, warmerdam@pobox.com

R R R R R

Copyright (c) 1998, Frank Warmerdam

*

*

*

*

*

*

*

*

* Permission is hereby granted, free of charge, to any person obtaining a

* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the

* Software is furnished to do so, subject to the following conditions:
*
*
*
*
*
*
*
*
*
*
*
*

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

***/

#include "gdal_priv.h"
#include "gdal_frmts.h"

CPL_CVSID("$Id: gdalallregister.cpp 18207 2009-12-07 21:37:49Z rouault $");

#ifdef notdef

// we may have a use for this some day

static char *szConfiguredFormats = "GDAL_FORMATS";
#endif

38 Standard Driver Registration: gdalallregister.cpp

/% ok %k ok ko ko ko kK ok Kk Kk Kk Kk ok ok ko ko ok ok ok ok kK ok K ko ko ok ok ok ok ok ok ko ok ok ok ok ok ok ke ok ke ok ok kR kR ok ok ok ok ok ok ok ok /)

/* GDALAllRegister () */
/ * */
/ * Register all identifiably supported formats. */

/**/

void CPL_STDCALL GDALAllRegister ()

GetGDALDriverManager () —>AutoLoadDrivers () ;

#ifdef FRMT_vrt
GDALRegister_VRT () ;
#endif

#ifdef FRMT_gdb
GDALRegister_GDB () ;
#endif

#ifdef FRMT_gtiff
GDALRegister GTiff ();
#endif

#ifdef FRMT_nitf
GDALRegister_ NITF () ;
GDALRegister_RPFTOC() ;

#endif

#ifdef FRMT_hfa
GDALRegister_ HFA();
#endif

#ifdef FRMT_ceos2
GDALRegister_SAR_CEOS () ;
#endif

#ifdef FRMT_ceos
GDALRegister_CEOS() ;
#endif

#ifdef FRMT_jaxapalsar
GDALRegister_ PALSARJaxa () ;
#endif

#ifdef FRMT_gff
GDALRegister_GFF () ;
#endif

#ifdef FRMT_elas
GDALRegister_ELAS();
#endif

#ifdef FRMT_aigrid

// GDALRegister_AIGrid2();
GDALRegister_ AIGrid();

#endif

#ifdef FRMT_aaigrid
GDALRegister_ AAIGrid();
#endif

#ifdef FRMT_sdts

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

39

GDALRegister_SDTS() ;
#endif

#ifdef FRMT_ogdi
GDALRegister_OGDI () ;
#endif

#ifdef FRMT_dted
GDALRegister_ DTED () ;
#endif

#ifdef FRMT_png
GDALRegister_PNG();
#endif

#ifdef FRMT_Jjpeg
GDALRegister_ JPEG() ;
#endif

#ifdef FRMT_mem
GDALRegister MEM() ;
#endif

#ifdef FRMT_jdem
GDALRegister_JDEM() ;
#endif

#ifdef FRMT_gif
GDALRegister_ GIF () ;
GDALRegister_ BIGGIF () ;

#endif

#ifdef FRMT_envisat
GDALRegister_Envisat ();
#endif

#ifdef FRMT_fits
GDALRegister_ FITS();
#endif

#ifdef FRMT_bsb
GDALRegister_BSB();
#endif

#ifdef FRMT_xpm
GDALRegister_ XPM() ;
#endif

#ifdef FRMT_bmp
GDALRegister_ BMP () ;
#endif

#ifdef FRMT_dimap
GDALRegister_ DIMAP () ;
#endif

#ifdef FRMT_airsar
GDALRegister_ AirSAR();
#endif

#ifdef FRMT_rs2
GDALRegister_RS2 () ;

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

40 Standard Driver Registration: gdalallregister.cpp

#endif

#ifdef FRMT_pcidsk
GDALRegister_PCIDSK();
#endif

#ifdef FRMT_pcraster
GDALRegister_PCRaster();
#endif

#ifdef FRMT_ilwis
GDALRegister ILWIS();
#endif

#ifdef FRMT_sgi
GDALRegister_SGI();
#endif

#ifdef FRMT_srtmhgt
GDALRegister_ SRTMHGT () ;
#endif

#ifdef FRMT_leveller
GDALRegister_Leveller();
#endif

#ifdef FRMT_terragen
GDALRegister_Terragen() ;
#endif

#ifdef FRMT_netcdf
GDALRegister_ GMT () ;
GDALRegister_netCDF () ;

#endif

#ifdef FRMT_hdf4
GDALRegister_ HDF4 () ;
GDALRegister_HDF4Image () ;

#endif

#ifdef FRMT_pds
GDALRegister_ ISIS3();
GDALRegister_ISIS2();
GDALRegister_PDS () ;

#endif

#ifdef FRMT_til
GDALRegister_ TIL();
#endif

#ifdef FRMT_ers
GDALRegister_ERS () ;
#endif

#ifdef FRMT_jp2kak

// JPEG2000 support using Kakadu toolkit
GDALRegister_JP2KAK() ;

#endif

#ifdef FRMT_ecw
GDALRegister_ ECW() ;
GDALRegister_ JP2ECW() ;

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

41

#endif

#ifdef FRMT_Jjpeg2000

// JPEG2000 support using JasPer toolkit

// This one should always be placed after other JasPer supported formats,

// such as BMP or PNM. In other case we will get bad side effects.
GDALRegister_JPEG2000 () ;

#endif

#ifdef FRMT_11b
GDALRegister_ L1B();
#endif

#ifdef FRMT_fit
GDALRegister_ FIT();
#endif

#ifdef FRMT_grib
GDALRegister_ GRIB() ;
#endif

#ifdef FRMT_mrsid
GDALRegister_ MrSID();
#endif

#ifdef FRMT_rmf
GDALRegister_ RMF () ;
#endif

#ifdef FRMT_wcs
GDALRegister_WCS () ;
#endif

#ifdef FRMT_wms
GDALRegister_ WMS () ;
#endif

#ifdef FRMT_sde
GDALRegister_SDE () ;
#endif

#ifdef FRMT_msgn
GDALRegister_ MSGN() ;
#endif

#ifdef FRMT_msg
GDALRegister_MSG () ;
#endif

#ifdef FRMT_idrisi
GDALRegister_ IDRISI();
#endif

#ifdef FRMT_ingr
GDALRegister_ INGR() ;
#endif

#ifdef FRMT_gsg
GDALRegister_GSAG() ;
GDALRegister_ GSBG() ;
GDALRegister_GS7BG() ;

#endif

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

42 Standard Driver Registration: gdalallregister.cpp

#ifdef FRMT_cosar
GDALRegister_COSAR() ;
#endif

#ifdef FRMT_tsx
GDALRegister_TSX();
#endif

#ifdef FRMT_coasp
GDALRegister_COASP () ;
#endif

#ifdef FRMT_tms
GDALRegister_TMS () ;
#endif

#ifdef FRMT_r
GDALRegister_R();

#endif

K */
/* Put raw formats at the end of the list. These drivers support */
/* various ASCII-header labeled formats, so the driver could be */
/ * confused if you have files in some of above formats and such */
/ * ASCII-header in the same directory. */
[k */

#ifdef FRMT_raw
GDALRegister_ PNM() ;
GDALRegister_DOQ1 () ;
GDALRegister_DOQ2 () ;
GDALRegister_ENVI();
GDALRegister_EHdr () ;
GDALRegister_GenBin();
GDALRegister_PAux();
GDALRegister MFF () ;
GDALRegister_ HKV () ;
GDALRegister_ FujiBAS();
GDALRegister_GSC () ;
GDALRegister_ FAST();
GDALRegister_ BT () ;
GDALRegister_LAN();
GDALRegister_ CPG () ;
GDALRegister_IDA();
GDALRegister NDF () ;
GDALRegister_ EIR();
GDALRegister_ DIPEx () ;
GDALRegister_ LCP () ;

#endif

[k */
/% Our test for the following is weak or expensive so we try */
/ * them last. */
ok e */

#ifdef FRMT_rik
GDALRegister_ RIK();
#endif

#ifdef FRMT_usgsdem
GDALRegister_ USGSDEM() ;

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

43

#endif

#ifdef FRMT_gxf
GDALRegister_ GXF () ;
#endif

#ifdef FRMT_grass
GDALRegister_GRASS () ;
#endif

#ifdef FRMT_dods
GDALRegister_DODS () ;
#endif

#ifdef FRMT_wcs
GDALRegister_ HTTP () ;
#endif

#ifdef FRMT_hdf5
GDALRegister_ BAG();
GDALRegister_ HDF5();

GDALRegister_HDF5Image () ;

#endif

#ifdef FRMT_northwood

GDALRegister NWT_GRD () ;
GDALRegister_ NWT_GRC() ;

#endif

#ifdef FRMT_adrg
GDALRegister_ ADRG() ;
GDALRegister_SRP () ;

#endif

#ifdef FRMT_blx
GDALRegister_ BLX();
#endif

#ifdef FRMT_pgchip
GDALRegister_ PGCHIP () ;
#endif

#ifdef FRMT_georaster
GDALRegister_ GEOR() ;
#endif

#ifdef FRMT_rasterlite

GDALRegister_Rasterlite();

#endif

#ifdef FRMT_epsilon
GDALRegister EPSILON() ;

#endif

#ifdef FRMT_wktraster

GDALRegister_WKTRaster () ;

#endif

#ifdef FRMT_saga
GDALRegister_SAGA();
#endif

[k

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

44 Standard Driver Registration: gdalallregister.cpp

/ * Deregister any drivers explicitly marked as supressed by the */
/ * GDAL_SKIP environment variable. */
K e */

GetGDALDriverManager () —>AutoSkipDrivers () ;

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 7

Sample Driver: jdemdataset.cpp

/**

* $Id: jdemdataset.cpp 16706 2009-04-02 03:44:07Z warmerdam $

Project: JDEM Reader
Purpose: All code for Japanese DEM Reader
Author: Frank Warmerdam, warmerdam@pobox.com

KAk hkhkhkhkhhkhkhkhkhkhkhk bk kA A A A A A A Ak rhhk ko hk ko hkhkhkhkhkhkhkhkhkhk kA kA A A A Ak r kv ko hkhkhkhkhkhkhkhkhkhkhkhk kA kA kA hkkkxx

Copyright (c) 2000, Frank Warmerdam <warmerdam@pobox.com>

*

*

*

*

*

*

*

* Permission is hereby granted, free of charge, to any person obtaining a

* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the

* Software is furnished to do so, subject to the following conditions:
*
*
*
*
*
*
*
*
*
*
*
*

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

ek ok ok ok ok ek ok ok ok ok kK ok ok ok ok ok ok ok ok ok ok ok ok k ok ok ok ok ok k ok ok kA ok ok ok ok ok ok ok k ok k kA k ok ok ok k ok kk ok k ok kkk ok ok ok kk ok ok kkkk/

#include "gdal_pam.h"

CPL_CVSID("$Id: jdemdataset.cpp 16706 2009-04-02 03:44:07Z warmerdam $");
CPL_C_START

void GDALRegister_JDEM (void) ;

CPL_C_END
/**/

/% JDEMGetField () */

/**/

static int JDEMGetField(char x*pszField, int nWidth)

46

Sample Driver: jdemdataset.cpp

char szWork [32];
CPLAssert (nWidth < (int) sizeof (szWork));

strncpy (szWork, pszField, nWidth);
szWork [nWidth] = ’"\0’;

return atoi (szWork);

/**/

/ *

JDEMGetAngle ()

*/

Jhkkkhkkk ok hkkkkhkkkkhkkkkhkkkhkkkkhk kA k ok kA kk kA kk kA kkhkkkkhkkkkkkkhkkkkkkkkkkkkkxk /

static double JDEMGetAngle (char xpszField)

int nAngle = JDEMGetField(pszField, 7);
int nDegree, nMin, nSec;

// Note, this isn’t very general purpose, but it would appear
// from the field widths that angles are never negative. Nice
// to be a country in the "first quadrant".

nDegree = nAngle / 10000;
nMin (nAngle / 100) % 100;

o

nSec = nAngle % 100;

return nDegree + nMin / 60.0 + nSec / 3600.0;

/**/

/ *
/ *
/ *

JDEMDataset

x/
«/
x/

Jhkk ok kkkkhkhkhkhkkkkhkkkkhkkk ok kkk ok kA ok hk kA kk kA kk kA kkhkkkhkkkkkkkhkkkkkkkkkkkkkxx /

class JDEMRasterBand;

class JDEMDataset : public GDALPamDataset

{

bi

friend class JDEMRasterBand;

FILE ~fp;
GByte abyHeader[1012];
public:

~JDEMDataset () ;
static GDALDataset *Open(GDALOpenInfo «*);

CPLErr GetGeoTransform(double » padfTransform);
const char xGetProjectionRef ();

/**/

/ *
/ *
/ *

JDEMRasterBand

*/
*/
*/

/**/

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

47

class JDEMRasterBand : public GDALPamRasterBand

{
friend class JDEMDataset;

int nRecordSize;
charx* pszRecord;
public:

JDEMRasterBand (JDEMDataset *, int);
~JDEMRasterBand () ;

virtual CPLErr IReadBlock(int, int, void x);

Vi

/**/
/* JDEMRasterBand () */
/**/
JDEMRasterBand: : JDEMRasterBand (JDEMDataset *poDS, int nBand)

this->poDS = poDS;

this->nBand = nBand;

eDataType = GDT_Float32;

nBlockXSize = poDS—->GetRasterXSize();
nBlockYSize 1;

/* Cannot overflow as nBlockXSize <= 999 «/
nRecordSize = nBlockXSizex5 + 9 + 2;
pszRecord = NULL;

Jrkk ok kkk ok kkkkhkkkkkkkkhkkkkhkkkkhkkkkhkkkkhkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkxk/

/ * ~JDEMRasterBand () x/

/% K % ok K ok ko ko ko ko ok ok kK ok Kk Kk ko ok ok ko ko ko ko ko ok ok kR k ko ko ko ko ko ok Kk Kk ke k ke kR kR kK ok ok ok ok /)

JDEMRasterBand: : ~JDEMRasterBand ()

{
VSIFree (pszRecord) ;

/% % ok K ok ko ko ko ko ko ok Kk Kk Kk ko ok ok ok ko ko ok ok ko ko ko ko ok ok ok ok ok ok ko ok ok Kk ok kK kK kR kR ok ok ok ok ok k)

/% IReadBlock () */

Jxk ok k ok kkk ok kkhkh ok kA kA kA kA kA kA khk kA kA kA Kk Ak Ak k ok k ok k ok hkh ok kkkkk ok kkkkkkkkkkk/

CPLErr JDEMRasterBand::IReadBlock (int nBlockXOff, int nBlockYOff,
void % pImage)

JDEMDataset *poGDS = (JDEMDataset =x) poDS;
int i;

if (pszRecord == NULL)
{
if (nRecordSize < 0)
return CE_Failure;

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

48 Sample Driver: jdemdataset.cpp

pszRecord = (char %) VSIMalloc (nRecordSize);
if (pszRecord == NULL)
{
CPLError (CE_Failure, CPLE_OutOfMemory,
"Cannot allocate scanline buffer");
nRecordSize = -1;
return CE_Failure;

VSIFSeekL (poGDS->fp, 1011 + nRecordSizexnBlockYOff, SEEK_SET);
VSIFReadL (pszRecord, 1, nRecordSize, poGDS->fp);
if ('EQUALN ((char %) poGDS->abyHeader,pszRecord, 6))

{
CPLError (CE_Failure, CPLE_AppDefined,

"JDEM Scanline corrupt. Perhaps file was not transferred\n"

"in binary mode?");
return CE_Failure;

if (JDEMGetField(pszRecord + 6, 3) != nBlockYOff + 1)
CPLError(CE_Failure, CPLE_AppDefined,
"JDEM scanline out of order, JDEM driver does not\n"

"currently support partial datasets.");
return CE_Failure;

for(i = 0; i < nBlockXSize; i++)
((float x) pImage) [i1] = (float)
(JDEMGetField(pszRecord + 9 + 5 x i, 5) % 0.1);

return CE_None;

Jhkk ok kkkkhkhkhkhkkkkhkkkkhkkkhkkkkhk kA kk kA kk kA kkkkkkhkkkkhkkkkkkkhkkkkhkkkkkkkkkxk /

/% */
/ * JDEMDataset */
/* */

Jokkk ok ok ok k ok k ok ok ko ko kA ok kA k ok k kA k ok kA ok kA ok k kA k ok kA k ok kA k kA k ok ok kk ok kA kkk Ak kkkkkkxk/

/**/
/ * ~JDEMDataset () */

/**/
JDEMDataset: :~JDEMDataset ()
FlushCache () ;

if(fp != NULL)
VSIFCloseL(fp);

/‘k‘k‘k‘k***********‘k‘k****‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k****‘k‘k‘k‘k‘k‘k‘k‘k‘k*********‘k‘k‘k‘k*****‘k‘k‘k‘k‘k‘k‘k‘k‘k*/
/ * GetGeoTransform() */

/**/

CPLErr JDEMDataset::GetGeoTransform(double * padfTransform)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49

double dfLLLat, dfLLLong, dfURLat, dfURLong;

dfLLLat = JDEMGetAngle((char x) abyHeader + 29);
dfLLLong = JDEMGetAngle((char =) abyHeader + 36);
dfURLat = JDEMGetAngle((char x) abyHeader + 43);
dfURLong = JDEMGetAngle((char x) abyHeader + 50);

padfTransform[0] = dfLLLong;

padfTransform[3] = dfURLat;

padfTransform[1l] = (dfURLong - dfLLLong) / GetRasterXSize();
padfTransform([2] = 0.0;

padfTransform[4] = 0.0;

padfTransform[5] = -1 % (dfURLat - dfLLLat) / GetRasterYSize();

return CE_None;

/******‘k************‘k‘k***********‘k‘k************‘k*************************/

/ * GetProjectionRef () %/

/**/
const char xJDEMDataset::GetProjectionRef ()
return ("GEOGCS[\"Tokyo\",DATUM[\"Tokyo\", SPHEROID[\"Bessel 1841\"
,6377397.155,299.1528128, AUTHORITY [\"EPSG\"

,7004]1],TOWGS84[-148,507,685,0,0,0,0],AUTHORITY[\"EPSG\",6301]],PRIMEM[\"Greenwich\", 0, AUTHORITY [\
,0.0174532925199433, AUTHORITY [\"EPSG\",9108]]1,AUTHORITY[\"EPSG\",430111");

/**/
/% Open () */
/*~k****~k*******~k~k***~k~k****~k**~k***~k~k*******~k****~k~k************************/

GDALDataset xJDEMDataset::0Open(GDALOpenInfo % poOpenInfo)

{

ok e */
/* Confirm that the header has what appears to be dates in the */
/ * expected locations. Sadly this is a relatively weak test. x/
ok */

if (poOpenInfo->nHeaderBytes < 50)
return NULL;

/* check if century values seem reasonable x/
if((!'EQUALN ((char *)poOpenInfo->pabyHeader+11l,"19",2)
&& !EQUALN ((char *)poOpenInfo->pabyHeader+11,"20",2))
|| (!EQUALN ((char x)poOpenInfo->pabyHeader+15,"19",2)
&& !EQUALN ((char «*)poOpenInfo->pabyHeader+15,"20",2))
|| ('EQUALN ((char =*)poOpenInfo->pabyHeader+19,"19",2)
&& !EQUALN ((char «*)poOpenInfo->pabyHeader+19,"20",2)))

return NULL;

[k e */

/ * Confirm the requested access is supported. */

Y *x/
if (poOpenInfo->eAccess == GA_Update)

{

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

50 Sample Driver: jdemdataset.cpp
CPLError (CE_Failure, CPLE_NotSupported,
"The JDEM driver does not support update access to existing"
" datasets.\n");
return NULL;
}
ok e */
/ * Create a corresponding GDALDataset. */
ok e */
JDEMDataset *poDS;
poDS = new JDEMDataset ();
poDS—>fp = VSIFOpenL(poOpenInfo->pszFilename, "rb");
ok e */
/ * Read the header. */
[k */
VSIFReadL (poDS->abyHeader, 1, 1012, poDS->fp);
poDS->nRasterXSize = JDEMGetField((char *) poDS->abyHeader + 23, 3);
poDS->nRasterYSize = JDEMGetField((char x) poDS->abyHeader + 26, 3);
if (poDS->nRasterXSize <= 0 || poDS—->nRasterYSize <= 0)
{
CPLError(CE_Failure, CPLE_AppDefined,
"Invalid dimensions : %d x %d",
poDS->nRasterXSize, poDS->nRasterYSize);
delete poDS;
return NULL;
}
ok e */
/ * Create band information objects. */
[k e */
poDS->SetBand(1, new JDEMRasterBand(poDS, 1));
T x/
/ * Initialize any PAM information. */
ok e */
poDS—>SetDescription(poOpenInfo->pszFilename);
poDS->TryLoadXML () ;
[k */
/% Check for overviews. */
K */

poDS—>o0OvManager.Initialize(poDS, poOpenInfo->pszFilename);

return(poDS

) ;

’

/**/

/ *

GDALRegister_JDEM() */

/**/

void GDALRegister_JDEM()

GDALDriver =xpoDriver;
if (GDALGetDriverByName ("JDEM") == NULL)
{

poDriver = new GDALDriver();

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

51

poDriver->SetDescription("JDEM");
poDriver->SetMetadataItem(GDAL_DMD_LONGNAME,
"Japanese DEM (.mem)");
poDriver->SetMetadataItem(GDAL_DMD_HELPTOPIC,
"frmt_various.html#JDEM"
poDriver->SetMetadataItem(GDAL_DMD_EXTENSION, "mem"

poDriver->pfnOpen = JDEMDataset::0Open;

GetGDALDriverManager () —>RegisterDriver (poDriver);

)i

)i

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

52

Sample Driver: jdemdataset.cpp

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 8

NEWS

54

NEWS

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 9

Building GDAL From Source

This topic is now lives in the wiki at: http://trac.osgeo.org/gdal/wiki/—
BuildHints

56

Building GDAL From Source

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 10

GDAL Data Model

This document attempts to describe the GDAL data model. That is the types of infor-
mation that a GDAL data store can contain, and their semantics.

10.1 Dataset

A dataset (represented by the GDALDataset (p. ??) class) is an assembly of related
raster bands and some information common to them all. In particular the dataset has a
concept of the raster size (in pixels and lines) that applies to all the bands. The dataset
is also responsible for the georeferencing transform and coordinate system definition of
all bands. The dataset itself can also have associated metadata, a list of name/value
pairs in string form.

Note that the GDAL dataset, and raster band data model is loosely based on the Open-
GIS Grid Coverages specification.

10.1.1 Coordinate System

Dataset coordinate systems are represented as OpenGIS Well Known Text strings. This
can contain:

+ An overall coordinate system name.

» A geographic coordinate system name.

+ A datum identifier.

» An ellipsoid name, semi-major axis, and inverse flattening.

+ A prime meridian name and offset from Greenwich.

» A projection method type (ie. Transverse Mercator).

« Alist of projection parameters (ie. central_meridian).

58 GDAL Data Model

A units name, and conversion factor to meters or radians.
* Names and ordering for the axes.

» Codes for most of the above in terms of predefined coordinate systems from
authorities such as EPSG.

For more information on OpenGIS WKT coordinate system definitions, and mechanisms
to manipulate them, refer to the osr_tutorial document and/or the OGRSpatial-
Reference class documentation.

The coordinate system returned by GDALDataset::GetProjectionRef() (p.??) de-
scribes the georeferenced coordinates implied by the affine georeferencing transform
returned by GDALDataset::GetGeoTransform() (p. ??). The coordinate system re-
turned by GDALDataset::GetGCPProjection() (p. ??) describes the georeferenced co-
ordinates of the GCPs returned by GDALDataset::GetGCPs() (p. ??).

Note that a returned coordinate system strings of " indicates nothing is known about
the georeferencing coordinate system.

10.1.2 Affine GeoTransform

GDAL datasets have two ways of describing the relationship between raster positions
(in pixel/line coordinates) and georeferenced coordinates. The first, and most commonly
used is the affine transform (the other is GCPs).

The affine transform consists of six coefficients returned by GDALDataset::GetGeo-
Transform() (p. ??) which map pixel/line coordinates into georeferenced space using
the following relationship:

Xgeo GT (0) + Xpixel*GT(l) + YlinexGT(2)
Ygeo = GT(3) + XpixelxGT (4) + YlinexGT (5)

In case of north up images, the GT(2) and GT(4) coefficients are zero, and the GT(1) is
pixel width, and GT(5) is pixel height. The (GT(0),GT(3)) position is the top left corner
of the top left pixel of the raster.

Note that the pixel/line coordinates in the above are from (0.0,0.0) at the top left corner
of the top left pixel to (width_in_pixels,height_in_pixels) at the bottom right corner of
the bottom right pixel. The pixel/line location of the center of the top left pixel would
therefore be (0.5,0.5).

10.1.3 GCPs

A dataset can have a set of control points relating one or more positions on the raster
to georeferenced coordinates. All GCPs share a georeferencing coordinate system
(returned by GDALDataset::GetGCPProjection() (p. ??)). Each GCP (represented as
the GDAL_GCP (p. ??) class) contains the following:

typedef struct

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

10.1 Dataset 59

char xpszId;
char xpszInfo;
double dfGCPPixel;
double dfGCPLine;
double dfGCPX;
double dfGCPY;
double dfGCPZ;

} GDAL_GCP (p.??);

The pszld string is intended to be a unique (and often, but not always numerical) identi-
fier for the GCP within the set of GCPs on this dataset. The pszinfo is usually an empty
string, but can contain any user defined text associated with the GCP. Potentially this
can also contain machine parsable information on GCP status though that isn’'t done at
this time.

The (Pixel,Line) position is the GCP location on the raster. The (X,Y,Z) position is the
associated georeferenced location with the Z often being zero.

The GDAL data model does not imply a transformation mechanism that must be gener-
ated from the GCPs ... this is left to the application. However 1st to 5th order polynomi-
als are common.

Normally a dataset will contain either an affine geotransform, GCPs or neither. It is
uncommon to have both, and it is undefined which is authoritative.

10.1.4 Metadata

GDAL metadata is auxiliary format and application specific textual data kept as a list
of name/value pairs. The names are required to be well behaved tokens (no spaces,
or odd characters). The values can be of any length, and contain anything except an
embedded null (ASCII zero).

The metadata handling system is not well tuned to handling very large bodies of meta-
data. Handling of more than 100K of metadata for a dataset is likely to lead to perfor-
mance degradation.

Some formats will support generic (user defined) metadata, while other format drivers
will map specific format fields to metadata names. For instance the TIFF driver returns
a few information tags as metadata including the date/time field which is returned as:

TIFFTAG_DATETIME=1999:05:11 11:29:56

Metadata is split into named groups called domains, with the default domain having
no name (NULL or ""). Some specific domains exist for special purposes. Note that
currently there is no way to enumerate all the domains available for a given object, but
applications can "test" for any domains they know how to interprete.

The following metadata items have well defined semantics in the default domain:

* AREA_OR_POINT: May be either "Area" (the default) or "Point". Indicates
whether a pixel value should be assumed to represent a sampling over the re-

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

60

GDAL Data Model

gion of the pixel or a point sample at the center of the pixel. This is not intended
to influence interpretation of georeferencing which remains area oriented.

NODATA_VALUES: The value is a list of space separated pixel values matching
the number of bands in the dataset that can be collectively used to identify pixels
that are nodata in the dataset. With this style of nodata a pixel is considered
nodata in all bands if and only if all bands match the corresponding value in the
NODATA_VALUES tuple. This metadata is not widely honoured by GDAL drivers,
algorithms or utilities at this time.

MATRIX_REPRESENTATION: This value, used for Polarimetric SAR datasets,
contains the matrix representation that this data is provided in. The following are
acceptable values:

— SCATTERING

— SYMMETRIZED_SCATTERING

— COVARIANCE

— SYMMETRIZED_COVARIANCE

— COHERENCY

— SYMMETRIZED_COHERENCY

— KENNAUGH

— SYMMETRIZED_KENNAUGH
POLARMETRIC_INTERP: This metadata item is defined for Raster Bands for
polarimetric SAR data. This indicates which entry in the specified matrix repre-
sentation of the data this band represents. For a dataset provided as a scattering
matrix, for example, acceptable values for this metadata item are HH, HV, VH,
VV. When the dataset is a covariance matrix, for example, this metadata item
will be one of Covariance_11, Covariance_22, Covariance_ 33, Covariance 12,

Covariance_13, Covariance_23 (since the matrix itself is a hermitian matrix, that
is all the data that is required to describe the matrix).

10.1.4.1 SUBDATASETS Domain

The SUBDATASETS domain holds a list of child datasets. Normally this is used to
provide pointers to a list of images stored within a single multi image file (such as HDF
or NITF). For instance, an NITF with four images might have the following subdataset

list.

SUBDATASET_1_NAME=NITF_IM:0:multi_1lb.ntf
SUBDATASET_1_DESC=Image 1 of multi_lb.ntf
SUBDATASET_2_NAME=NITF_IM:1l:multi_lb.ntf
SUBDATASET_2_DESC=Image 2 of multi_lb.ntf
SUBDATASET_3_NAME=NITF_IM:2:multi_lb.ntf
SUBDATASET_3_DESC=Image 3 of multi_lb.ntf
SUBDATASET_4_NAME=NITF_IM:3:multi_lb.ntf
SUBDATASET_4_DESC=Image 4 of multi_lb.ntf
SUBDATASET_5_NAME=NITF_IM:4:multi_lb.ntf
SUBDATASET_5_DESC=Image 5 of multi_lb.ntf

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

10.1 Dataset 61

The value of the _NAME is the string that can be passed to GDALOpen() (p.??) to
access the file. The _DESC value is intended to be a more user friendly string that can
be displayed to the user in a selector.

10.1.42 IMAGE_STRUCTURE Domain

Metadata in the default domain is intended to be related to the image, and not particu-
larly related to the way the image is stored on disk. That is, it is suitable for copying with
the dataset when it is copied to a new format. Some information of interest is closely
tied to a particular file format and storage mechanism. In order to prevent this getting
copied along with datasets it is placed in a special domain called IMAGE_STRUCTURE
that should not normally be copied to new formats.

Currently the following items are defined by REC 14 as having specific semantics in
the IMAGE_STRUCTURE domain.

+ COMPRESSION: The compression type used for this dataset or band. There is
no fixed catalog of compression type names, but where a given format includes a
COMPRESSION creation option, the same list of values should be used here as
there.

« NBITS: The actual number of bits used for this band, or the bands of this dataset.
Normally only present when the number of bits is non-standard for the datatype,
such as when a 1 bit TIFF is represented through GDAL as GDT_Byte.

+ INTERLEAVE: This only applies on datasets, and the value should be one of
PIXEL, LINE or BAND. It can be used as a data access hint.

* PIXELTYPE: This may appear on a GDT_Byte band (or the corresponding
dataset) and have the value SIGNEDBYTE to indicate the unsigned byte values
between 128 and 255 should be interpreted as being values between -128 and
-1 for applications that recognise the SIGNEDBYTE type.

10.1.4.3 RPC Domain

The RPC metadata domain holds metadata describing the Rational Polynomial -
Coefficient geometry model for the image if present. This geometry model can be used
to transform between pixel/line and georeferenced locations. The items defining the
model are:

+ ERR_BIAS: Error - Bias. The RMS bias error in meters per horizontal axis of all
points in the image (-1.0 if unknown)

+ ERR_RAND: Error - Random. RMS random error in meters per horizontal axis of
each point in the image (-1.0 if unknown)

» LINE_OFF: Line Offset
* SAMP_OFF: Sample Offset
* LAT_OFF: Geodetic Latitude Offset

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

62 GDAL Data Model

* LONG_OFF: Geodetic Longitude Offset

» HEIGHT_OFF: Geodetic Height Offset

LINE_SCALE: Line Scale

* SAMP_SCALE: Sample Scale

* LAT _SCALE: Geodetic Latitude Scale

* LONG_SCALE: Geodetic Longitude Scale
» HEIGHT_SCALE: Geodetic Height Scale

« LINE_NUM_COEFF (1-20): Line Numerator Coefficients. Twenty coefficients for
the polynomial in the Numerator of the rn equation. (space separated)

» LINE_DEN_COEFF (1-20): Line Denominator Coefficients. Twenty coefficients
for the polynomial in the Denominator of the rn equation. (space separated)

* SAMP_NUM_COEFF (1-20): Sample Numerator Coefficients. Twenty coeffi-
cients for the polynomial in the Numerator of the cn equation. (space separated)

+ SAMP_DEN_COEFF (1-20): Sample Denominator Coefficients. Twenty coeffi-
cients for the polynomial in the Denominator of the cn equation. (space sepa-
rated)

These fields are directly derived from the document prospective GeoTIFF RPC doc-
ument (http://geotiff.maptools.org/rpc_prop.html) which in turn is
closely modelled on the NITF RPCO0B definition.

10.1.4.4 xml: Domains

Any domain name prefixed with "xml:" is not normal name/value metadata. It is a single
XML document stored in one big string.

10.2 Raster Band

A raster band is represented in GDAL with the GDALRasterBand (p. ??) class. It rep-
resents a single raster band/channel/layer. It does not necessarily represent a whole
image. For instance, a 24bit RGB image would normally be represented as a dataset
with three bands, one for red, one for green and one for blue.

A raster band has the following properties:
+ A width and height in pixels and lines. This is the same as that defined for the
dataset, if this is a full resolution band.

+ A datatype (GDALDataType). One of Byte, UInt16, Int16, UInt32, Int32, Float32,
Float64, and the complex types CInt16, CInt32, CFloat32, and CFloat64.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

10.2 Raster Band 63

+ Ablock size. This is a preferred (efficient) access chunk size. For tiled images this
will be one tile. For scanline oriented images this will normally be one scanline.

+ A list of name/value pair metadata in the same format as the dataset, but of
information that is potentially specific to this band.

+ An optional description string.

» An optional single nodata pixel value (see also NODATA_VALUES metadata on
the dataset for multi-band style nodata values).

» An optional nodata mask band marking pixels as nodata or in some cases trans-
parency as discussed in REC 15: Band Masks.

» An optional list of category names (effectively class names in a thematic image).
+ An optional minimum and maximum value.

» An optional offset and scale for transforming raster values into meaning full values
(ie translate height to meters)

» An optional raster unit name. For instance, this might indicate linear units for
elevation data.

A color interpretation for the band. This is one of:

— GCI_Undefined: the default, nothing is known.

— GCI_GraylIndex: this is an independent grayscale image

— GCI_Palettelndex: this raster acts as an index into a color table

— GCI_RedBand: this raster is the red portion of an RGB or RGBA image
— GCI_GreenBand: this raster is the green portion of an RGB or RGBA image
— GCI_BlueBand: this raster is the blue portion of an RGB or RGBA image
— GCI_AlphaBand: this raster is the alpha portion of an RGBA image

— GCI_HueBand: this raster is the hue of an HLS image

— GCI_SaturationBand: this raster is the saturation of an HLS image

— GCI_LightnessBand: this raster is the hue of an HLS image

— GCI_CyanBand: this band is the cyan portion of a CMY or CMYK image

— GCI_MagentaBand: this band is the magenta portion of a CMY or CMYK
image

— GCI_YellowBand: this band is the yellow portion of a CMY or CMYK image
— GCI_BlackBand: this band is the black portion of a CMYK image.

« A color table, described in more detail later.

» Knowledge of reduced resolution overviews (pyramids) if available.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

64 GDAL Data Model

10.3 Color Table

A color table consists of zero or more color entries described in C by the following
structure:

typedef struct
{

/- gray, red, cyan or hue -/
short cl;

/- green, magenta, or lightness -/
short c2;

/- blue, yellow, or saturation -/
short c3;

/- alpha or blackband -/
short c4;
} GDALColorEntry (p.??);

The color table also has a palette interpretation value (GDALPalettelnterp) which is one
of the following values, and indicates how the c1/c2/c3/c4 values of a color entry should
be interpreted.

» GPl_Gray: Use c1 as grayscale value.
» GPI_RGB: Use c1 as red, c2 as green, c3 as blue and c4 as alpha.
+ GPI_CMYK: Use c1 as cyan, c2 as magenta, c3 as yellow and c4 as black.

» GPI_HLS: Use c1 as hue, c2 as lightness, and ¢3 as saturation.

To associate a color with a raster pixel, the pixel value is used as a subscript into the
color table. That means that the colors are always applied starting at zero and ascend-
ing. There is no provision for indicating a prescaling mechanism before looking up in
the color table.

10.4 Overviews

A band may have zero or more overviews. Each overview is represented as a "free
standing" GDALRasterBand (p. ??). The size (in pixels and lines) of the overview will
be different than the underlying raster, but the geographic region covered by overviews
is the same as the full resolution band.

The overviews are used to display reduced resolution overviews more quickly than could
be done by reading all the full resolution data and downsampling.

Bands also have a HasArbitraryOverviews property which is TRUE if the raster can
be read at any resolution efficiently but with no distinct overview levels. This applies
to some FFT encoded images, or images pulled through gateways (like OGDI) where
downsampling can be done efficiently at the remote point.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 11

GDAL Driver Implementation Tutorial

11.1 Overall Approach

In general new formats are added to GDAL by implementing format specific drivers
as subclasses of GDALDataset (p. ??), and band accessors as subclasses of GDAL-
RasterBand (p. ??). As well, a GDALDriver (p. ??) instance is created for the format,
and registered with the GDALDriverManager (p. ??), to ensure that the system knows
about the format.

This tutorial will start with implementing a simple read-only driver (based on the JDEM
driver), and then proceed to utilizing the RawRasterBand helper class, implementing
creatable and updatable formats, and some esoteric issues.

It is strongly advised that the GDAL Data Model description be reviewed and un-
derstood before attempting to implement a GDAL driver.

11.2 Contents

1. Implementing the Dataset (p. ??)

2. Implementing the RasterBand (p. ??)

3. The Driver (p.??)

4. Adding Driver to GDAL Tree (p. ??)

5. Adding Georeferencing (p. ??)

6. Overviews (p.??)

7. File Creation (p. ??)

8. RawDataset/RawRasterBand Helper Classes (p. ??)

9. Metadata, and Other Exotic Extensions (p. ??)

66 GDAL Driver Implementation Tutorial

11.3 Implementing the Dataset

We will start showing minimal implementation of a read-only driver for the Japanese
DEM format (jdemdataset . cpp). First we declare a format specific dataset class,
JDEMDataset in this case.

class JDEMDataset : public GDALPamDataset
{
friend class JDEMRasterBand;

FILE *fp;
GByte abyHeader[1012];
public:

~JDEMDataset () ;
static GDALDataset =*Open(GDALOpenInfo =*);

CPLErr GetGeoTransform(double » padfTransform);
const char xGetProjectionRef ();
bi

In general we provide capabilities for a driver, by overriding the various virtual methods
on the GDALDataset (p. ??) base class. However, the Open() method is special. This
is not a virtual method on the base class, and we will need a freestanding function for
this operation, so we declare it static. Implementing it as a method in the JDEMDataset
class is convenient because we have privileged access to modify the contents of the
database object.

The open method itself may look something like this:

GDALDataset xJDEMDataset::0Open(GDALOpenInfo » poOpenInfo)

e
// Confirm that the header has what appears to be dates in the

// expected locations. Sadly this is a relatively weak test.

f] -

if(poOpenInfo->nHeaderBytes < 50

return NULL;
// check if century values seem reasonable //
if((!EQUALN((char =)poOpenInfo->pabyHeader+11,"19",2)
&& !EQUALN ((char «*)poOpenInfo->pabyHeader+11l,"20",2))
|| (!EQUALN ((char =)poOpenInfo->pabyHeader+15,"19",2)
&& !EQUALN ((char x)poOpenInfo->pabyHeader+15,"20",2))
|| (!EQUALN ((char)poOpenInfo->pabyHeader+19,"19",2)
&& !EQUALN ((char x)poOpenInfo->pabyHeader+19,"20",2)))
{
return NULL;

}
T /7
// Confirm the requested access is supported. //
T /7

if (poOpenInfo->eAccess == GA_Update)
{
CPLError (CE_Failure, CPLE_NotSupported,

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

11.3 Implementing the Dataset 67

"The JDEM driver does not support update access to existing"
" datasets.\n");
return NULL;

[//
// Create a corresponding GDALDataset. //
[//

poDS = new JDEMDataset () ;

poDS—->fp = VSIFOpenL(poOpenInfo->pszFilename, "rb");

/) e //
// Read the header. //
[//
VSIFReadL (poDS->abyHeader, 1, 1012, poDS->fp);
poDS->nRasterXSize = JDEMGetField((char %) poDS->abyHeader + 23, 3);
poDS->nRasterYSize = JDEMGetField((char %) poDS->abyHeader + 26, 3);
if (poDS->nRasterXSize <= 0 || poDS->nRasterY¥YSize <= 0)
{
CPLError (CE_Failure, CPLE_AppDefined,
"Invalid dimensions : %d x %d",
poDS->nRasterXSize, poDS->nRasterYSize);
delete poDS;
return NULL;
}
[//
// Create band information objects. //
[//
poDS->SetBand(1, new JDEMRasterBand(poDS, 1));
[//
// Initialize any PAM information. //
B //
poDS—->SetDescription(poOpenInfo->pszFilename);
poDS—>TryLoadXML () ;
/) //
// Initialize default overviews. //
T //

poDS—->o0OvManager.Initialize(poDS, poOpenInfo->pszFilename);
return(poDS);

The first step in any database Open function is to verify that the file being passed is in
fact of the type this driver is for. It is important to realize that each driver’s Open function
is called in turn till one succeeds. Drivers must quietly return NULL if the passed file is
not of their format. They should only produce an error if the file does appear to be of
their supported format, but is for some reason unsupported or corrupt.

The information on the file to be opened is passed in contained in a GDALOpeninfo
(p. ??) object. The GDALOpenInfo (p. ??) includes the following public data members:

char *pszFilename;
char *xpapszSiblingFiles;

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

68 GDAL Driver Implementation Tutorial

GDALAccess eAccess; // GA_ReadOnly or GA_Update

int bStatOK;

int bIsDirectory;
FILE ~fp;

int nHeaderBytes;
GByte xpabyHeader;

The driver can inspect these to establish if the file is supported. If the pszFilename refers
to an object in the file system, the bStatOK flag will be set to TRUE. As well, if the file
was successfully opened, the first kilobyte or so is read in, and put in pabyHeader, with
the exact size in nHeaderBytes.

In this typical testing example it is verified that the file was successfully opened, that we
have at least enough header information to perform our test, and that various parts of
the header are as expected for this format. In this case, there are no magic numbers for
JDEM format so we check various date fields to ensure they have reasonable century
values. If the test fails, we quietly return NULL indicating this file isn’t of our supported
format.

if (poOpenInfo->nHeaderBytes < 50
return NULL;

/+ check if century values seem reasonable x/
if((!EQUALN((char «)poOpenInfo->pabyHeader+11,"19",2)
&& !EQUALN ((char «*)poOpenInfo->pabyHeader+11l,"20",2))
|| (!EQUALN ((char)poOpenInfo->pabyHeader+15,"19",2)
&& !EQUALN ((char x)poOpenInfo->pabyHeader+15,"20",2))
|| (!EQUALN ((char)poOpenInfo->pabyHeader+19,"19",2)
&& !'EQUALN ((char «)poOpenInfo->pabyHeader+19,"20",2)))

return NULL;

It is important to make the is this my format test as stringent as possible. In this particu-
lar case the test is weak, and a file that happened to have 19s or 20s at a few locations
could be erroneously recognized as JDEM format, causing it to not be handled properly.

Once we are satisfied that the file is of our format, we can do any other tests that are
necessary to validate the file is usable, and in particular that we can provide the level of
access desired. Since the JDEM driver

if (poOpenInfo->eAccess == GA_Update)
{
CPLError(CE_Failure, CPLE_NotSupported,
"The JDEM driver does not support update access to existing"
" datasets.\n");
return NULL;

Next we need to create an instance of the database class in which we will set various
information of interest.

JDEMDataset *poDS;

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

11.4 Implementing the RasterBand 69

poDS = new JDEMDataset () ;

poDS—->fp = VSIFOpenL(poOpenInfo->pszFilename, "rb");

At this point we open the file, to acquire a file handle for the dataset. Whenever possible,
we try to use the VSIxL GDAL API to access files on disk. This virtualized POSIX-style
API allows some special capabilities like supporting large files, in-memory files and
zipped files.

Next the X and Y size are extracted from the header. The nRasterXSize and nRaster-
YSize are data fields inherited from the GDALDataset (p. ??) base class, and must be
set by the Open() method.

VSIFReadL (poDS->abyHeader, 1, 1012, poDS->fp);

poDS->nRasterXSize JDEMGetField((char %) poDS->abyHeader + 23,
poDS->nRasterYSize = JDEMGetField((char %) poDS->abyHeader + 26,

3
3);
if (poDS->nRasterXSize <= 0 || poDS->nRasterY¥YSize <= 0)
{
CPLError (CE_Failure, CPLE_AppDefined,
"Invalid dimensions : %d x %d",
poDS->nRasterXSize, poDS->nRasterYSize);
delete poDS;
return NULL;

All the bands related to this dataset must be created and attached using the SetBand()
method. We will explore the JDEMRasterBand() class shortly.

[//
// Create band information objects. //
[e //

poDS->SetBand(1, new JDEMRasterBand(poDS, 1));

Finally we assign a name to the dataset object, and call the GDALPamDataset (p. ??)
TryLoadXML() method which can initialize auxilary information from an .aux.xml file if
available. For more details on these services review the GDALPamDataset (p. ??) and
related classes.

e //
// Initialize any PAM information. //
ettt //

poDS—>SetDescription(poOpenInfo->pszFilename);
poDS->TryLoadXML () ;

return(poDS);

11.4 Implementing the RasterBand

Similar to the customized JDEMDataset class subclassed from GDALDataset (p. ??),
we also need to declare and implement a customized JDEMRasterBand derived from

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

70 GDAL Driver Implementation Tutorial

GDALRasterBand (p. ??) for access to the band(s) of the JDEM file. For JDEMRaster-
Band the declaration looks like this:

class JDEMRasterBand : public GDALPamRasterBand
{
public:
JDEMRasterBand (JDEMDataset x, int);
virtual CPLErr IReadBlock(int, int, wvoid *);

bi

The constructor may have any signature, and is only called from the Open() method.
Other virtual methods, such as IReadBlock() must be exactly matched to the method
signature in gdal_priv.h (p. ??).

The constructor implementation looks like this:

JDEMRasterBand: : JDEMRasterBand (JDEMDataset xpoDS, int nBand)
{

this->poDS = poDS;

this->nBand = nBand;

eDataType = GDT_Float32;

nBlockXSize = poDS->GetRasterXSize();
nBlockYSize = 1;

The following data members are inherited from GDALRasterBand (p. ??), and should
generally be set in the band constructor.

+ poDS: Pointer to the parent GDALDataset (p. ??).

» nBand: The band number within the dataset.

» eDataType: The data type of pixels in this band.

» nBlockXSize: The width of one block in this band.

» nBlockYSize: The height of one block in this band.
The full set of possible GDALDataType values are declared in gdal.h (p. ??), and in-
clude GDT_Byte, GDT_UInt16, GDT_Int16, and GDT_Float32. The block size is used
to establish a natural or efficient block size to access the data with. For tiled datasets

this will be the size of a tile, while for most other datasets it will be one scanline, as in
this case.

Next we see the implementation of the code that actually reads the image data, IRead-
Block().

CPLErr JDEMRasterBand::IReadBlock (int nBlockXOff, int nBlockYOff,
void % pImage)

JDEMDataset *poGDS = (JDEMDataset =x) poDS;

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

11.4 Implementing the RasterBand 71

char *pszRecord;
int nRecordSize = nBlockXSizex5 + 9 + 2;
int i;

VSIFSeekL (poGDS->fp, 1011 + nRecordSizexnBlockYOff, SEEK_SET);

pszRecord = (char) CPLMalloc (nRecordSize);
VSIFReadL (pszRecord, 1, nRecordSize, poGDS->fp);

if (!'EQUALN((char %) poGDS->abyHeader,pszRecord, 6))
{
CPLFree(pszRecord);

CPLError (CE_Failure, CPLE_AppDefined,
"JDEM Scanline corrupt. Perhaps file was not transferred\n"
"in binary mode?");

return CE_Failure;

if (JDEMGetField(pszRecord + 6, 3) != nBlockYOff + 1)
CPLFree (pszRecord);

CPLError (CE_Failure, CPLE_AppDefined,
"JDEM scanline out of order, JDEM driver does not\n"
"currently support partial datasets.");

return CE_Failure;

}

for(1 = 0; i1 < nBlockXSize; i++)
((float %) pImage) [1] = JDEMGetField(pszRecord + 9 + 5 % i, 5) » 0.1;

return CE_None;

Key items to note are:

« It is typical to cast the GDALRasterBand::;poDS member to the derived type of
the owning dataset. If your RasterBand class will need privileged access to the
owning dataset object, ensure it is declared as a friend (omitted above for brevity).

« If an error occurs, report it with CPLError() (p.??), and return CE_Failure. -
Otherwise return CE_None.

» The plmage buffer should be filled with one block of data. The block is the size
declared in nBlockXSize and nBlockYSize for the raster band. The type of the
data within plmage should match the type declared in eDataType in the raster
band object.

« The nBlockXOff and nBlockYOff are block offsets, so with 128x128 tiled datasets
values of 1 and 1 would indicate the block going from (128,128) to (255,255)
should be loaded.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

72 GDAL Driver Implementation Tutorial

11.5 The Driver

While the JDEMDataset and JDEMRasterBand are now ready to use to read image
data, it still isn’'t clear how the GDAL system knows about the new driver. This is ac-
complished via the GDALDriverManager (p. ??). To register our format we implement
a registration function:

CPL_C_START
void CPL_DLL GDALRegister_JDEM(void);
CPL_C_END

void GDALRegister_JDEM()

{

GDALDriver =*poDriver;

if (! GDAL_CHECK_VERSION ("JDEM"))
return;
if (GDALGetDriverByName ("JDEM") == NULL)

{

poDriver = new GDALDriver();

poDriver—->SetDescription("JDEM");
poDriver—->SetMetadatalItem(GDAL_DMD_LONGNAME,
"Japanese DEM (.mem)");
poDriver—->SetMetadataltem(GDAL_DMD_HELPTOPIC,
"frmt_various.html#JDEM");
poDriver—->SetMetadataltem(GDAL_DMD_EXTENSION, "mem");

poDriver->pfnOpen = JDEMDataset: :0pen;

GetGDALDriverManager () —>RegisterDriver (poDriver);

Note the use of GDAL_CHECK_VERSION macro (starting with GDAL 1.5.0). This is
an optional macro for drivers inside GDAL tree that don’t depend on external libraries,
but that can be very usefull if you compile your driver as a plugin (that is to say, an out-
of-tree driver). As the GDAL C++ ABI may, and will, change between GDAL releases
(for example from GDAL 1.5.0 to 1.6.0), it may be necessary to recompile your driver
against the header files of the GDAL version with which you want to make it work. The
GDAL_CHECK_VERSION macro will check that the GDAL version with which the driver
was compiled and the version against which it is running are compatible.

The registration function will create an instance of a GDALDriver (p. ??) object when
first called, and register it with the GDALDriverManager (p. ??). The following fields
can be set in the driver before registering it with the GDALDriverManager().

» The description is the short name for the format. This is a unique name for this
format, often used to identity the driver in scripts and commandline programs.
Normally 3-5 characters in length, and matching the prefix of the format classes.
(mandatory)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

11.6 Adding Driver to GDAL Tree 73

+ GDAL_DMD_LONGNAME: A longer descriptive name for the file format, but still
no longer than 50-60 characters. (mandatory)

+ GDAL_DMD_HELPTOPIC: The name of a help topic to display for this driver, if
any. In this case JDEM format is contained within the various format web page
held in gdal/html. (optional)

+ GDAL_DMD_EXTENSION: The extension used for files of this type. If more than
one pick the primary extension, or none at all. (optional)

+ GDAL_DMD_MIMETYPE: The standard mime type for this file format, such as
"image/png". (optional)

+ GDAL_DMD_CREATIONOPTIONLIST: There is evolving work on mechanisms
to describe creation options. See the geotiff driver for an example of this. (op-
tional)

+ GDAL_DMD_CREATIONDATATYPES: A list of space separated data types sup-
ported by this create when creating new datasets. If a Create() method exists,
these will be will supported. If a CreateCopy() method exists, this will be a list of
types that can be losslessly exported but it may include weaker data types than
the type eventually written. For instance, a format with a CreateCopy() method,
and that always writes Float32 might also list Byte, Int16, and UInt16 since they
can losslessly translated to Float32. An example value might be "Byte Int16 U-
Int16". (required - if creation supported)

» pfnOpen: The function to call to try opening files of this format. (optional)

+ pfnCreate: The function to call to create new updatable datasets of this format.
(optional)

+ pfnCreateCopy: The function to call to create a new dataset of this format copied
from another source, but not necessary updatable. (optional)

» pfnDelete: The function to call to delete a dataset of this format. (optional)

» pfnUnloadDriver: A function called only when the driver is destroyed. Could be
used to cleanup data at the driver level. Rarely used. (optional)

11.6 Adding Driver to GDAL Tree

Note that the GDALRegister_JDEM() method must be called by the higher level program
in order to have access to the JDEM driver. Normal practice when writing new drivers
is to:

1. Add a driver directory under gdal/frmts, with the directory name the same as the
short name.

2. Add a GNUmakefile and makefile.vc in that directory modelled on those from
other similar directories (ie. the jdem directory).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

74 GDAL Driver Implementation Tutorial

3. Add the module with the dataset, and rasterband implementation. Generally this
is called <short_name>>dataset.cpp, with all the GDAL specific code in one file,
though that is not required.

4. Add the registration entry point declaration (ie. GDALRegister_ JDEM()) to
gdal/gcore/gdal_frmts.h.

5. Add a call to the registration function to frmts/gdalallregister.c, protected by an
appropriate #ifdef.

6. Add the format short name to the GDAL_FORMATS macro in GDALmake.opt.in
(and to GDALmake.opt).

7. Add a format specific item to the EXTRAFLAGS macro in frmts/makefile.vc.

Once this is all done, it should be possible to rebuild GDAL, and have the new format
available in all the utilities. The gdalinfo utility can be used to test that opening and
reporting on the format is working, and the gdal_translate utility can be used to test
image reading.

11.7 Adding Georeferencing

Now we will take the example a step forward, adding georeferencing support. We add
the following two virtual method overrides to JDEMDataset, taking care to exactly match
the signature of the method on the GDALRasterDataset base class.

CPLErr GetGeoTransform(double x padfTransform);
const char xGetProjectionRef ();

The implementation of GetGeoTransform() just copies the usual geotransform matrix
into the supplied buffer. Note that GetGeoTransform() may be called a lot, so it isn’t
generally wise to do a lot of computation in it. In many cases the Open() will collect the
geotransform, and this method will just copy it over. Also note that the geotransform
return is based on an anchor point at the top left corner of the top left pixel, not the
center of pixel approach used in some packages.

CPLErr JDEMDataset::GetGeoTransform(double * padfTransform)

{
double dfLLLat, dfLLLong, dfURLat, dfURLong;

dfLLLat = JDEMGetAngle((char x) abyHeader + 29
dfLLLong = JDEMGetAngle((char) abyHeader + 36
dfURLat = JDEMGetAngle ((char x) abyHeader + 43
dfURLong = JDEMGetAngle ((char =) abyHeader + 50

)i
).

’

padfTransform[0] = dfLLLong;

padfTransform[3] = dfURLat;

padfTransform[l] = (dfURLong - dfLLLong) / GetRasterXSize();
padfTransform[2] = 0.0;

padfTransform[4] = 0.0;

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

11.8 Overviews 75

padfTransform[5] = -1 % (dfURLat - dfLLLat) / GetRasterYSize();

return CE_None;

}

The GetProjectionRef() method returns a pointer to an internal string containing a co-
ordinate system definition in OGC WKT format. In this case the coordinate system is
fixed for all files of this format, but in more complex cases a definition may need to be
composed on the fly, in which case it may be helpful to use the OGRSpatialReference
class to help build the definition.

const char xJDEMDataset::GetProjectionRef ()

{
return("GEOGCS[\"Tokyo\",DATUM[\"Tokyo\", SPHEROID[\"Bessel 1841\","

"6377397.155,299.1528128, AUTHORITY [\"EPSG\",7004]], TONGS84[-148,"
"507,685,0,0,0,0],AUTHORITY [\"EPSG\", 6301]],PRIMEM[\"Greenwich\","
"0,AUTHORITY [\"EPSG\",8901]],UNIT[\"DMSH\",0.0174532925199433,"
"AUTHORITY[\"EPSG\",9108]],AXIS[\"Lat\",NORTH],AXIS[\"Long\", EAST],"
"AUTHORITY [\"EPSG\", 4301]1");

}

This completes explanation of the features of the JDEM driver. The full source for
jdemdataset . cpp can be reviewed as needed.

11.8 Overviews

GDAL allows file formats to make pre-built overviews available to applications via the G-
DALRasterBand::GetOverview() (p. ??) and related methods. However, implementing
this is pretty involved, and goes beyond the scope of this document for now. The GeoTl-
FF driver (gdal/frmts/gtiff/geotiff.cpp) and related source can be reviewed for an example
of a file format implementing overview reporting and creation support.

Formats can also report that they have arbitrary overviews, by overriding the Has-
ArbitraryOverviews() method on the GDALRasterBand (p. ??), returning TRUE. In this
case the raster band object is expected to override the RasterlO() method itself, to im-
plement efficient access to imagery with resampling. This is also involved, and there are
a lot of requirements for correct implementation of the RasterlO() method. An example
of this can be found in the OGDI and ECW formats.

However, by far the most common approach to implementing overviews is to use the
default support in GDAL for external overviews stored in TIFF files with the same name
as the dataset, but the extension .ovr appended. In order to enable reading and cre-
ation of this style of overviews it is necessary for the GDALDataset (p. ??) to initialize
the oOvManager object within itself. This is typically accomplished with a call like the
following near the end of the Open() method (after the PAM TryLoadXML()).

poDS->o0vManager.Initialize(poDS, poOpenInfo->pszFilename);

This will enable default implementations for reading and creating overviews for the for-
mat. It is advised that this be enabled for all simple file system based formats unless
there is a custom overview mechanism to be tied into.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

76 GDAL Driver Implementation Tutorial

11.9 File Creation

There are two approaches to file creation. The first method is called the CreateCopy()
method, and involves implementing a function that can write a file in the output format,
pulling all imagery and other information needed from a source GDALDataset (p. ??).
The second method, the dynamic creation method, involves implementing a Create
method to create the shell of the file, and then the application writes various information
by calls to set methods.

The benefits of the first method are that that all the information is available at the point
the output file is being created. This can be especially important when implementing file
formats using external libraries which require information like colormaps, and georefer-
encing information at the point the file is created. The other advantage of this method
is that the CreateCopy() method can read some kinds of information, such as min/max,
scaling, description and GCPs for which there are no equivalent set methods.

The benefits of the second method are that applications can create an empty new file,
and write results to it as they become available. A complete image of the desired data
does not have to be available in advance.

For very important formats both methods may be implemented, otherwise do whichever
is simpler, or provides the required capabilities.

11.9.1 CreateCopy

The GDALDriver::CreateCopy() (p. ??) method call is passed through directly, so that
method should be consulted for details of arguments. However, some things to keep in
mind are:

« If the bStrict flag is FALSE the driver should try to do something reasonable when
it cannot exactly represent the source dataset, transforming data types on the fly,
dropping georeferencing and so forth.

» Implementing progress reporting correctly is somewhat involved. The return re-
sult of the progress function needs always to be checked for cancellation, and
progress should be reported at reasonable intervals. The JPEGCreateCopy()
method demonstrates good handling of the progress function.

+ Special creation options should be documented in the online help. If the options
take the format "NAME=VALUE" the papszOptions list can be manipulated with
CPLFetchNameValue() as demonstrated in the handling of the QUALITY and P-
ROGRESSIVE flags for JPEGCreateCopy().

» The returned GDALDataset (p. ??) handle can be in ReadOnly or Update mode.

Return it in Update mode if practical, otherwise in ReadOnly mode is fine.

The full implementation of the CreateCopy function for JPEG (which is assigned to pfn-
CreateCopy in the GDALDriver (p. ??) object) is here.

static GDALDataset =
JPEGCreateCopy (const char x pszFilename, GDALDataset *poSrcDS,

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

11.9 File Creation 77

int bStrict, char ** papszOptions,
GDALProgressFunc pfnProgress, void % pProgressData)

int nBands = poSrcDS->GetRasterCount ();
int nXSize = poSrcDS->GetRasterXSize();
int n¥Size = poSrcDS->GetRaster¥YSize()
int nQuality = 75;

int DbProgressive = FALSE;

’

/e

// Some some rudimentary checks

J
if(nBands != 1 && nBands != 3)

{

CPLError (CE_Failure, CPLE_NotSupported,
"JPEG driver doesn’t support %d bands. Must be 1 (grey) "
"or 3 (RGB) bands.\n", nBands);

return NULL;

}

if (poSrcDS->GetRasterBand(l)->GetRasterDataType () != GDT_Byte && bStrict

{

CPLError (CE_Failure, CPLE_NotSupported,
"JPEG driver doesn’t support data type %s. "
"Only eight bit byte bands supported.\n",
GDALGetDataTypeName (
poSrcDS—>GetRasterBand (1) ->GetRasterDataType()));
return NULL;

}
B
// What options has the user selected?

B e
if (CSLFetchNameValue (papszOptions, "QUALITY") != NULL)

{

nQuality = atoi (CSLFetchNameValue (papszOptions, "QUALITY")) ;
if(nQuality < 10 || nQuality > 100)
{
CPLError (CE_Failure, CPLE_IllegalArg,
"QUALITY=%s is not a legal value in the range 10-100.",
CSLFetchNameValue (papszOptions, "QUALITY"));
return NULL;
}

}

if (CSLFetchNameValue (papszOptions, "PROGRESSIVE") != NULL)

{

bProgressive = TRUE;

}

I
// Create the dataset.
[

FILE *fpImage;
fpImage = VSIFOpen(pszFilename, "wb");
if(fpImage == NULL)
{
CPLError (CE_Failure, CPLE_OpenFailed,

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

78

GDAL Driver Implementation Tutorial

"Unable to create jpeg file %s.\n",
pszFilename);
return NULL;

struct Jpeg_compress_struct sCInfo;
struct jpeg_error_mgr sJErr;

sCInfo.err = jpeg_std_error(&sJErr);
jpeg_create_compress (&sCInfo);

jpeg_stdio_dest (&sCInfo, fpImage);

sCInfo.image_width = nXSize;
sCInfo.image_height = n¥YSize;
sCInfo.input_components = nBands;

if(nBands == 1)
{
sCInfo.in_color_space = JCS_GRAYSCALE;
}
else

{

sCInfo.in_color_space = JCS_RGB;

jpeg_set_defaults(&sCInfo);
jpeg_set_quality(&sCInfo, nQuality, TRUE);

if (bProgressive)
jpeg_simple_progression(&sCInfo);

jpeg_start_compress(&sCInfo, TRUE);

Loop over image, copying image data.

GByte *pabyScanline;

CPLErr eErr;
pabyScanline = (GByte x) CPLMalloc(nBands % nXSize
for(int iLine = 0; iLine < n¥Size; iLine++)
{
JSAMPLE *ppSamples;

for(int iBand = 0; iBand < nBands; iBand++)

{

GDALRasterBand * poBand = poSrcDS->GetRasterBand(iBand+l

eErr = poBand->RasterIO(GF_Read, 0, iLine,

)i

nXSize, 1,

pabyScanline + iBand, nXSize,
nBands, nBands * nXSize);

ppSamples = pabyScanline;
jpeg_write_scanlines(&sCInfo, &ppSamples, 1);

1,

)i

GDT_Byte,

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

11.9 File Creation 79

CPLFree(pabyScanline);

jpeg_finish_compress(&sCInfo);
jpeg_destroy_compress (&sCInfo);

VSIFClose(fpImage);

return (GDALDataset =) GDALOpen(pszFilename, GA_ReadOnly);

11.9.2 Dynamic Creation

In the case of dynamic creation, there is no source dataset. Instead the size, number
of bands, and pixel data type of the desired file is provided but other information (such
as georeferencing, and imagery data) would be supplied later via other method calls on
the resulting GDALDataset (p. ??).

The following sample implement PCI .aux labelled raw raster creation. It follows a com-
mon approach of creating a blank, but valid file using non-GDAL calls, and then calling
GDALOpen(,GA_Update) at the end to return a writable file handle. This avoids having
to duplicate the various setup actions in the Open() function.

GDALDataset *PAuxDataset::Create(const char x pszFilename,
int nXSize, int nY¥Size, int nBands,
GDALDataType eType,
char *+ // papszParmList)

char xpszAuxFilename;

f
// Verify input options.
/] T
if(eType != GDT_Byte && eType != GDT_Float32 && eType != GDT_UIntlé
&& eType != GDT_Intlé6
{
CPLError (CE_Failure, CPLE_AppDefined,
"Attempt to create PCI .Aux labelled dataset with an illegal\n"
"data type (%s).\n",
GDALGetDataTypeName (eType));
return NULL;
}
f
// Try to create the file.
/] T

FILE *fp;
fp = VSIFOpen(pszFilename, "w");

if(fp == NULL)
{
CPLError (CE_Failure, CPLE_OpenFailed,
"Attempt to create file ‘%s’ failed.\n",
pszFilename);
return NULL;

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

80 GDAL Driver Implementation Tutorial

/] S
// Just write out a couple of bytes to establish the binary
// file, and then close it.
/] S
VSIFWrite ((void =) "\O\O", 2, 1, fp);
VSIFClose(fp);
/] S
// Create the aux filename.
/] T
pszAuxFilename = (char x) CPLMalloc(strlen(pszFilename)+5);
strcpy (pszAuxFilename, pszFilename);;
for(int i = strlen(pszAuxFilename)-1; i > 0; i--)
{
if(pszAuxFilename[i] == ’.")
{
pszAuxFilename[i] = "\0’;
break;
}
}
strcat (pszAuxFilename, ".aux");
/) T
// Open the file.
/] e
fp = VSIFOpen(pszAuxFilename, "wt");
if (fp == NULL)
{
CPLError (CE_Failure, CPLE_OpenFailed,
"Attempt to create file ‘%s’ failed.\n",
pszAuxFilename);
return NULL;
}
[T
// We need to write out the original filename but without any
// path components in the AuxilaryTarget line. Do so now.
/] T
int iStart;
iStart = strlen(pszFilename)-1;
while(iStart > 0 && pszFilename[iStart-1] != '/’
&& pszFilename[iStart-1]1 != "\\’)
iStart—-—;
VSIFPrintf (fp, "AuxilaryTarget: %s\n", pszFilename + iStart);
/] e
// Write out the raw definition for the dataset as a whole.
/] S
VSIFPrintf(fp, "RawDefinition: %d %d %d\n",
nXSize, n¥Size, nBands);
/] T
// Write out a definition for each band. We always write band
// sequential files for now as these are pretty efficiently
// handled by GDAL.
[T

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

11.10 RawDataset/RawRasterBand Helper Classes 81

for(int iBand = 0; iBand < nBands; iBand++)
{

const char x pszTypeName;

int nPixelOffset;

int nLineOffset;

nPixelOffset = GDALGetDataTypeSize (eType) /8;
nLineOffset = nXSize * nPixelOffset;

if(eType == GDT_Float32)
pszTypeName = "32R";

else if(eType == GDT_Intl6)
pszTypeName = "16S";

else if(eType == GDT_UIntl6)
pszTypeName = "16U";

else
pszTypeName = "8U";

VSIFPrintf(fp, "ChanDefinition-%d: %s %d %d %d %s\n",
iBand+1l, pszTypeName,
nImgOffset, nPixelOffset, nLineOffset,
#ifdef CPL_LSB

"Swapped"
#else
"Unswapped"
#endif
)i
nImgOffset += n¥Size % nLineOffset;
}
/] s
// Cleanup
S

VSIFClose(fp);

return (GDALDataset) GDALOpen(pszFilename, GA_Update);

File formats supporting dynamic creation, or even just update-in-place access also need
to implement an IWriteBlock() method on the raster band class. It has semantics similar
to IReadBlock(). As well, for various esoteric reasons, it is critical that a FlushCache()
method be implemented in the raster band destructor. This is to ensure that any write
cache blocks for the band be flushed out before the destructor is called.

11.10 RawDataset/RawRasterBand Helper Classes

Many file formats have the actual imagery data stored in a regular, binary, scanline ori-
ented format. Rather than re-implement the access semantics for this for each formats,
there are provided RawDataset and RawRasterBand classes declared in gdal/frmts/raw
that can be utilized to implement efficient and convenient access.

In these cases the format specific band class may not be required, or if required it can be
derived from RawRasterBand. The dataset class should be derived from RawDataset.

The Open() method for the dataset then instantiates raster bands passing all the layout

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

82

GDAL Driver Implementation Tutorial

information to the constructor. For instance, the PNM driver uses the following calls to
create it’s raster bands.

if (poOpenInfo->pabyHeader[1l] == '5’)

{

}

poDS->SetBand (
1, new RawRasterBand(poDS, 1, poDS->fpImage,
iIn, 1, nWidth, GDT_Byte, TRUE));

else

{

poDS—->SetBand (
1, new RawRasterBand(poDS, 1, poDS->fpImage,
iIn, 3, nWidth3, GDT_Byte, TRUE));
poDS—>SetBand (
2, new RawRasterBand(poDS, 2, poDS->fpImage,
iIn+1l, 3, nWidthx3, GDT_Byte, TRUE));
poDS—->SetBand (
3, new RawRasterBand(poDS, 3, poDS->fplImage,
iIn+2, 3, nWidthx3, GDT_Byte, TRUE));

The RawRasterBand takes the following arguments.

poDS: The GDALDataset (p. ??) this band will be a child of. This dataset must
be of a class derived from RawRasterDataset.

nBand: The band it is on that dataset, 1 based.
fpRaw: The FILE x handle to the file containing the raster data.
nimgOffset: The byte offset to the first pixel of raster data for the first scanline.

nPixelOffset: The byte offset from the start of one pixel to the start of the next
within the scanline.

nLineOffset: The byte offset from the start of one scanline to the start of the next.
eDataType: The GDALDataType code for the type of the data on disk.

bNativeOrder: FALSE if the data is not in the same endianness as the machine
GDAL is running on. The data will be automatically byte swapped.

Simple file formats utilizing the Raw services are normally placed all within one file in the
gdal/frmts/raw directory. There are numerous examples there of format implementation.

11.11

There

Metadata, and Other Exotic Extensions

are various other items in the GDAL data model, for which virtual methods exist

on the GDALDataset (p. ??) and GDALRasterBand (p. ??). They include:

Metadata: Name/value text values about a dataset or band. The GDALMajor-
Object (p.??) (base class for GDALRasterBand (p.??) and GDALDataset

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

11.11 Metadata, and Other Exotic Extensions 83

(p. ??)) has built-in support for holding metadata, so for read access it only needs
to be set with calls to SetMetadataltem() during the Open(). The SAR_CEOS
(frmts/ceos2/sar_ceosdataset.cpp) and GeoTIFF drivers are examples of drivers
implementing readable metadata.

ColorTables: GDT_Byte raster bands can have color tables associated with
them. The frmts/png/pngdataset.cpp driver contains an example of a format that
supports colortables.

Colorinterpretation: The PNG driver contains an example of a driver that returns
an indication of whether a band should be treated as a Red, Green, Blue, Alpha
or Greyscale band.

GCPs: GDALDatasets can have a set of ground control points associ-
ated with them (as opposed to an explicit affine transform returned by Get-
Geotransform()) relating the raster to georeferenced coordinates. The MFF2
(gdal/frmts/raw/hkvdataset.cpp) format is a simple example of a format support-
ing GCPs.

NoDataValue: Bands with known "nodata" values can implement the GetNo-
DataValue() method. See the PAux (frmts/raw/pauxdataset.cpp) for an example
of this.

Category Names: Classified images with names for each class can return them
using the GetCategoryNames() method though no formats currently implement
this.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

84

GDAL Driver Implementation Tutorial

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 12

gdal_polygonize.py

produces a polygon feature layer from a raster

12.1 SYNOPSIS

gdal_polygonize.py [-0 name=value] [-nomask] [-mask filename] raster_file [-b band]
[-g] [-f ogr_format] out_file [layer] [fieldname]

12.2 DESCRIPTION

This utility creates vector polygons for all connected regions of pixels in the raster shar-
ing a common pixel value. Each polygon is created with an attribute indicating the pixel
value of that polygon. A raster mask may also be provided to determine which pixels
are eligible for processing.

The utility will create the output vector datasource if it does not already exist, defaulting
to GML format.

The utility is based on the GDALPolygonize() (p.??) function which has additional
details on the algorithm.

-nomask: Do not use the default validity mask for the input band (such as nodata, or
alpha masks).

-mask filename: Use the first band of the specified file as a validity mask (zero is
invalid, non-zero is valid).

raster_file The source raster file from which polygons are derived.
-b band: The band on raster _file to build the polygons from.
-f ogr_format Select the output format of the file to be created. Default is GML.

out_file The destination vector file to which the polygons will be written.

86 gdal_polygonize.py

layer The name of the layer created to hold the polygon features.
fieldname The name of the field to create (defaults to "DN").

-0 name=value: Specify a special argument to the algorithm. Currently none are sup-
ported.

-q: The script runs in quiet mode. The progress monitor is supressed and routine
messages are not displayed.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 13
gdal_proximity.py

produces a raster proximity map

13.1 SYNOPSIS

gdal_proximity.py srcfile dstfile [-srcband n] [-dstband n]
[-of format] [-co name=value]x*
[-ot Byte/Intl6/Int32/Float32/etc]
[-values n,n,n] [-distunits PIXEL/GEO]
[-maxdist n] [-nodata n] [-fixed-buf-val n]

13.2 DESCRIPTION

The gdal_proximity.py script generates a raster proximity map indicating the distance
from the center of each pixel to the center of the nearest pixel identified as a target
pixel. Target pixels are those in the source raster for which the raster pixel value is in
the set of target pixel values.

srcfile The source raster file used to identify target pixels.

dstfile The destination raster file to which the proximity map will be written. It may be
a pre-existing file of the same size as srcfile. If it does not exist it will be created.

-srcband n Identifies the band in the source file to use (default is 1).
-dstband n I|dentifies the band in the destination file to use (default is 1).

-of format: Select the output format. The default is GeoTIFF (GTiff). Use the short
format name.

-co "NAME=VALUE": passes a creation option to the output format driver. Multiple
-co options may be listed. See format specific documentation for legal creation
options for each format.

88 gdal_proximity.py

-ot datatype: Force the output image bands to have a specific type. Use type names
(ie. Byte, Int186,...)

-values n,n,n: A list of target pixel values in the source image to be considered target
pixels. If not specified, all non-zero pixels will be considered target pixels.

-distunits PIXEL/GEO: Indicate whether distances generated should be in pixel or
georeferenced coordinates (default PIXEL).

-maxdist n: The maximum distance to be generated. All pixels beyond this distance
will be assigned either the nodata value, or 65535. Distance is interpreted in
pixels unless -distunits GEO is specified.

-nodata n: Specify a nodata value to use for the destination proximity raster.

-fixed-buf-val n: Specify a value to be applied to all pixels that are within the -maxdist
of target pixels (including the target pixels) instead of a distance value.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 14

GDAL API Tutorial

14.1 Opening the File

Before opening a GDAL supported raster datastore it is necessary to register drivers.
There is a driver for each supported format. Normally this is accomplished with the
GDALAIIRegister() (p. ??) function which attempts to register all known drivers, includ-
ing those auto-loaded from .so files using GDALDriverManager::AutoLoadDrivers()
(p. ??). If for some applications it is necessary to limit the set of drivers it may be helpful
to review the code from gdalallregister.cpp.

Once the drivers are registered, the application should call the free standing GDAL-
Open() (p.??) function to open a dataset, passing the name of the dataset and the
access desired (GA_ReadOnly or GA_Update).

In C++:

#include "gdal_priv.h"
int main ()
{
GDALDataset *poDataset;
GDALAllRegister();
poDataset = (GDALDataset =) GDALOpen (pszFilename, GA_ReadOnly);
if (poDataset == NULL)
{

}

In C:

#include "gdal.h"
int main ()
{
GDALDatasetH hDataset;

GDALAllRegister();

920 GDAL API Tutorial
hDataset = GDALOpen(pszFilename, GA_ReadOnly);
if (hDataset == NULL)
{
}
In Python:

import gdal

from gdalconst import =

dataset = gdal.Open (

if dataset is None:

filename, GA_ReadOnly)

Note that if GDALOpen() (p.??) returns NULL it means the open failed, and that an
error messages will already have been emitted via CPLError() (p. ??). If you want to
control how errors are reported to the user review the CPLError() (p. ??) documenta-
tion. Generally speaking all of GDAL uses CPLError() (p. ??) for error reporting. Also,
note that pszFilename need not actually be the name of a physical file (though it usu-
ally is). It's interpretation is driver dependent, and it might be an URL, a filename with

additional parameters added at the end controlling the open or almost anything. Please

try not to limit GDAL file selection dialogs to only selecting physical files.

14.2 Getting Dataset Information

As described in the GDAL Data Model, a GDALDataset (p.??) contains a list of
raster bands, all pertaining to the same area, and having the same resolution. It also has
metadata, a coordinate system, a georeferencing transform, size of raster and various

other information.

adfGeoTransform
adfGeoTransform
adfGeoTransform
adfGeoTransform
adfGeoTransform
adfGeoTransform

If we wanted to print some general information about the dataset we might do the

following:

In C++:

/ *
/
/ *
/
/%
/ *

top left x x/

w-e pixel resolution =/

rotation, 0 if image is "north up" x/
top left y x/

rotation, 0 if image is "north up" x/
n-s pixel resolution */

double adfGeoTransform[6];

printf("Driver: %s/%s\n",
poDataset—->GetDriver () ->GetDescription (),
poDataset—->GetDriver () ->GetMetadataItem(GDAL_DMD_LONGNAME)

printf("Size is %dx%dx%d\n",
poDataset->GetRasterXSize (), poDataset->GetRasterYSize(),
poDataset—->GetRasterCount ());

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

)i

14.3 Fetching a Raster Band 91

if (poDataset->GetProjectionRef () != NULL)
printf ("Projection is ‘%s’\n", poDataset->GetProjectionRef ());

if (poDataset->GetGeoTransform(adfGeoTransform) == CE_None)
{
printf("Origin = (%.6f,%.6f)\n",

’
adfGeoTransform[0], adfGeoTransform[3]);

printf("Pixel Size = (%.6f,%.6f)\n",
adfGeoTransform[1l], adfGeoTransform[5]);

In C:

GDALDriverH hDriver;
double adfGeoTransform[6];

hDriver = GDALGetDatasetDriver (hDataset);

printf("Driver: %s/%s\n",
GDALGetDriverShortName (hDriver),
GDALGetDriverLongName (hDriver));

printf("Size is %dx%dx%d\n",
GDALGetRasterXSize (hDataset),
GDALGetRasterYSize (hDataset),
GDALGetRasterCount (hDataset));

if (GDALGetProjectionRef (hDataset) != NULL)
printf("Projection is ‘%s’\n", GDALGetProjectionRef (hDataset)

if (GDALGetGeoTransform(hDataset, adfGeoTransform) == CE_None)
{
printf("Origin = (%.6f,%.6f)\n",

adfGeoTransform[0], adfGeoTransform[3]);

printf("Pixel Size = (
adfGeoTransform

l

6f,%.6f)\n",
1]

, adfGeoTransform[5]);

In Python:

print ’Driver: ’, dataset.GetDriver () .ShortName,’/’, \

dataset.GetDriver () .LongName

print ’Size is ’,dataset.RasterXSize,’x’,dataset.RasterYSize, \
'x'" ,dataset.RasterCount

print ’Projection is ’,dataset.GetProjection()

geotransform = dataset.GetGeoTransform()

if not geotransform is None:
print ’Origin = (’,geotransform([0], ’,’,geotransform([3],")’
print ’Pixel Size = (’,geotransform[l], ’,’,geotransform([5],’)’

14.3 Fetching a Raster Band

At this time access to raster data via GDAL is done one band at a time. Also, there is
metadata, blocksizes, color tables, and various other information available on a band by
band basis. The following codes fetches a GDALRasterBand (p. ??) object from the

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

92

GDAL API Tutorial

dataset (numbered 1 through GetRasterCount()) and displays a little information about

it.
In C++:

InC:

GDALRasterBand xpoBand;

int nBlockXSize, nBlockYSize;
int bGotMin, bGotMax;
double adfMinMax[2];

poBand = poDataset->GetRasterBand(1);
poBand->GetBlockSize (&nBlockXSize, &nBlockYSize);
printf ("Block=%dx%d Type=%s, ColorInterp=%s\n",
nBlockXSize, nBlockYSize,
GDALGetDataTypeName (poBand->GetRasterDataType()),
GDALGetColorInterpretationName (

poBand->GetColorInterpretation()));
adfMinMax [0] = poBand->GetMinimum(&bGotMin);
adfMinMax[1] = poBand->GetMaximum(&bGotMax);
if(! (bGotMin && bGotMax))

GDALComputeRasterMinMax ((GDALRasterBandH) poBand, TRUE, adfMinMax) ;

printf("Min=%.3fd, Max=%.3f\n", adfMinMax[0], adfMinMax[1]);

if (poBand->GetOverviewCount () > 0)
printf ("Band has %d overviews.\n", poBand->GetOverviewCount ()

if (poBand->GetColorTable() != NULL)
printf ("Band has a color table with %d entries.\n",
poBand->GetColorTable () ->GetColorEntryCount ());

GDALRasterBandH hBand;

int nBlockXSize, nBlockYSize;
int bGotMin, bGotMax;
double adfMinMax[2];

hBand = GDALGetRasterBand(hDataset, 1);
GDALGetBlockSize (hBand, &nBlockXSize, &nBlockYSize);
printf ("Block=%dx%d Type=%s, ColorInterp=%s\n",
nBlockXSize, nBlockYSize,
GDALGetDataTypeName (GDALGetRasterDataType (hBand)),
GDALGetColorInterpretationName (
GDALGetRasterColorInterpretation (hBand)));

adfMinMax [0] GDALGetRasterMinimum(hBand, &bGotMin);
adfMinMax[1l] = GDALGetRasterMaximum(hBand, &bGotMax);
if(! (bGotMin && bGotMax))

GDALComputeRasterMinMax (hBand, TRUE, adfMinMax);

printf ("Min=%.3fd, Max=%.3f\n", adfMinMax[0], adfMinMax[1]);

if (GDALGetOverviewCount (hBand) > 0)

printf ("Band has %d overviews.\n", GDALGetOverviewCount (hBand));

if (GDALGetRasterColorTable(hBand) != NULL)
printf ("Band has a color table with %d entries.\n",
GDALGetColorEntryCount (
GDALGetRasterColorTable(hBand)));

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

14.4 Reading Raster Data

93

In Python (note several bindings are missing):

band = dataset.GetRasterBand(1l)

print ’Band Type=',gdal.GetDataTypeName (band.DataType)

min = band.GetMinimum ()

max = band.GetMaximum ()

if min is None or max is None:
(min, max) =

print 'Min=%.3f, Max=%.3f’ % (min,max)

band.ComputeRasterMinMax (1)

if band.GetOverviewCount () > O:
print ’Band has ’, band.GetOverviewCount (), ' overviews.’
if not band.GetRasterColorTable() is None:

print ’Band has a color table with ',

\

band.GetRasterColorTable () .GetCount (),

14.4 Reading Raster Data

’

entries.’

There are a few ways to read raster data, but the most common is via the GDALRaster-
Band::RasterlO() (p. ??) method. This method will automatically take care of data type
conversion, up/down sampling and windowing. The following code will read the first
scanline of data into a similarly sized buffer, converting it to floating point as part of the

operation.
In C++:

float *pafScanline;
int nXSize = poBand->GetXSize();

pafScanline = (float *) CPLMalloc(sizeof (float) *nXSize);

poBand->RasterIO(GF_Read, 0, 0, nXSize,

pafScanline, nXSize, 1,

1,

GDT_Float32,

1’

0, 0);
In C:
float *pafScanline;
int nXSize = GDALGetRasterBandXSize(hBand);
pafScanline = (float x) CPLMalloc (sizeof (float)«nXSize);
GDALRasterIO(hBand, GF_Read, 0, 0, nXSize,
pafScanline, nXSize, 1, GDT_Float32,
0, 0);
In Python:

scanline = band.ReadRaster(0, 0, band.XSize, 1, \

band.XSize,

Note that the returned scanline is of type string, and contains xsizex4 bytes

1,

GDT_Float32)

of raw

binary floating point data. This can be converted to Python values using the struct

module from the standard library:

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

94 GDAL API Tutorial

import struct

tuple_of_floats = struct.unpack(’f’ x b2.XSize, scanline)

The RasterlO call takes the following arguments.

CPLErr GDALRasterBand::RasterIO(GDALRWFlag eRWFlag,
int nXOff, int nYOff, int nXSize, int nYSize,
void % pData, int nBufXSize, int nBufYSize,
GDALDataType eBufType,
int nPixelSpace,
int nLineSpace)

Note that the same RasterlO() call is used to read, or write based on the setting of e-
RWFlag (either GF_Read or GF_Write). The nXOff, nYOff, nXSize, nYSize argument
describe the window of raster data on disk to read (or write). It doesn’t have to fall on
tile boundaries though access may be more efficient if it does.

The pData is the memory buffer the data is read into, or written from. It's real type
must be whatever is passed as eBufType, such as GDT_Float32, or GDT_Byte. The
RasterlO() call will take care of converting between the buffer’'s data type and the data
type of the band. Note that when converting floating point data to integer RasterlO()
rounds down, and when converting source values outside the legal range of the output
the nearest legal value is used. This implies, for instance, that 16bit data read into a
GDT_Byte buffer will map all values greater than 255 to 255, the data is not scaled!

The nBufXSize and nBufYSize values describe the size of the buffer. When loading
data at full resolution this would be the same as the window size. However, to load a
reduced resolution overview this could be set to smaller than the window on disk. In this
case the RasterlO() will utilize overviews to do the 10 more efficiently if the overviews
are suitable.

The nPixelSpace, and nLineSpace are normally zero indicating that default values
should be used. However, they can be used to control access to the memory data
buffer, allowing reading into a buffer containing other pixel interleaved data for instance.

14.5 Closing the Dataset

Please keep in mind that GDALRasterBand (p. ??) objects are owned by their dataset,
and they should never be destroyed with the C++ delete operator. GDALDataset’s can
be closed by calling GDALClose() (p.??) (it is NOT recommended to use the delete
operator on a GDALDataset (p. ??) for Windows users because of known issues when
allocating and freeing memory across module boundaries. See the relevant topic on
the FAQ). Calling GDALCIlose will result in proper cleanup, and flushing of any pending
writes. Forgetting to call GDALClose on a dataset opened in update mode in a popular
format like GTiff will likely result in being unable to open it afterwards.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

14.6 Techniques for Creating Files 95

14.6 Techniques for Creating Files

New files in GDAL supported formats may be created if the format driver supports cre-
ation. There are two general techniques for creating files, using CreateCopy() and -
Create(). The CreateCopy method involves calling the CreateCopy() method on the for-
mat driver, and passing in a source dataset that should be copied. The Create method
involves calling the Create() method on the driver, and then explicitly writing all the
metadata, and raster data with separate calls. All drivers that support creating new files
support the CreateCopy() method, but only a few support the Create() method.

To determine if a particular format supports Create or CreateCopy it is possible to check
the DCAP_CREATE and DCAP_CREATECOPY metadata on the format driver object.
Ensure that GDALAIIRegister() (p. ??) has been called before calling GetDriverBy-
Name(). In this example we fetch a driver, and determine whether it supports Create()
and/or CreateCopy().

In C++:

#include "cpl_string.h"

const char xpszFormat = "GTiff";
GDALDriver xpoDriver;
char xxpapszMetadata;

poDriver = GetGDALDriverManager () —->GetDriverByName (pszFormat) ;

if (poDriver == NULL)
exit(1);

papszMetadata = poDriver->GetMetadata () ;

if (CSLFetchBoolean(papszMetadata, GDAL_DCAP_CREATE, FALSE))
printf ("Driver %s supports Create () method.\n", pszFormat);

if (CSLFetchBoolean(papszMetadata, GDAL_DCAP_CREATECOPY, FALSE))
printf("Driver %s supports CreateCopy () method.\n", pszFormat);

In C:

#include "cpl_string.h"

const char xpszFormat = "GTiff";
GDALDriverH hDriver = GDALGetDriverByName (pszFormat);
char xxpapszMetadata;

if (hDriver == NULL)
exit (1);

papszMetadata = GDALGetMetadata(hDriver, NULL);

if (CSLFetchBoolean (papszMetadata, GDAL_DCAP_CREATE, FALSE))
printf ("Driver %s supports Create() method.\n", pszFormat);

if (CSLFetchBoolean(papszMetadata, GDAL_DCAP_CREATECOPY, FALSE))
printf("Driver %s supports CreateCopy () method.\n", pszFormat);

In Python:

format = "GTiff"
driver = gdal.GetDriverByName (format)
metadata = driver.GetMetadata (

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

96

GDAL API Tutorial

if metadata.has_key (gdal.DCAP_CREATE) \
and metadata[gdal.DCAP_CREATE] == 'YES’:
print ’Driver %s supports Create() method.’ % format
if metadata.has_key (gdal.DCAP_CREATECOPY) \
and metadata[gdal.DCAP_CREATECOPY] == ’'YES':
print ’Driver %s supports CreateCopy () method.’ % format

Note that a number of drivers are read-only and won’t support Create() or CreateCopy().

14.7 Using CreateCopy()

The GDALDriver::CreateCopy() (p. ??) method can be used fairly simply as most in-
formation is collected from the source dataset. However, it includes options for passing
format specific creation options, and for reporting progress to the user as a long dataset
copy takes place. A simple copy from the a file named pszSrcFilename, to a new file
named pszDstFilename using default options on a format whose driver was previously
fetched might look like this:

In C++:

GDALDataset #*poSrcDS =
(GDALDataset) GDALOpen(pszSrcFilename, GA_ReadOnly);
GDALDataset xpoDstDS;

poDstDS = poDriver->CreateCopy(pszDstFilename, poSrcDS, FALSE,
NULL, NULL, NULL);

/* Once we’re done, close properly the dataset =/
if(poDstDS != NULL)

GDALClose ((GDALDatasetH) poDstDS);
GDALClose ((GDALDatasetH) poSrcDS);

In C:
GDALDatasetH hSrcDS = GDALOpen(pszSrcFilename, GA_ReadOnly);
GDALDatasetH hDstDS;
hDstDS = GDALCreateCopy(hDriver, pszDstFilename, hSrcDS, FALSE,
NULL, NULL, NULL);
/* Once we’re done, close properly the dataset =/
if (hDstDS != NULL)
GDALClose(hDstDS);
GDALClose (hSrcDS) ;
In Python:
src_ds = gdal.Open(src_filename)
dst_ds = driver.CreateCopy(dst_filename, src_ds, 0)

Once we’re done, close properly the dataset
dst_ds = None
src_ds = None

Note that the CreateCopy() method returns a writeable dataset, and that it must be
closed properly to complete writing and flushing the dataset to disk. In the Python case

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

14.8 Using Create() 97

this occurs automatically when "dst_ds" goes out of scope. The FALSE (or 0) value
used for the bStrict option just after the destination filename in the CreateCopy() call
indicates that the CreateCopy() call should proceed without a fatal error even if the
destination dataset cannot be created to exactly match the input dataset. This might be
because the output format does not support the pixel datatype of the input dataset, or
because the destination cannot support writing georeferencing for instance.

A more complex case might involve passing creation options, and using a predefined
progress monitor like this:

In C++:
#include "cpl_string.h"
char x*papszOptions = NULL;

papszOptions = CSLSetNameValue (papszOptions, "TILED", "YES");

papszOptions = CSLSetNameValue (papszOptions, "COMPRESS", "PACKBITS");

poDstDS = poDriver->CreateCopy(pszDstFilename, poSrcDS, FALSE,
papszOptions, GDALTermProgress, NULL);

/* Once we’'re done, close properly the dataset =/
if (poDstDS != NULL)

GDALClose ((GDALDatasetH) poDstDS);
CSLDestroy (papszOptions);

In C:
#include "cpl_string.h"
char x*papszOptions = NULL;

papszOptions = CSLSetNameValue (papszOptions, "TILED", "YES");

papszOptions = CSLSetNameValue (papszOptions, "COMPRESS", "PACKBITS");

hDstDS = GDALCreateCopy(hDriver, pszDstFilename, hSrcDS, FALSE,
papszOptions, GDALTermProgres, NULL);

/* Once we’re done, close properly the dataset =/
if (hDstDS != NULL)

GDALClose (hDstDS);
CSLDestroy (papszOptions);

In Python:
src_ds = gdal.Open(src_filename)
dst_ds = driver.CreateCopy(dst_filename, src_ds, O,

["TILED=YES’, ’"COMPRESS=PACKBITS’])

Once we’re done, close properly the dataset
dst_ds = None
src_ds = None

14.8 Using Create()

For situations in which you are not just exporting an existing file to a new file, it is gen-
erally necessary to use the GDALDriver::Create() (p. ??) method (though some inter-
esting options are possible through use of virtual files or in-memory files). The Create()

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

98 GDAL API Tutorial

method takes an options list much like CreateCopy(), but the image size, number of
bands and band type must be provided explicitly.

In C++:

GDALDataset xpoDstDS;
char xxpapszOptions = NULL;

poDstDS = poDriver->Create(pszDstFilename, 512, 512, 1, GDT_Byte,
papszOptions);

In C:

GDALDatasetH hDstDS;
char xxpapszOptions = NULL;

hDstDS = GDALCreate(hDriver, pszDstFilename, 512, 512, 1, GDT_Byte,
papszOptions);

In Python:

dst_ds = driver.Create(dst_filename, 512, 512, 1, gdal.GDT_Byte)

Once the dataset is successfully created, all appropriate metadata and raster data must
be written to the file. What this is will vary according to usage, but a simple case with a
projection, geotransform and raster data is covered here.

In C++:

double adfGeoTransform[6] = { 444720, 30, 0, 3751320, 0, -30 };
OGRSpatialReference oSRS;

char xpszSRS_WKT = NULL;

GDALRasterBand *poBand;

GByte abyRaster[512%512];

poDstDS—->SetGeoTransform(adfGeoTransform);

OoSRS.SetUTM(11, TRUE);
OSRS.SetWellKnownGeogCS ("NAD27");
oSRS.exportToWkt (&pszSRS_WKT) ;
poDstDS->SetProjection(pszSRS_WKT);
CPLFree(pszSRS_WKT);

poBand = poDstDS->GetRasterBand (1) ;
poBand->RasterIO(GF_Write, 0, 0, 512, 512,
abyRaster, 512, 512, GDT_Byte, 0, 0);

/* Once we’re done, close properly the dataset =/
GDALClose ((GDALDatasetH) poDstDS);

In C:

double adfGeoTransform[6] = { 444720, 30, 0, 3751320, 0, =30 };
OGRSpatialReferenceH hSRS;

char xpszSRS_WKT = NULL;

GDALRasterBandH hBand;

GByte abyRaster[512%512];

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

14.8 Using Create()

99

GDALSetGeoTransform(hDstDS, adfGeoTransform);

hSRS = OSRNewSpatialReference(NULL);
OSRSetUTM(hSRS, 11, TRUE);
OSRSetWellKnownGeogCS (hSRS, "NAD27");
OSRExportToWkt (hSRS, &pszSRS_WKT);
OSRDestroySpatialReference(hSRS);

GDALSetProjection(hDstDS, pszSRS_WKT);
CPLFree(pszSRS_WKT);

hBand = GDALGetRasterBand(hDstDS, 1);
GDALRasterIO(hBand, GF_Write, 0, 0, 512, 512,
abyRaster, 512, 512, GDT_Byte, 0, 0);

/* Once we’re done, close properly the dataset «/
GDALClose(hDstDS);

In Python:

import osr
import numpy

dst_ds.SetGeoTransform([444720, 30, 0, 3751320, O,

srs = osr.SpatialReference ()

srs.SetUTM(11, 1)
srs.SetWellKnownGeogCS ('NAD27’)
dst_ds.SetProjection(srs.ExportToWkt ())

raster = numpy.zeros((512, 512), dtype=numpy.uint8
dst_ds.GetRasterBand(1l) .WriteArray (raster)

Once we’re done, close properly the dataset
dst_ds = None

)

-30

]

)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

100 GDAL API Tutorial

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 15

GDAL Grid Tutorial

15.1 Introduction to Gridding

Gridding is a process of creating a regular grid (or call it a raster image) from the scat-
tered data. Typically you have a set of arbitrary scattered over the region of survey
measurements and you would like to convert them into the regular grid for further pro-
cessing and combining with other grids.

Figure 15.1: Scattered data gridding

This problem can be solved using data interpolation or approximation algorithms. -
But you are not limited by interpolation here. Sometimes you don’t need to interpolate
your data but rather compute some statistics or data metrics over the region. Statistics
is valuable itself or could be used for better choosing the interpolation algorithm and
parameters.

That is what GDAL Grid API is about. It helps you to interpolate your data (see -
Interpolation of the Scattered Data (p.??)) or compute data metrics (see Data -
Metrics Computation (p. ?2?)).

There are two ways of using this interface. Programmatically it is available through the
GDALGridCreate (p.??) C function; for end users there is a gdal_grid (p. ??) utility.
The rest of this document discusses details on algorithms and their parameters imple-
mented in GDAL Grid API.

15.2 Interpolation of the Scattered Data

102 GDAL Grid Tutorial

15.2.1 Inverse Distance to a Power

The Inverse Distance to a Power gridding method is a weighted average interpolator.
You should supply the input arrays with the scattered data values including coordinates
of every data point and output grid geometry. The function will compute interpolated
value for the given position in output grid.

For every grid node the resulting value Z will be calculated using formula:

Y5
. i=1 r[l’
n 1
i=1 7P

1

where

» Z; is a known value at point i,
* ris a distance from the grid node to point i,
+ pis a weighting power,

+ nis a number of points in search (p. ??) ellipse".

In this method the weighting factor w is

w=—
rP

See GDALGridInverseDistanceToAPowerOptions (p. ??) for the list of GDALGrid-
Create (p. ??) parameters and invdist (p. ??) for the list of gdal_grid (p. ??) options.

15.2.2 Moving Average

The Moving Average is a simple data averaging algorithm. It uses a moving window of
elliptic form to search values and averages all data points within the window. Search
ellipse (p. ??) can be rotated by specified angle, the center of ellipse located at the grid
node. Also the minimum number of data points to average can be set, if there are not
enough points in window, the grid node considered empty and will be filled with specified
NODATA value.

Mathematically it can be expressed with the formula:

7— YiiZi
n

where
» Z is aresulting value at the grid node,
» Z; is a known value at point i,

 nis a number of points in search search ellipse (p. ??).

See GDALGridMovingAverageOptions (p. ??) for the list of GDALGridCreate (p. ??)
parameters and average (p. ??) for the list of gdal_grid (p. ??) options.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

15.3 Data Metrics Computation 103

15.2.3 Nearest Neighbor

The Nearest Neighbor method doesn’t perform any interpolation or smoothing, it just
takes the value of nearest point found in grid node search ellipse and returns it as a
result. If there are no points found, the specified NODATA value will be returned.

See GDALGridNearestNeighborOptions (p.??) for the list of GDALGridCreate
(p. ??) parameters and nearest (p. ??) for the list of gdal_grid (p. ??) options.

15.3 Data Metrics Computation

All the metrics have the same set controlling options. See the GDALGridDataMetrics-
Options (p. ?27?).
15.3.1 Minimum Data Value

Minimum value found in grid node search ellipse (p. ??). If there are no points found,
the specified NODATA value will be returned.

Z = min (Zth, cen 7Zn)

where

» Z is aresulting value at the grid node,
» Z; is a known value at point i,

+ nis a number of points in search (p. ??) ellipse".

15.3.2 Maximum Data Value

Maximum value found in grid node search ellipse (p. ??). If there are no points found,
the specified NODATA value will be returned.

Z = max(Zl,Zz,...,Zn)

where

» Z is aresulting value at the grid node,
» Z; is a known value at point i,

+ nis a number of points in search (p. ??) ellipse".

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

104 GDAL Grid Tutorial

15.3.3 Data Range

A difference between the minimum and maximum values found in grid node search el-
lipse (p. ??). If there are no points found, the specified NODATA value will be returned.

Z =max (Z,,2y,...,Z,) —min(Zy,2Zy,...,Zy)
where

« Zis aresulting value at the grid node,
+ Z;is a known value at point i,

+ nis a number of points in search (p. ??) ellipse".

15.4 Search Ellipse

Search window in gridding algorithms specified in the form of rotated ellipse. It is de-
scribed by the three parameters:

« radiusi is the first radius (x axis if rotation angle is 0),
« radius; is the second radius (y axis if rotation angle is 0),

« angle is a search ellipse rotation angle (rotated counter clockwise).

Figure 15.2: Search ellipse

Only points located inside the search ellipse (including its border line) will be used for
computation.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 16

Sponsoring GDAL/OGR

Development and maintenance of GDAL/OGR is supported by organizations contracting
developers, organizations contributing improvements, users contributing improvements,
and volunteers. Generally speaking this works well, and GDAL/OGR has improved
substantially over the years.

However, there are still many tasks which do not receive the attention they should. -
Processing bug reports, writing documentation, writing test scripts, evaluating test script
failures and user support often receive less attention than would be desired. Some new
features of broad interest are not implemented because they aren’t important enough
to any one person or organization.

In order to provide sustained funding to support the maintenance, improvement and
promotion of the GDAL/OGR project, the project seeks project sponsors to provide fi-
nancial support. Sponsorship would be accomplished via the 0SGeo Project -
Sponsorship program. Funds are held by OSGeo for disposition on behalf of the
project, and dispersed at the discretion of the GDAL/OGR Project Steering Committee.

16.1 Sponsorship Uses

The primary intended use of the sponsorship funds is to hire a maintainer on a contract
basis. The responsibilities would include:

» Addressing bug reports - reproducing then fixing or passing on to another devel-
oper.

« Extending, and running the test suite.

* Improving documentation.

+ Other improvements to the software.

» General user support on the mailing list.

Sponsorship funds may also be used to contract for specific improvements to GDAL,
provision of resources such as web hosting, funding code sprints, or funding project

106 Sponsoring GDAL/OGR

promotion. Decisions on spending of sponsorship funds will be made by the GDAL/O-
GR Project Steering Committee.

16.2 Sponsorship Benefits
Sponsoring GDAL/OGR provides the following benefits:

1. Ensures the sustainability and health of the GDAL/OGR project.

2. All sponsors will be listed on the project Credit s page, ordered by contribution
class (Platinum, Gold, Silver) with a link back to the sponsor. Silver sponsors and
above may include a logo. Platinum sponsors may also have a logo appearing on
the OSGeo main page.

3. Sponsors will be permitted to indicate they are project sponsors in web and other
promotional materials, and use the GDAL/OGR logo.

4. Sponsor input on project focus and direction will be solicited via a survey.

5. Sponsors will received a degree of priority in processing of bug reports by any
maintainer hired with sponsorship funds.

6. Sponsors will receive a detailed report annually on the use of sponsorship funds.

16.3 Sponsorship Process

Sponsors can sponsor GDAL for any amount of money of at least $500 USD. At or
above the following levels a sponsor will be designated as being one of the following
class:

1. $27000+ USD: Platinum Sponsor
2. $9000+ USD: Gold Sponsor
3. $3000+ USD: Silver Sponsor

Sponsorships last one year, after which they may be continuing with a new payment,
or allowed to lapse. OSGeo is planning to be US 501(c)3 charity and sponsorships will
be eligible as a charitable contribution for US taxpayers. Appropriate receipts can be
issued when needed.

Organizations or individuals interested in sponsoring the GDAL/OGR project should
contact Frank Warmerdam (warmerdam@pobox . com, +1 613 754 2041) with ques-
tions, or to make arrangements.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 17

GDAL VB6 Bindings Tutorial

17.1 Introduction

A partial set of Visual Basic 6 bindings have been build for GDAL. Internally these
bindings use Declare based calls into the GDAL DLL C API but a set of shadow classes
are also provided to provide object oriented access to GDAL services in VB6 similar to
those provided in C++.

Note that the VB6 bindings are nowhere near comprehensive, nor are they documented.
However, in combination with the corresponding C++ class documentation, and the
following docs, it should be possible to use GDAL to accomplish a variety of operations.
It is not believed that the VB6 bindings will be of any utility with earlier version of VB nor
with VB.Net.

The classes for which access has been implemented includes GDALDriver (p. ??), GD-
ALDataset (p. ??), GDALRasterBand (p. ??), GDALColorTable (p. ??), OGRSpatial-
Reference and OGRCoordinateTransformation.

A mailing list specifically on VB6 GDAL topics has been setup at http://groups. -
yahoo.com/group/gdal-vb6—-appdev .

17.2 Using GDAL VB6 Classes

To use VB6 GDAL bindings it is necessary to ensure that GDAL has been built with
appropriate C entry points exported using the "stdcall" calling convention. This is the
current default, but was not as recently as GDAL 1.2.6. So ensure you get a version
more recent than 1.2.6.

Then add the GDAL VBS6 class and module files to your VB6 project. These come from
the gdal/vb6 directory and include the following key files:

* GDAL.bas - The main user visible module.

* GDALCore.bas - This module is for internal use.

108 GDAL VB6 Bindings Tutorial

GDALDriver.cls - The GDALDriver (p. ??) class.

» GDALDataset.cls - The GDALDataset (p. ??) class.

GDALRasterBand.cls - The GDALRasterBand (p. ??) class.

GDALColorTable.cls - The GDALColorTable (p. ??) class.

» OGRSpatialReference.cls - The OGRSpatialReference class.

OGRCoordinateTransformation.cls - The OGRCoordinateTransformation class.

You may need to edit GDALCore.bas, and change occurrences of gdal12.dll to match
what your GDAL DLL is called. You can include a full path to the DLL if it can’'t be
guaranteed to be in the current working directory of the application (or the windows
system32 directory).

You should also be able to load the "test" project from the gdal\vb6\test directory. -
The test project has test menu items roughly corresponding to the tasks in the following
tutorial topics.

17.3 Tutorial - Read Dataset

This brief tutorial will demonstrate open a GDAL file, and fetching out some information,
about the dataset, and the individual bands. The results are printed to the default from
in the following example for simplicity.

Before opening the file we need to register the GDAL format drivers. Normally we will
just register all the drivers with GDALAIIRegister() (p. ?2?).

Call GDAL.AllRegister ()

Then we need to try and open the dataset. The GDAL.OpenDS() function returns a
GDALDataset (p. ??) object, so we dimension an appropriate object for this. GDAL.-
OpenDS() is the VB6 equivalent of the GDALDataset::GDALOpen() (p. ??) function.

Dim ds As GDALDataset

Set ds = GDAL.OpenDS("utm.tif", GDAL.GA_ReadOnly)

Then we need to check if the open succeeded, and if not report an error.

If not ds.IsValid() Then
Call MsgBox("Open failed: " & GDAL.GetLastErrorMsg())
Exit Sub

End If

If things succeeded, we query width of the image in pixels (XSize), Height of the image
in pixels (YSize) and number of bands (BandCount) from the dataset properties.

Print "Size: " & ds.XSize & "x" & ds.¥YSize & "x" & ds.BandCount

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

17.3 Tutorial - Read Dataset 109

Next we read metadata from the dataset using the VB6 equivalent of the GDALMajor-
Object::GetMetadata() (p. ??) method, and report it to the user. Metadata is returned
as an array of strings of "name=value" items. Array indices start at zero in the returned
array. The domain argument should normally be vbNullString though in specialized
circumstances other domains might apply.

Dim MD As Variant
MD = ds.GetMetadata (vbNullString)
If (UBound(MD) > 0) Then

Print "Metadata:"

For 1 = 1 To UBound (MD)

Print " " & MD (i)

Next 1

End If

Parsing the "name=value" strings from GetMetadata() can be a bit of a bother, so if we
were looking for specific values we could use GetMetadataltem() and provide a specific
item we want to extract. This would extract just the value if it is found, or an empty string
otherwise. The GetMetadataltem() is an analog of the C++ GDALMajorObject::Get-
Metadataltem() (p. ??) method.

Dim MDValue As String

MDValue = ds.GetMetadataltem("TIFF_DATETIME", vbNullString)
if MDValue <> "" Then

Print "Creation Date: " & MDValue
End If

The GDALDataset::GetGeoTransform() (p. ??) method is used to get fetch the affine
transformation used to relate pixel/line locations on the image to georeferenced loca-
tions in the current coordinate system. In the most common case (image is not rotated
or sheared) you can just report the origin (upper left corner) and pixel size from these
values. The method returns 0 on success or an error class if it fails, so we only use the
return result (placed into the Geotransform array) on success.

Dim Geotransform(6) As Double

If ds.GetGeoTransform(Geotransform) = 0 Then
If Geotransform(2) = 0 and Geotransform(4) = 0 Then
Print "Origin: " & Geotransform(0) & "," & Geotransform(3)

Print "Pixel Size: " & Geotransform(l) & "x" & (-1 % Geotransform(5))

End If
End If

The coordinate system can be fetched using the GDALDataset::GetProjectionRef()
(p- ??) analog, GDALDataset.GetProjection(). The returned string is in OpenGIS Well
Known Text format. A later example will show how to use an OGRSpatialReference
object to reformat the WKT into more readable format and make other use of it.

Dim WKT As String

WKT = ds.GetProjection()
If Len(WKT) > 0 Then

Print "Projection: " & WKT
End If

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

110 GDAL VB6 Bindings Tutorial

GDALDataset (p. ??) objects have one or more raster bands associated with them. G-
DALRasterBand (p. ??) objects can have metadata (accessed the same as on the GD-
ALDataset (p. ??)) as well as an array of pixel values, and various specialized metadata
items like data type, color interpretation, offset/scale. Here we report a few of the items.

First we loop over all the bands, fetching a band object for each band and report the
band number, and block size.

For 1 = 1 To ds.BandCount
Dim band As GDALRasterBand

Set band = ds.GetRasterBand (i)
Print "Band " & 1 & " BlockSize: " & band.BlockXSize & "x" & band.
BlockYSize

The GDALRasterBand (p. ??) has a DataType property which has the value returned
by the C++ method GDALRasterBand::GetRasterDataType() (p. ??). The returned
value is an integer, but may be compared to the predefined constants GDAL.GDT_-
Byte, GDAL.GDT_UInt16, GDAL.GDT_Int16, GDAL.GDT_UInt32, GDAL.GDT_Int32, -
GDAL.GDT_Float32, GDAL.GDT_Float64, GDAL.GDT_CInt16, GDAL.GDT_CInt32, -
GDAL.GDT_CFloat32 and GDAL.GDT_CFloat64. In this case we use the GDAL.Get-
DataTypeName() method to convert the data type into a name we can show the user.

Print " DataType=" & GDAL.GetDataTypeName (band.DataType) _

We also report the offset, scale, minimum and maximum for the band.

Print " Offset=" & band.GetOffset () & " Scale=" & band.GetScale() _
& " Min=" & band.GetMinimum() & " Max=" & band.GetMaximum/ ()

GDALRasterBands can also have GDALColorTable (p.??) objects associated with
them. They are read with the GDALRasterBand::GetColorTable() (p. ??) analog in
VB6. Individual RGBA entries should be read into a 4 Integer array.

Dim ct As GDALColorTable
Set ct = band.GetColorTable ()
If ct.IsValid() Then
Dim CEntry(4) As Integer
Print " Has Color Table, " & ct.EntryCount & " entries"
For iColor = 0 To ct.EntryCount - 1
Call ct.GetColorEntryAsRGB(iColor, CEntry)

Print " " & iColor & ": " & CEntry(0) & "," & CEntry(l) & "," &
CEntry(2) & "," & CEntry(3)
Next iColor
End If

But of course, the most important contents of a GDAL file is the raster pixel values
themselves. The C++ GDALRasterBand::RasterlO() (p. ??) method is provided in a
somewhat simplified form. A predimensioned 1D or 2D array of type Byte, Int, Long,
Float or Double is passed to the RasterlO() method along with the band and window to
be read. Internally the "buffer size" and datatype is extracted from the dimensions of the
passed in buffer.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

17.4 Tutorial - Creating Files 111

This example dimensions the RawData array to be the size of one scanline of data (X-
Size x 1) and reads the first whole scanline of data from the file, but only prints out the
second and tenth values (since the buffer indexes are zero based).

Dim err As Long
Dim RawData () As Double
ReDim RawData (ds.XSize) As Double

err = band.RasterIO(GDAL.GF_Read, 0, 0, ds.XSize, 1, RawData)

if err = 0 Then
Print " Data: " & RawData(l) & " " & RawData(9
End If

Finally, when done accessing a GDALDataset (p. ??) we can explicitly close it using
the CloseDS() method, or just let it fall out of scope in which case it will be closed
automatically.

Call ds.CloseDS ()

17.4 Tutorial - Creating Files

Next we address creating a new file from an existing file. To create a new file, you
have to select a GDALDriver (p.??) to do the creating. The GDALDriver (p.??) is
essentially an object representing a file format. We fetch it with the GetDriverByName()
call from the GDAL module using the driver name.

Dim Drv As GDALDriver

Call GDAL.AllRegister

Drv = GDALCore.GetDriverByName ("GTiff")

If Not Drv.IsValid() Then
Call MsgBox("GTiff driver not found ")
Exit Sub

End If

You could get a list of registered drivers, and identify which support creation something
like this:

drvCount = GDAL.GetDriverCount
For drvIndex = 0 To drvCount - 1
Set Drv = GDAL.GetDriver (drvIndex)

If Drv.GetMetadataltem (GDAL.DCAP_CREATE, "") = "YES" _
Or Drv.GetMetadataItem (GDAL.DCAP_CREATECOPY, "") = "YES" Then
xMsg = " (Read/Write)"
Else
xMsg = " (ReadOnly)"
End If
Print Drv.GetShortName() & ": " & Drv.GetMetadataItem (GDAL.DMD_LONGNAME
"") & xMsg

Next drvIndex

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

112 GDAL VB6 Bindings Tutorial

Once we have the driver object, the simplest way of creating a new file is to use Create-
Copy(). This tries to create a copy of the input file in the new format. A complete
segment (without any error checking) would look like the following. The CreateCopy()
method corresponds to the C++ method GDALDriver::CreateCopy() (p. ??). The VB6
implementation does not support the use of progress callbacks.

Dim Drv As GDALDriver
Dim SrcDS As GDALDataset, DstDS As GDALDataset

Call GDAL.AllRegister
Set Drv = GDALCore.GetDriverByName ("GTiff")

Set SrcDS = GDAL.Open("in.tif", GDAL.GA_ReadOnly)
Set DstDS = Drv.CreateCopy("out.tif", SrcDS, True, Nothing)

This is nice and simple, but sometimes we need to create a file with more detailed con-
trol. So, next we show how to create a file and then copy pieces of data to it "manually”.
The GDALDriver::Create() (p. ??) analog is Create().

Set DstDS = Drv.Create("out.tif", SrcDS.XSize, SrcDS.YSize,
SrcDS.BandCount, GDAL.GDT_Byte, Nothing)

In some cases we may want to provide some creation options, which is demonstrated
here. Creation options (like metadata set through the SetMetadata() method) are arrays
of Strings.

Dim CreateOptions(l) As String

CreateOptions (1) = "PHOTOMETRIC=MINISWHITE"
Set DstDS = Drv.Create ("out.tif", SrcDS.XSize, SrcDS.YSize,
SrcDS.BandCount, GDAL.GDT_Byte, CreateOptions)

When copying the GeoTransform, we take care to check that reading the geotransform
actually worked. Most methods which return CPLErr in C++ also return it in VB6. A
return value of 0 will indicate success, and non-zero is failure.

Dim err As Long
Dim gt (6) As Double

err = SrcDS.GetGeoTransform(gt)
If err = 0 Then

Call DstDS.SetGeoTransform(gt)
End If

Copy the projection. Even if GetProjection() fails we get an empty string which is safe
enough to set on the target. Similarly for metadata.

Call DstDS.SetProjection(SrcDS.GetProjection())
Call DstDS.SetMetadata (SrcDS.GetMetadata(""), "")

Next we loop, processing bands, and copy some common data items.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

17.5 Tutorial - Coordinate Systems and Reprojection 113

For iBand = 1 To SrcDS.BandCount
Dim SrcBand As GDALRasterBand, DstBand As GDALRasterBand

Set SrcBand = SrcDS.GetRasterBand (iBand)
Set DstBand = DstDS.GetRasterBand (iBand)

Call DstBand.SetMetadata (SrcBand.GetMetadata (""), "")
Call DstBand.SetOffset (SrcBand.GetOffset ())
Call DstBand.SetScale (SrcBand.GetScale())

Dim NoDataValue As Double, Success As Long

NoDataValue = SrcBand.GetNoDataValue (Success)
If Success <> 0 Then

Call DstBand.SetNoDataValue (NoDataValue)
End If

Then, if one is available, we copy the palette.

Dim ct As GDALColorTable
Set ct = SrcBand.GetColorTable ()
If ct.IsValid() Then
err = DstBand.SetColorTable (ct)
End If

Finally, the meat and potatoes. We copy the image data. We do this one scanline at a
time so that we can support very large images without require large amounts of RAM.
Here we use a Double buffer for the scanline, but if we knew in advance the type of
the image, we could dimension a buffer of the appropriate type. The RasterlO() method
internally knows how to convert pixel data types, so using Double ensures all data types
(except for complex) are properly preserved, though at the cost of some extra data
conversion internally.

Dim Scanline() As Double, iLine As Long
ReDim Scanline (SrcDS.XSize) As Double

’ Copy band raster data.
For iLine = 0 To SrcDS.Y¥Size - 1
Call SrcBand.RasterIO(GDAL.GF_Read, 0, iLine, SrcDS.XSize, 1, _
Scanline)
Call DstBand.RasterIO(GDAL.GF_Write, 0, iLine, SrcDS.XSize, 1,
Scanline)

Next iLine

17.5 Tutorial - Coordinate Systems and Reprojection

The GDAL VB6 bindings also include limited support for use of the OGRSpatial-
Reference and OGRCoordinateTransformation classes. The OGRSpatialReference
represents a coordinate system and can be used to parse, manipulate and form W-
KT strings, such as those returned by the GDALDataset.GetProjection() method. The
OGRCoordinateTransformation class provides a way of reprojecting between two coor-
dinate systems.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

114 GDAL VB6 Bindings Tutorial

The following example shows how to report the corners of an image in georeferenced
and geographic (lat/long) coordinates. First, we open the file, and read the geotrans-
form.

Dim ds As GDALDataset

Call GDALCore.GDALAllRegister
Set ds = GDAL.OpenDS (FileDlg.Filename, GDAL.GA_ReadOnly)

If ds.IsValid() Then
Dim Geotransform(6) As Double

Call ds.GetGeoTransform(Geotransform)

Next, we fetch the coordinate system, and if it is non-empty we try to instantiate an
OGRSpatialReference from it.

! report projection in pretty format.

Dim WKT As String

Dim srs As New OGRSpatialReference

Dim latlong_srs As OGRSpatialReference
Dim ct As New OGRCoordinateTransformation

WKT = ds.GetProjection()
If Len (WKT) > 0 Then
Print "Projection: "
Call srs.SetFromUserInput (WKT)

If the coordinate system is projected it will have a PROJECTION node. In that case we
build a new coordinate system which is the corresponding geographic coordinate sys-
tem. So for instance if the "srs" was UTM 11 WGS84 then it's corresponding geographic
coordinate system would just be WGS84. Once we have these two coordinate systems,
we build a transformer to convert between them.

If srs.GetAttrValue ("PROJECTION", 0) <> "" Then
Set latlong_srs = srs.CloneGeogCsSs ()
Set ct = GDAL.CreateCoordinateTransformation(srs, latlong_srs)
End If
End If

Next we call a helper function to report each corner, and the center. We pass in the
name of the corner, the pixel/line location at the corner, and the geotransform and trans-
former object.

Call ReportCorner ("Top Left ", 0, 0, _
Geotransform, ct)

Call ReportCorner ("Top Right ", ds.XSize, 0, _
Geotransform, ct)

Call ReportCorner ("Bottom Left ", 0, ds.YSize,

Geotransform, ct)

Call ReportCorner ("Bottom Right ", ds.XSize, ds.YSize,
Geotransform, ct)

Call ReportCorner ("Center ", ds.XSize / 2%, ds.YSize / 2%,
Geotransform, ct)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

17.5 Tutorial - Coordinate Systems and Reprojection 115

The ReportCorner subroutine starts by computing the corresponding georeferenced x
and y location using the pixel/line coordinates and the geotransform.

Private Sub ReportCorner (CornerName As String, pixel As Double, line As Double,

gt () As Double, ct As OGRCoordinateTransformation)
Dim geox As Double, geoy As Double

geox = gt (0) + pixel % gt(l) + line * gt (2)
geoy = gt (3) + pixel % gt(4) + line x gt (5)

Next, if we have a transformer, we use it to compute a corresponding latitude and longi-
tude.

Dim longitude As Double, latitude As Double, Z As Double
Dim latlong_valid As Boolean

latlong_valid = False

If ct.IsValid() Then

Z =0

longitude = geox

latitude = geoy

latlong_valid = ct.TransformOne (longitude, latitude, Z)
End If

Then we report the corner location in georeferenced, and if we have it geographic coor-
dinates.

If latlong_valid Then

Print CornerName & geox & "," & geoy & " " & longitude & "," &
latitude
Else
Print CornerName & geox & "," & geoy
End If

End Sub

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

116

GDAL VB6 Bindings Tutorial

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 18

GDAL Warp API Tutorial

18.1 Overview

The GDAL Warp API (declared in gdalwarper.h (p. ??)) provides services for high per-
formance image warping using application provided geometric transformation functions
(GDALTransformerFunc), a variety of resampling kernels, and various masking options.
Files much larger than can be held in memory can be warped.

This tutorial demonstrates how to implement an application using the Warp APL. It as-
sumes implementation in C++ as C and Python bindings are incomplete for the Warp
API. It also assumes familiarity with the GDAL Data Model, and the general GDAL
API.

Applications normally perform a warp by initializing a GDALWarpOptions (p.??)
structure with the options to be utilized, instantiating a GDALWarpOperation (p. ??)
based on these options, and then invoking the GDALWarpOperation::ChunkAnd-
Warplmage() (p. ??) method to perform the warp options internally using the GDAL-
WarpKernel (p. ??) class.

18.2 A Simple Reprojection Case

First we will construct a relatively simple example for reprojecting an image, assuming
an appropriate output file already exists, and with minimal error checking.
#include "gdalwarper.h"
int main()
{ GDALDatasetH hSrcDS, hDstDS;
// Open input and output files.

GDALAllRegister();

hSrcDS = GDALOpen("in.tif", GA_ReadOnly);

118 GDAL Warp API Tutorial

hDstDS = GDALOpen("out.tif", GA_Update);
// Setup warp options.
GDALWarpOptions xpsWarpOptions = GDALCreateWarpOptions();

psWarpOptions—>hSrcDS = hSrcDS;
psWarpOptions->hDstDS = hDstDS;

psWarpOptions—->nBandCount = 1;
psWarpOptions->panSrcBands =

(int *) CPLMalloc(sizeof (int) % psWarpOptions—->nBandCount);
psWarpOptions->panSrcBands[0] = 1;
psWarpOptions->panDstBands =

(int %) CPLMalloc(sizeof (int) % psWarpOptions->nBandCount);
psWarpOptions—>panDstBands[0] = 1;

psWarpOptions->pfnProgress = GDALTermProgress;
// Establish reprojection transformer.

psWarpOptions—>pTransformerArg =
GDALCreateGenImgProjTransformer (hSrcDS,
GDALGetProjectionRef (hSrcDS),
hDstDS,
GDALGetProjectionRef (hDstDS),
FALSE, 0.0, 1);
psWarpOptions->pfnTransformer = GDALGenImgProjTransform;

// Initialize and execute the warp operation.
GDALWarpOperation oOperation;

oOperation.Initialize(psWarpOptions);
oOperation.ChunkAndWarpImage (0, O,
GDALGetRasterXSize (hDstDS),
GDALGetRasterYSize (hDstDS));

GDALDestroyGenImgProjTransformer (psWarpOptions—>pTransformerArg);
GDALDestroyWarpOptions (psWarpOptions);

GDALClose (hDstDS);
GDALClose (hSrcDS);

return 0;

This example opens the existing input and output files (in.tif and out.tif). A GDALWarp-
Options (p. ??) structure is allocated (GDALCreateWarpOptions() sets lots of sensi-
ble defaults for stuff, always use it for defaulting things), and the input and output file
handles, and band lists are set. The panSrcBands and panDstBands lists are dynami-
cally allocated here and will be free automatically by GDALDestroyWarpOptions(). The
simple terminal output progress monitor (GDALTermProgress) is installed for reporting
completion progress to the user.

GDALCreateGenlmgProjTransformer() (p.??) is used to initialize the reprojection
transformation between the source and destination images. We assume that they al-
ready have reasonable bounds and coordinate systems set. Use of GCPs is disabled.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

18.3 Other Warping Options 119

Once the options structure is ready, a GDALWarpOperation (p. ??) is instantiated using
them, and the warp actually performed with GDALWarpOperation::ChunkAndWarp-
Image() (p. ??). Then the transformer, warp options and datasets are cleaned up.

Normally error check would be needed after opening files, setting up the reprojection
transformer (returns NULL on failure), and initializing the warp.

18.3 Other Warping Options

The GDALWarpOptions (p. ??) structures contains a number of items that can be set
to control warping behavior. A few of particular interest are:

1. GDALWarpOptions::dfWarpMemoryLimit (p. ??) - Set the maximum amount of
memory to be used by the GDALWarpOperation (p. ??) when selecting a size
of image chunk to operate on. The value is in bytes, and the default is likely to
be conservative (small). Increasing the chunk size can help substantially in some
situations but care should be taken to ensure that this size, plus the GDAL cache
size plus the working set of GDAL, your application and the operating system
are less than the size of RAM or else excessive swapping is likely to interfere
with performance. On a system with 256MB of RAM, a value of at least 64MB
(roughly 64000000 bytes) is reasonable. Note that this value does not include
the memory used by GDAL for low level block caching.

2. GDALWarpOpations::eResampleAlg - One of GRA_NearestNeighbour (the de-
fault, and fastest), GRA_Bilinear (2x2 bilinear resampling) or GRA_Cubic. -
The GRA_NearestNeighbour type should generally be used for thematic or col-
ormapped images. The other resampling types may give better results for the-
matic images, especially when substantially changing resolution.

3. GDALWarpOptions::padfSrcNoDataReal (p.??) - This array (one entry per
band being processed) may be setup with a "nodata" value for each band if you
wish to avoid having pixels of some background value copied to the destination
image.

4. GDALWarpOptions::papszWarpOptions (p.??) - This is a string list of NAM-
E=VALUE options passed to the warper. See the GDALWarpOptions::papsz-
WarpOptions (p. ??) docs for all options. Supported values include:

* INIT_DEST=[value] or INIT_DEST=NO_DATA: This option forces the des-
tination image to be initialized to the indicated value (for all bands) or indi-
cates that it should be initialized to the NO_DATA value in padfDstNoData-
Real/padfDstNoDatalmag. If this value isn't set the destination image will
be read and the source warp overlayed on it.

WRITE_FLUSH=YES/NO: This option forces a flush to disk of data after
each chunk is processed. In some cases this helps ensure a serial writing
of the output data otherwise a block of data may be written to disk each time
a block of data is read for the input buffer resulting in a lot of extra seeking
around the disk, and reduced 10 throughput. The default at this time is NO.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

120 GDAL Warp API Tutorial

18.4 Creating the Output File

In the previous case an appropriate output file was already assumed to exist. Now we
will go through a case where a new file with appropriate bounds in a new coordinate
system is created. This operation doesn’t relate specifically to the warp API. It is just
using the transformation API.

#include "gdalwarper.h"
#include "ogr_spatialref.h"

GDALDriverH hDriver;
GDALDataType eDT;
GDALDatasetH hDstDS;
GDALDatasetH hSrcDS;

// Open the source file.

hSrcDS = GDALOpen("in.tif", GA_ReadOnly);
CPLAssert (hSrcDS != NULL);

// Create output with same datatype as first input band.
eDT = GDALGetRasterDataType (GDALGetRasterBand (hSrcDS,1));
// Get output driver (GeoTIFF format)

hDriver = GDALGetDriverByName ("GTiff");
CPLAssert (hDriver != NULL);

// Get Source coordinate system.
const char xpszSrcWKT, xpszDstWKT = NULL;

pszSrcWKT = GDALGetProjectionRef (hSrcDS);
CPLAssert (pszSrcWKT != NULL && strlen(pszSrcWKT) > 0);

// Setup output coordinate system that is UTM 11 WGS84.
OGRSpatialReference oSRS;

OoSRS.SetUTM(11, TRUE);
OSRS.SetWellKnownGeogCS ("WGS84");

OSRS.exportToWkt (&pszDStWKT) ;

// Create a transformer that maps from source pixel/line coordinates
// to destination georeferenced coordinates (not destination

// pixel line). We do that by omitting the destination dataset

// handle (setting it to NULL) .

void xhTransformArg;
hTransformArg =
GDALCreateGenImgProjTransformer (hSrcDS, pszSrcWKT, NULL, pszDstWKT,
FALSE, 0, 1);
CPLAssert (hTransformArg != NULL);

// Get approximate output georeferenced bounds and resolution for file.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

18.4 Creating the Output File 121

double adfDstGeoTransform([6];
int nPixels=0, nLines=0;
CPLErr eErr;

eErr = GDALSuggestedWarpOutput (hSrcDS,
GDALGenImgProjTransform, hTransformArg,
adfDstGeoTransform, &nPixels, &nLines);
CPLAssert (eErr == CE_None);

GDALDestroyGenImgProjTransformer (hTransformArg);
// Create the output file.

hDstDS = GDALCreate(hDriver, "out.tif", nPixels, nLines,
GDALGetRasterCount (hSrcDS), eDT, NULL);

CPLAssert (hDstDS != NULL);
// Write out the projection definition.

GDALSetProjection(hDstDS, pszDstWKT);
GDALSetGeoTransform(hDstDS, adfDstGeoTransform);

// Copy the color table, if required.
GDALColorTableH hCT;

hCT = GDALGetRasterColorTable (GDALGetRasterBand(hSrcDS,1));
if (hCT != NULL)
GDALSetRasterColorTable (GDALGetRasterBand (hDstDS,1), hCT);

proceed with warp as before

Some notes on this logic:

* We need to create the transformer to output coordinates such that the output of
the transformer is georeferenced, not pixel line coordinates since we use the
transformer to map pixels around the source image into destination georefer-
enced coordinates.

* The GDALSuggestedWarpOutput() (p. ??) function will return an adfDstGeo-
Transform, nPixels and nLines that describes an output image size and georefer-
enced extents that should hold all pixels from the source image. The resolution is
intended to be comparable to the source, but the output pixels are always square
regardless of the shape of input pixels.

« The warper requires an output file in a format that can be "randomly" written to.
This generally limits things to uncompressed formats that have an implementation
of the Create() method (as opposed to CreateCopy()). To warp to compressed
formats, or CreateCopy() style formats it is necessary to produce a full temporary
copy of the image in a better behaved format, and then CreateCopy() it to the
desired final format.

« The Warp API copies only pixels. All colormaps, georeferencing and other meta-
data must be copied to the destination by the application.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

122 GDAL Warp API Tutorial

18.5 Performance Optimization

There are a number of things that can be done to optimize the performance of the warp
API.

1. Increase the amount of memory available for the Warp API chunking so that larger
chunks can be operated on at a time. This is the GDALWarpOptions::dfWarp-
MemoryLimit (p. ??) parameter. In theory the larger the chunk size operated
on the more efficient the 1/0 strategy, and the more efficient the approximated
transformation will be. However, the sum of the warp memory and the GDAL
cache should be less than RAM size, likely around 2/3 of RAM size.

2. Increase the amount of memory for GDAL caching. This is especially important
when working with very large input and output images that are scanline oriented.
If all the input or output scanlines have to be re-read for each chunk they intersect
performance may degrade greatly. Use GDALSetCacheMax() (p. ??) to control
the amount of memory available for caching within GDAL.

3. Use an approximated transformation instead of exact reprojection for each pixel to
be transformed. This code illustrates how an approximated transformation could
be created based on a reprojection transformation, but with a given error thresh-
old (dfErrorThreshold in output pixels).

hTransformArg =
GDALCreateApproxTransformer (GDALGenImgProjTransform,
hGenImgProjArg, dfErrorThreshold);
pfnTransformer = GDALApproxTransform;

4. When writing to a blank output file, use the INIT_DEST option in the GDALWarp-
Options::papszWarpOptions (p. ??) to cause the output chunks to be initialized
to a fixed value, instead of being read from the output. This can substantially
reduce unnecessary 10 work.

5. Use tiled input and output formats. Tiled formats allow a given chunk of source
and destination imagery to be accessed without having to touch a great deal of
extra image data. Large scanline oriented files can result in a great deal of wasted
extra 10.

6. Process all bands in one call. This ensures the transformation calculations don’t
have to be performed for each band.

7. Use the GDALWarpOperation::ChunkAndWarpMulti() (p. ??) method instead
of GDALWarpOperation::ChunkAndWarplmage() (p. ??). It uses a separate
thread for the 10 and the actual image warp operation allowing more effective use
of CPU and IO bandwidth. For this to work GDAL needs to have been built with
multi-threading support (default on Win32, --with-pthreads on Unix).

8. The resampling kernels vary is work required from nearest neighbour being least,
then bilinear then cubic. Don’t use a more complex resampling kernel than
needed.

9. Avoid use of esoteric masking options so that special simplified logic case be
used for common special cases. For instance, nearest neighbour resampling
with no masking on 8bit data is highly optimized compared to the general case.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

18.6 Other Masking Options 123

18.6 Other Masking Options

The GDALWarpOptions (p.??) include a bunch of esoteric masking capabilities, for
validity masks, and density masks on input and output. Some of these are not yet im-
plemented and others are implemented but poorly tested. Other than per-band validity
masks it is advised that these features be used with caution at this time.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

124 GDAL Warp API Tutorial

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 19

GDAL for Windows CE

Overview (p.??)

Features (p. ??)

Supported Platforms (p. ??)

Content of ‘wince’ directory (p. ??)

Building GDAL for Windows CE using Microsoft Visual C++ 2005 (p. ??)
Enable PROJ.4 support (p. ??)

wince_building_geos

How can | help? (p.??)

Warning

xxx Currently, GDAL port for Windows CE platform is not actively maintained. If
you are interested in providing patches or taking over this project, please write to
gdal-dev@lists.maptools.org mailing list. #*x

19.1 Overview

This document is devoted to give some overview of the GDAL port for Windows CE
operating system.

19.2 Features

Currently, from version 1.4.0, GDAL includes following features for Windows CE
platform:

» CPL library
+ GDAL and OGR core API

126 GDAL for Windows CE

GDAL drivers:

— AAIGrid
— DTED

— GeoTIFF

OGR drivers:

Generic
- CSV

- MITAB

ESRI Shapefile
+ Unit Test suite (gdalautotest/cpp)
 Optional PROJ . 4 support

* Optional GEOS support

19.3 Supported Platforms
GDAL for Windows CE has been tested on following versions of Windows CE:

» Windows CE 3.x
— Pocket PC 2002
* Windows CE 4.x
— Windows Mobile 2003
* Windows CE 5.x
— Windows Mobile 5
— customized versions of Windows CE 5.0

Supported compilers for Windows CE operating system:

» Microsoft Visual C++ 2005 Standard, Professional or Team Suite Edition

» Microsoft eMbedded Visual C++ 4.0

Note

Currently, no project files provided for eVC++ 4.0 IDE

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

19.4 Content of 'wince’ directory 127

19.4 Content of 'wince’ directory

Note

Due to problems with removing directories from CVS and missed synchronization
of RC branch, the 'wince’ directory includes a few deprecated project files (see
below).

Please DON’T USE them, unless you want to fix them yourself.

Active content:

* msvc80 - project for Visual C++ 2005 to build GDAL DLL for Windows CE
+ README - the file you're currently reading

» TODO - planned and requested features
Deprecated Following directories and projects are deprecated. DON'T USE THEM!

» evc4_gdalce_dll

» evc4_gdalce_dll_test
» evc4_gdalce_lib

» evc4_gdalce_lib_test
* msvc8_gdalce_lib

* msvc8_gdalce_lib_test
« wece_test dll

« wce_test_lib

« wcelibcex

19.5 Building GDAL for Windows CE using Microsoft Visual C++
2005

1. Requirements

* You need to have installed Visual C++ 2005 Standard, Professional or Team
Suite Edition.

* You also need to have installed at least one SDK for Windows CE platform:
Windows Mobile 2003 Pocket PC SDK

Windows Mobile 2003 SmartphoneSDK

Windows Mobile 5.0 Pocket PC SDK

Windows Mobile 5.0 Smartphone SDK

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

128

GDAL for Windows CE

+ Last requirement is the Run-time Type Information library
for the Pocket PC 2003 SDK

2. External dependencies

There is only one external dependency required to build GDAL for Windows CE.
This dependency is WCELIBCEX library available to download from:

http://sourceforge.net/projects/wcelibcex

You can download latest release - wcelibcex—1.0 - or checkout sources di-
rectly form SVN. In both cases, you will be provided with project file for Visual
C++ 2005.

Note

WCELIBCEX is built to Static Library. For details, check README.txt file
form the package.

. Download GDAL 1.4.0 release or directly from CVS

Gotohttp://www.gdal.org/download.html and download ZIP pack-
age with GDAL 1.4.0. You can also checkout sources directly from SVN.

For this guidelines, | assume following directories structure:

C:\dev\gdal-1.4.0
C:\dev\wcelibcex-1.0

4. Projects configuration

(a) Open gdalce_dll.sIn project in Visual C++ 2005 IDE
According to the paths presented in step 3, you should load following
file:

C:\dev\gdal-1.4.0\wince\msvc80\gdalce_dll\gdalce_dll.sln

(b) Add WCELIBCEX project to gdalce_dll.sIn solution
Go to File -> Add -> Existing Project, navigage and open following file:

C:\dev\wcelibcex-1.0\msvc80\wcelibcex_lib.vcproj

(c) Configure path to WCELIBCEX source:

» Go to View -> Property Manager to open property manager window
» Expand tree below gdalce_dll -> Debug -> gdalce_common
+ Right-click on gdalce_common and select Properties

* In Property Pages dialog, under Common Properties, go to User -
Macros

* In macros list, double-click on macro named as WCELIBCEX_DIR
+ According paths assumed in step 3, change the macro value to:
C:\dev\wcelibcex-1.0\src

+ Click OK to apply changes and close the dialog

(d) Configure wcelibcex_lib.vcproj as a dependency for gdalce_dll.vcproj

+ Select gdalce_dll project in Solution Explorer

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

19.5 Building GDAL for Windows CE using Microsoft Visual C++ 2005 129

» Go to Project -> Project Dependencies
« In the ’'Depends on:’ pane, select checkbox next to wcelibcex_lib
* Click OK to apply and close

5. Ready to build GDAL for Windows CE
Go to Build and select Build Solution

After a few minutes, you should see GDAL DLL ready to use. For example, when
Pocket PC 2003 SDK is used and Debug configuration requested, all output files
are located under this path:

C:\dev\gdal-1.4.0\wince\msvc80\gdalce_dll\Pocket PC 2003 (ARMV4)\Debug

There, you will find following binaries:

« gdalce.dll - dymamic-link library
» gdalce_i.lib - import library

19.5.1 Enable PROJ.4 support

PROJ.4 support is optional.

In the CVS repository of PROJ.4, there are available project files for Visual C++ 2005
for Windows CE.

It is recommended to read README.txt file from wince\msvc80 directory in PROJ.4
sources tree. There, you will find instructions how to build PROJ.4 without attaching its
project to gdalce_dll.sIn. Then you can just add proj.dll and proj_i.lib to linker settings
of gdalce_dll.vcproj project.

Below, you can find instructions how to add projce_dll.vcproj project directly to gdalce-
_dll.sIn and build everything together.

1. Go to http://proj.maptools.orqg and learn how to checkout PROJ.4
source from the CVS

2. Checkout sources to prefered location, for example:

C:\dev\proj

3. Add projce_dll.vcproj project to gdalce_dll.sIn solution
Go to File -> Add -> Existing Project, navigage and open following file:

C:\dev\proj\wince\msvc80\projce_dll\projce_dll.vcproj

4. Open Property Manager as described here, open Property Page for gdalce_-
common, and edit macro named as PROJ_DIR.

Change value of the PROJ_DIR macro to:

C:\dev\proj

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

130 GDAL for Windows CE

Don'’t close the Property Manager yet.
5. Configure path to WCELIBCEX source:

» Go to View -> Property Manager to open property manager window

« Expand tree below projce_dll -> Debug -> projce_common

« Right-click on projce_common and select Properties

* In Property Pages dialog, under Common Properties, go to User Macros

* In macros list, double-click on macro named as WCELIBCEX_DIR
 According paths assumed in step 3, change the macro value to:

C:\dev\wcelibcex-1.0\src

« Click OK to apply changes and close the dialog

6. Follow instructions explained here and add projce_dll.vcproj as a dependency
for gdalce_dIl.vcproj

7. Update proj_config.h file:
Go to C:\dev\proj\src and rename proj_config.h.wince to proj_config.h.

8. Ready to build GDAL for Windows CE
Go to Build and select Build Solution

Similarly to explanation above in step 5 for GDAL, binaries for PROJ.4 for -
Windows CE can be found here:

C:\dev\proj\wince\msvc80\projce_dll\Pocket PC 2003 (ARMV4) \Debug

There, you can find following binaries:
+ proj.dll - dymamic-link library

« proj_i.lib - import library

Note

PROJ.4 binaries for Windows CE do not include 'ce’ in names. This is due the
fact GDAL uses fixed proj.dll name to find and link dynamically with PROJ.4
DLL.

9. After all, put proj.dll to the same directory on device where you copied gdalce.dll
and your application which uses GDAL.

19.6 How can | help?

I'd like to encourage everyone interested in using GDAL on Windows CE devices to help
in its development. Here is a list of what you can do as a contribution to the project:

* You can build GDAL for Windows CE and report problems if you will meet any

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

19.6 How can | help? 131

* You can try to build new OGR drivers
* You can test GDAL/OGR on different Windows CE devices

* You can write sample applications using GDAL/OGR and announce them on the
GDAL mailing list

« If you have found a bug or something is not working on the Windows CE, please
report it on the GDAL’ s Bugzilla
There is also wince\ TODO file where you can find list of things we are going to do.

If you have any comments or questions, please sent them to gdal-dev@lists. -
maptools.org mailing list.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

132 GDAL for Windows CE

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 20

GDAL Utilities

The following utility programs are distributed with GDAL.

+ gdalinfo (p. ??) - report information about a file.

+ gdal_translate (p. ??) - Copy a raster file, with control of output format.

» gdaladdo (p. ??) - Add overviews to a file.

» gdalwarp (p. ??) - Warp an image into a new coordinate system.

+ gdaltindex (p. ??) - Build a MapServer raster tileindex.

+ gdalbuildvrt (p. ??) - Build a VRT from a list of datasets.

« gdal_contour (p. ??) - Contours from DEM.

» gdaldem (p. ??) - Tools to analyze and visualize DEMs.

* rgb2pct.py (p. ??) - Convert a 24bit RGB image to 8bit paletted.

* pct2rgb.py (p. ??) - Convert an 8bit paletted image to 24bit RGB.

» gdal_merge.py (p. ??) - Build a quick mosaic from a set of images.

+ gdal2tiles.py (p. ??) - Create a TMS tile structure, KML and simple web viewer.
» gdal_rasterize (p. ??) - Rasterize vectors into raster file.

 gdaltransform (p. ??) - Transform coordinates.

+ nearblack (p. ??) - Convert nearly black/white borders to exact value.

+ gdal_retile.py (p. ??) - Retiles a set of tiles and/or build tiled pyramid levels.
+ gdal_grid (p. ??) - Create raster from the scattered data.

» gdal_proximity.py (p. ??) - Compute a raster proximity map.

+ gdal_polygonize.py (p. ??) - Generate polygons from raster.

134

GDAL Utilities

20.1

+ gdal_sieve.py (p. ??) - Raster Sieve filter.
+ gdal_fillnodata.py (p. ??) - Interpolate in nodata regions.

+ gdal-config (p. ??) - Get options required to build software using GDAL.

Creating New Files

Access an existing file to read it is generally quite simple. Just indicate the name of
the file or dataset on the commandline. However, creating a file is more complicated. It
may be necessary to indicate the the format to create, various creation options affecting
how it will be created and perhaps a coordinate system to be assigned. Many of these
options are handled similarly by different GDAL utilities, and are introduced here.

-of format Select the format to create the new file as. The formats are assigned short

names such as GTiff (for GeoTIFF) or HFA (for Erdas Imagine). The list of all
format codes can be listed with the --formats switch. Only formats list as "(rw)"
(read-write) can be written.

Many utilities default to creating GeoTIFF files if a format is not specified. File
extensions are not used to guess output format, nor are extensions generally
added by GDAL if not indicated in the filename by the user.

-co NAME=VALUE Many formats have one or more optional creation options that can

be used to control particulars about the file created. For instance, the GeoTIF-
F driver supports creation options to control compression, and whether the file
should be tiled.

The creation options available vary by format driver, and some simple formats
have no creation options at all. A list of options supported for a format can be
listed with the "--format <format>" commandline option but the web page for the
format is the definitive source of information on driver creation options.

-a_srs SRS Several utilities, (gdal_translate and gdalwarp) include the ability to specify

coordinate systems with commandline options like -a_srs (assign SRS to output),
-s_srs (source SRS) and -t_srs (target SRS).

These utilities allow the coordinate system (SRS = spatial reference system) to
be assigned in a variety of formats.

+ NAD27/NAD83/WGS84/WGS72: These common geographic (lat/long) co-
ordinate systems can be used directly by these names.

+ EPSG:n: Coordinate systems (projected or geographic) can be selected
based on their EPSG codes, for instance EPSG:27700 is the British National
Grid. A list of EPSG coordinate systems can be found in the GDAL data files
gcs.csv and pcs.csv.

* PROJ.4 Definitions: A PROJ.4 definition string can be used as a coordinate
system. For instance "+proj=utm +zone=11 +datum=WGS84". Take care
to keep the proj.4 string together as a single argument to the command
(usually by double quoting).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

20.2 General Command Line Switches 135

* OpenGIS Well Known Text: The Open GIS Consortium has defined a tex-
tual format for describing coordinate systems as part of the Simple Features
specifications. This format is the internal working format for coordinate sys-
tems used in GDAL. The name of a file containing a WKT coordinate system
definition may be used a coordinate system argument, or the entire coordi-
nate system itself may be used as a commandline option (though escaping
all the quotes in WKT is quite challenging).

» ESRI Well Known Text: ESRI uses a slight variation on OGC WKT format in
their ArcGIS product (ArcGIS .prj files), and these may be used in a similar
manner to WKT files, but the filename should be prefixed with ESRI::. For
example "ESRI::NAD 1927 StatePlane Wyoming West FIPS 4904.prj".

 Spatial References from URLs: For example http://spatialreference. -
org/ref/user/north-pacific-albers-conic-equal-area/.

« filename: The name of a file containing WKT, PROJ.4 strings, or XML/GML
coordinate system definitions can be provided.

20.2 General Command Line Switches
All GDAL command line utility programs support the following "general” options.

--version Report the version of GDAL and exit.

--formats List all raster formats supported by this GDAL build (read-only and read-
write) and exit. The format support is indicated as follows: ro’ is read-only driver;
rw’ is read or write (ie. supports CreateCopy); rw+' is read, write and update (ie.
supports Create). A v’ is appended for formats supporting virtual IO (/vsimem,
Ivsigzip, /vsizip, etc).

--format format List detailed information about a single format driver. The format
should be the short name reported in the --formats list, such as GTiff.

--optfile file Read the named file and substitute the contents into the commandline
options list. Lines beginning with # will be ignored. Multi-word arguments may be
kept together with double quotes.

--config key value Sets the named configuration keyword to the given value, as op-
posed to setting them as environment variables. Some common configura-
tion keywords are GDAL_CACHEMAX (memory used internally for caching in
megabytes) and GDAL_DATA (path of the GDAL "data" directory). Individual
drivers may be influenced by other configuration options.

--debug value Control what debugging messages are emitted. A value of ON will en-
able all debug messages. A value of OFF will disable all debug messages. -
Another value will select only debug messages containing that string in the debug
prefix code.

--help-general Gives a brief usage message for the generic GDAL commandline op-
tions and exit.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

136 GDAL Utilities

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 21

gdalinfo

lists information about a raster dataset

21.1 SYNOPSIS

gdalinfo [--help-general] [-mm] [-stats] [-nogcp] [-nomd]
[-noct] [-checksum] [-mdd domain]* datasetname

21.2 DESCRIPTION

The gdalinfo program lists various information about a GDAL supported raster dataset.

-mm Force computation of the actual min/max values for each band in the dataset.

-stats Read and display image statistics. Force computation if no statistics are stored
in an image.

-nogcp Suppress ground control points list printing. It may be useful for datasets with
huge amount of GCPs, such as L1B AVHRR or HDF4 MODIS which contain
thousands of the ones.

-nomd Suppress metadata printing. Some datasets may contain a lot of metadata
strings.

-noct Suppress printing of color table.
-checksum Force computation of the checksum for each band in the dataset.

-mdd domain Report metadata for the specified domain

The gdalinfo will report all of the following (if known):

« The format driver used to access the file.

138

gdalinfo

» Raster size (in pixels and lines).

» The coordinate system for the file (in OGC WKT).

» The geotransform associated with the file (rotational coefficients are currently not

reported).

» Corner coordinates in georeferenced, and if possible lat/long based on the full

geotransform (but not GCPs).
» Ground control points.
+ File wide (including subdatasets) metadata.
+ Band data types.
» Band color interpretations.
+ Band block size.
» Band descriptions.
+ Band min/max values (internally known and possibly computed).
» Band checksum (if computation asked).
» Band NODATA value.
» Band overview resolutions available.
» Band unit type (i.e.. "meters" or "feet" for elevation bands).

» Band pseudo-color tables.

21.3 EXAMPLE

gdalinfo ~/openev/utm.tif
Driver: GTiff/GeoTIFF
Size is 512, 512
Coordinate System is:
PROJCS["NAD27 / UTM zone 11N",
GEOGCS ["NAD27",
DATUM["North_American_Datum_1927",
SPHEROID["Clarke 1866",6378206.4,294.97869821390111,
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433117,
PROJECTION|["Transverse_Mercator"],
PARAMETER["latitude_of_origin™, 0],
PARAMETER["central_meridian",-117],
PARAMETER ["scale_factor",0.9996],
PARAMETER(["false_easting", 5000007,
PARAMETER(["false_northing",0],
UNIT["metre", 1]

Origin = (440720.000000,3751320.000000)

Pixel Size = (60.000000,-60.000000)

Corner Coordinates:

Upper Left (440720.000, 3751320.000) (117d38’28.21"w, 33d54’8.47"N)
Lower Left (440720.000, 3720600.000) (117d38720.79"W, 33d37’31.04"N)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

21.3 EXAMPLE 139

Upper Right (471440.000, 3751320.000) (117d18”32.07"w, 33d54’13.08"N)
Lower Right (471440.000, 3720600.000) (117d18728.50"wW, 33d37’35.61"N)
Center (456080.000, 3735960.000) (117d28727.39"W, 33d45’52.46"N)
Band 1 Block=512x16 Type=Byte, ColorInterp=Gray

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

140 gdalinfo

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 22

gdal_translate

converts raster data between different formats

22.1 SYNOPSIS

gdal_translate [--help-generall]
[-ot {Byte/Intl6/UIntl6/UInt32/Int32/Float32/Float6d/

CIntl6/CInt32/CFloat32/CFloat64}] [-strict]
—-of format] [-b band] [-expand {grayl|rgbl|rgba}]
—outsize xsize[%] ysize[%]]
—unscale] [-scale [src_min src_max [dst_min dst_max]]]
-srcwin xoff yoff xsize ysize] [-projwin ulx uly lrx lry]
—a_srs srs_def] [-a_ullr ulx uly lrx lry] [-a_nodata value]
—gcp pixel line easting northing [elevation]]x
-mo "META-TAG=VALUE"]x [-g] [-sds]
—co "NAME=VALUE"] %

[
[
[
[
[
[
[
[
src_dataset dst_dataset

22.2 DESCRIPTION

The gdal_translate utility can be used to convert raster data between different formats,
potentially performing some operations like subsettings, resampling, and rescaling pix-
els in the process.

-ot: type For the output bands to be of the indicated data type.

-strict: Do’nt be forgiving of mismatches and lost data when translating to the output
format.

-of format: Select the output format. The default is GeoTIFF (GTiff). Use the short
format name.

-b band: Select an input band band for output. Bands are numbered from 1 Multiple
-b switches may be used to select a set of input bands to write to the output file,
or to reorder bands.

142 gdal_translate

-expand gray|rgb|rgba: (From GDAL 1.6.0) To expose a dataset with 1 band with a
color table as a dataset with 3 (RGB) or 4 (RGBA) bands. Usefull for output
drivers such as JPEG, JPEG2000, MrSID, ECW that don’t support color indexed
datasets. The ’gray’ value (from GDAL 1.7.0) enables to expand a dataset with a
color table that only contains gray levels to a gray indexed dataset.

-outsize xsize[%] ysize[%]: Set the size of the output file. Outsize is in pixels and
lines unless '%’ is attached in which case it is as a fraction of the input image
size.

-scale [src_min src_max [dst_min dst_max]]: Rescale the input pixels values from
the range src_min to src_max to the range dst_min to dst_max. If omitted the
output range is 0 to 255. If omitted the input range is automatically computed
from the source data.

-unscale: Apply the scale/offset metadata for the bands to convert scaled values to
unscaled values. It is also often necessary to reset the output datatype with the
-ot switch.

-srcwin xoff yoff xsize ysize: Selects a subwindow from the source image for copying
based on pixel/line location.

-projwin ulx uly Irx Iry: Selects a subwindow from the source image for copying (like
-srcwin) but with the corners given in georeferenced coordinates.

-a_strs srs_def: Override the projection for the output file. The srs_def may be any of
the usual GDAL/OGR forms, complete WKT, PROJ.4, EPSG:n or a file containing
the WKT.

-a_ullr ulx uly Irx Iry: Assign/override the georeferenced bounds of the output file. -
This assigns georeferenced bounds to the output file, ignoring what would have
been derived from the source file.

-a_nodata value: Assign a specified nodata value to output bands.

-mo "META-TAG=VALUE": Passes a metadata key and value to set on the output
dataset if possible.

-co "NAME=VALUE": Passes a creation option to the output format driver. Multiple
-co options may be listed. See format specific documentation for legal creation
options for each format.

-gcp pixel line easting northing elevation: Add the indicated ground control point to
the output dataset. This option may be provided multiple times to provide a set of
GCPs.

-q: Suppress progress monitor and other non-error output.

-sds: Copy all subdatasets of this file to individual output files. Use with formats like
HDF or OGDI that have subdatasets.

src_dataset: The source dataset name. It can be either file name, URL of data source
or subdataset name for multi-dataset files.

dst_dataset: The destination file name.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

22.3 EXAMPLE 143

22,3 EXAMPLE

gdal_translate -of GTiff -co "TILED=YES" utm.tif utm_tiled.tif

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

144 gdal_translate

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 23

gdaladdo

builds or rebuilds overview images

23.1 SYNOPSIS

gdaladdo [-r {nearest,average,gauss,cubic,average_mp,average_magphase,mode}]
[-ro] [-clean] [--help-general] filename levels

23.2 DESCRIPTION

The gdaladdo utility can be used to build or rebuild overview images for most supported
file formats with one over several downsampling algorithms.

-r {nearest (default),average,gauss,cubic,average_mp,average_magphase,mode}:
Select a resampling algorithm.

-ro: (available from GDAL 1.6.0) open the dataset in read-only mode, in order to gen-
erate external overview (for GeoTIFF especially).

-clean: (available from GDAL 1.7.0) remove all overviews.
filename: The file to build overviews for (or whose overviews must be removed).

levels: A list of integral overview levels to build. Ignored with -clean option.

Mode (available from GDAL 1.6.0) selects the value which appears most often of all the
sampled points. average_mp is unsuitable for use. Average _magphase averages com-
plex data in mag/phase space. Nearest and average are applicable to normal image
data. Nearest applies a nearest neighbour (simple sampling) resampler, while aver-
age computes the average of all non-NODATA contributing pixels. Cubic resampling
(available from GDAL 1.7.0) applies a 4x4 approximate cubic convolution kernel. Gauss
resampling (available from GDAL 1.6.0) applies a Gaussian kernel before computing the

146 gdaladdo

overview, which can lead to better results than simple averaging in e.g case of sharp
edges with high contrast or noisy patterns. The advised level values should be 2, 4, 8,
... so that a 3x3 resampling Gaussian kernel is selected.

gdaladdo will honour properly NODATA_VALUES tuples (special dataset metadata) so
that only a given RGB triplet (in case of a RGB image) will be considered as the nodata
value and not each value of the triplet independantly per band.

Selecting a level value like 2 causes an overview level that is 1/2 the resolution (in each
dimension) of the base layer to be computed. If the file has existing overview levels at a
level selected, those levels will be recomputed and rewritten in place.

Some format drivers do not support overviews at all. Many format drivers store
overviews in a secondary file with the extension .ovr that is actually in TIFF format.
By default, the GeoTIFF driver stores overviews internally to the file operated on (if it is
writable), unless the -ro flag is specified.

External overviews created in TIFF format may be compressed using the COMPRE-
SS_OVERVIEW configuration option. All compression methods, supported by the -
GeoTIFF driver, available here. (eg --config COMPRESS_OVERVIEW DEFLATE). The
photometric interpretation can be set with --config PHOTOMETRIC_OVERVIEW {RG-
B,YCBCR,...}, and the interleaving with --config INTERLEAVE_OVERVIEW {PIXEL |B-
AND}.

To produce the smallest possible JPEG-In-TIFF overviews, you should use :

-—-config COMPRESS_OVERVIEW JPEG --config PHOTOMETRIC_OVERVIEW YCBCR --config INTERLEAVE_OVERV

Starting with GDAL 1.7.0, external overviews can be created in the BigTIFF format by
using the BIGTIFF_OVERVIEW configuration option : --config BIGTIFF_OVERVIEW
{IF_NEEDEDI|IF_SAFER|YES|NO}. The default value is IF_NEEDED. The behaviour
of this option is exactly the same as the BIGTIFF creation option documented in the
GeoTIFF driver documentation.

* YES forces BigTIFF.

* NO forces classic TIFF.

IF_NEEDED will only create a BigTIFF if it is clearly needed (uncompressed, and
overviews larger than 4GB).

 IF_SAFER will create BigTIFF if the resulting file xmightx exceed 4GB.

Most drivers also support an alternate overview format using Erdas Imagine format. To
trigger this use the USE_RRD=YES configuration option. This will place the overviews
in an associated .aux file suitable for direct use with Imagine or ArcGIS as well as GDAL
applications. (eg --config USE_RRD YES)

23.3 EXAMPLE

Create overviews, embedded in the supplied TIFF file:

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

23.3 EXAMPLE 147

gdaladdo -r average abc.tif 2 4 8 16

Create an external compressed GeoTIFF overview file from the ERDAS .IMG file:

gdaladdo -ro —--config COMPRESS_OVERVIEW DEFLATE erdas.img 2 4 8 16

Create an external JPEG-compressed GeoTIFF overview file from a 3-band RGB
dataset (if the dataset is a writable GeoTIFF, you also need to add the -ro option to
force the generation of external overview):

gdaladdo —--config COMPRESS_OVERVIEW JPEG —--config PHOTOMETRIC_OVERVIEW YCBCR
——config INTERLEAVE_OVERVIEW PIXEL rgb_dataset.ext 2 4 8 16

Create an Erdas Imagine format overviews for the indicated JPEG file:

gdaladdo —--config USE_RRD YES airphoto.jpg 3 9 27 81

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

148 gdaladdo

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 24

gdaltindex

builds a shapefile as a raster tileindex

24.1 SYNOPSIS

gdaltindex [-tileindex field name] [-write_absolute_path] [-skip_different_projection] index_ file [gdal_

24.2 DESCRIPTION

This program builds a shapefile with a record for each input raster file, an attribute
containing the filename, and a polygon geometry outlining the raster. This output is
suitable for use with MapServer as a raster tileindex.

» The shapefile (index_file) will be created if it doesn’t already exist, otherwise it will
append to the existing file.
» The default tile index field is ’location’.

+ Raster filenames will be put in the file exactly as they are specified on the com-
mandline unless the option -write_absolute_path is used.

« If -skip_different_projection is specified, only files with same projection ref as files
already inserted in the tileindex will be inserted.

+ Simple rectangular polygons are generated in the same coordinate system as the
rasters.

243 EXAMPLE

gdaltindex dog_index.shp dog/*.tif

150 gdaltindex

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 25

gdalbuildvrt

Builds a VRT from a list of datasets. (compiled by default since GDAL 1.6.1)

25.1 SYNOPSIS

gdalbuildvrt [-tileindex field_name] [-resolution {highest|lowest|average|user}]
[-tr xres yres] [-separate] [-allow_projection_difference] [-qg]
[-te xmin ymin xmax ymax] [-addalpha] [-hidenodata]
[-srcnodata "value [value...]"] [-vrtnodata "value [value...]"]

[-input_file_list my_liste.txt] output.vrt [gdalfile]x

25.2 DESCRIPTION

This program builds a VRT (Virtual Dataset) that is a mosaic of the list of input gdal
datasets. The list of input gdal datasets can be specified at the end of the command
line, or put in a text file (one filename per line) for very long lists, or it can be a Map-
Server tileindex (see gdaltindex (p. ??) utility). In the later case, all entries in the tile
index will be added to the VRT.

With -separate, each files goes into a separate stacked band in the VRT band. -
Otherwise, the files are considered as tiles of a larger mosaic and the VRT file has
as many bands as one of the input files.

If one GDAL dataset is made of several subdatasets and has 0 raster bands, all the
subdatasets will be added to the VRT rather than the dataset itself.

gdalbuildvrt does some amount of checks to assure that all files that will be put in the
resulting VRT have similar characteristics : number of bands, projection, color interpre-
tation... If not, files that do not match the common characteristics will be skipped. (This
is only true in the default mode, and not when using the -separate option)

If there is some amount of spatial overlapping between files, the order may depend on
the order they are inserted in the VRT file, but this behaviour should not be relied on.

This utility is somehow equivalent to the gdal_vrtmerge.py utility and is build by default

152 gdalbuildvrt

in GDAL 1.6.1.

-tileindex: Use the specified value as the tile index field, instead of the default value
with is ’location’.

-resolution {highest|lowest|average|user}: In case the resolution of all input files is
not the same, the -resolution flag enables the user to control the way the output
resolution is computed. ’average’ is the default. ’highest’ will pick the smallest
values of pixel dimensions within the set of source rasters. ’lowest’ will pick the
largest values of pixel dimensions within the set of source rasters. 'average’ will
compute an average of pixel dimensions within the set of source rasters. ‘user’ is
new in GDAL 1.7.0 and must be used in combination with the -tr option to specify
the target resolution.

-tr xres yres : (starting with GDAL 1.7.0) set target resolution. The values must be
expressed in georeferenced units. Both must be positive values. Specifying those
values is of curse incompatible with highest|lowest|average values for -resolution
option.

-te xmin ymin xmax ymax : (starting with GDAL 1.7.0) set georeferenced extents of
VRT file. The values must be expressed in georeferenced units. If not specified,
the extent of the VRT is the minimum bounding box of the set of source rasters.

-addalpha: (starting with GDAL 1.7.0) Adds an alpha mask band to the VRT when the
source raster have none. Mainly useful for RGB sources (or grey-level sources).
The alpha band is filled on-the-fly with the value 0 in areas without any source
raster, and with value 255 in areas with source raster. The effect is that a RGBA
viewer will render the areas without source rasters as transparent and areas with
source rasters as opaque. This option is not compatible with -separate.

-hidenodata: (starting with GDAL 1.7.0) Even if any band contains nodata value, giv-
ing this option makes the VRT band not report the NoData. Useful when you
want to control the background color of the dataset. By using along with the -
addalpha option, you can prepare a dataset which doesn’t report nodata value
but is transparent in areas with no data.

-srchodata value [value...]: (starting with GDAL 1.7.0) Set nodata values for input
bands (different values can be supplied for each band). If more than one value is
supplied all values should be quoted to keep them together as a single operating
system argument. If the option is not specified, the instrinsic nodata settings on
the source datasets will be used (if they exist). The value set by this option is
written in the NODATA element of each ComplexSource element. Use a value of
None to ignore intrinsic nodata settings on the source datasets.

-vrtnodata value [value...]: (starting with GDAL 1.7.0) Set nodata values at the VRT
band level (different values can be supplied for each band). If more than one
value is supplied all values should be quoted to keep them together as a single
operating system argument. If the option is not specified, instrinsic nodata set-
tings on the first dataset will be used (if they exist). The value set by this option
is written in the NoDataValue element of each VRTRasterBand (p. ??) element.
Use a value of None to ignore intrinsic nodata settings on the source datasets.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

25.3 EXAMPLE 153

-separate: (starting with GDAL 1.7.0) Place each input file into a separate stacked
band. In that case, only the first band of each dataset will be placed into a new
band. Contrary to the default mode, it is not required that all bands have the same
datatype.

-allow_projection_difference: (starting with GDAL 1.7.0) When this option is speci-
fied, the utility will accept to make a VRT even if the input datasets have not the
same projection. Note: this does not mean that they will be reprojected. Their
projection will just be ignored.

-input_file_list: To specify a text file with an input filename on each line

-q: (starting with GDAL 1.7.0) To disable the progress bar on the console

25.3 EXAMPLE

gdalbuildvrt dog_index.vrt doqg/*.tif
gdalbuildvrt —-input_file_list my_liste.txt dog_index.vrt
gdalbuildvrt -separate rgb.vrt red.tif green.tif blue.tif

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

154 gdalbuildvrt

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 26

gdal_contour

builds vector contour lines from a raster elevation model

26.1 SYNOPSIS

Usage: gdal_contour [-b <band>] [-a <attribute_name>] [-3d] [-inodata]
—-snodata n] [-f <formatname>] [-1 <interval>]
—-off <offset>] [-fl <level> <level>...]

-nln <outlayername>]
src_filename> <dst_filename>

(
[
[
(
<

26.2 DESCRIPTION

This program generates a vector contour file from the input raster elevation model (DE-
M).

Starting from version 1.7 the contour line-strings will be oriented consistently. The high
side will be on the right, i.e. a line string goes clockwise around a top.

-b band: picks a particular band to get the DEM from. Defaults to band 1.

-a name: provides a name for the attribute in which to put the elevation. If not provided
no elevation attribute is attached.

-3d: Force production of 3D vectors instead of 2D. Includes elevation at every vertex.
-inodata: Ignore any nodata value implied in the dataset - treat all values as valid.
-shodata value: Input pixel value to treat as "nodata".

-f format: create output in a particular format, default is shapefiles.

-i interval: elevation interval between contours.

-off offset: Offset from zero relative to which to interpret intervals.

156 gdal_contour

-fl level: Name one or more "fixed levels" to extract.

-nln outlayername: Provide a name for the output vector layer. Defaults to "contour”.

26.3 EXAMPLE

This would create 10meter contours from the DEM data in dem.tif and produce a shape-
file in contour.shp/shx/dbf with the contour elevations in the "elev" attribute.

gdal_contour -a elev dem.tif contour.shp -i 10.0

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 27

gdal_rasterize

burns vector geometries into a raster

27.1 SYNOPSIS

Usage: gdal_rasterize [-b band] [-1] [-at]
[-burn value] | [-a attribute_name] [-3d]
[-1 layername] * [-where expression] [-sgl select_statement]

<src_datasource> <dst_filename>

27.2 DESCRIPTION

This program burns vector geometries (points, lines and polygons) into the raster
band(s) of a raster image. Vectors are read from OGR supported vector formats.

Note that the vector data must in the same coordinate system as the raster data, on the
fly reprojection is not provided.

-b band: The band(s) to burn values into. Multiple -b arguments may be used to burn
into a list of bands. The default is to burn into band 1.

-i: Invert rasterization. Burn the fixed burn value, or the burn value associated with the
first feature into all parts of the image not inside the provided a polygon.

-at: Enables the ALL_TOUCHED rasterization option so that all pixels touched by lines
or polygons will be updated not just those one the line render path, or whose
center point is within the polygon. Defaults to disabled for normal rendering rules.

-burn value: A fixed value to burn into a band for all objects. A list of -burn options
can be supplied, one per band being written to.

-a attribute_name: |dentifies an attribute field on the features to be used for a burn in
value. The value will be burned into all output bands.

158 gdal_rasterize

-3d: Indicates that a burn value should be extracted from the "Z" values of the feature.
These values are adjusted by the burn value given by "-burn value" or "-a attribute-
_name" if provided. As of now, only points and lines are drawn in 3D.

-l layername: Indicates the layer(s) from the datasource that will be used for input
features. May be specified multiple times, but at least one layer name or a -sql
option must be specified.

-where expression: An optional SQL WHERE style query expression to be applied to
select features to burn in from the input layer(s).

-sql select_statement: An SQL statement to be evaluated against the datasource to
produce a virtual layer of features to be burned in.

src_datasource: Any OGR supported readable datasource.

dst_filename: The GDAL supported output file. Must support update mode access.
Currently gdal_rasterize cannot create new output files though that may be added
eventually.

27.3 EXAMPLE

The following would burn all polygons from mask.shp into the RGB TIFF file work.tif with
the color red (RGB = 255,0,0).

gdal_rasterize -b 1 -b 2 -b 3 -burn 255 -burn 0 -burn 0 -1 mask mask.shp work.tif

The following would burn all "class A" buildings into the output elevation file, pulling the
top elevation from the ROOF_H attribute.

gdal_rasterize -a ROOF_H -where ’class="A"’ -1 footprints footprints.shp city_dem.tif

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 28

rgh2pct.py

Convert a 24bit RGB image to 8bit paletted

28.1 SYNOPSIS

rgb2pct.py [-n colors | -pct palette_file] [-of format] source_file dest_file

28.2 DESCRIPTION

This utility will compute an optimal pseudo-color table for a given RGB image using
a median cut algorithm on a downsampled RGB histogram. Then it converts the im-
age into a pseudo-colored image using the color table. This conversion utilizes Floyd--
Steinberg dithering (error diffusion) to maximize output image visual quality.

-h colors: Select the number of colors in the generated color table. Defaults to 256.
Must be between 2 and 256.

-pct palette_file: Extract the color table from palette_file instead of computing it. Can
be used to have a consistant color table for multiple files.

-of format: Format to generated (defaults to GeoTIFF). Same semantics as the -of flag
for gdal_translate. Only output formats supporting pseudocolor tables should be
used.

source_file: The input RGB file.
dest file: The output pseudo-colored file that will be created.

NOTE: rgb2pct.py is a Python script, and will only work if GDAL was built with Python
support.

160 rgb2pct.py

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 29

pct2rgb.py

Convert an 8bit paletted image to 24bit RGB

29.1 SYNOPSIS

pct2rgb.py [-of format] [-b band] source_file dest_file

29.2 DESCRIPTION

This utility will convert a pseudocolor band on the input file into an output RGB file of
the desired format.

-of format: Format to generated (defaults to GeoTIFF).

-b band: Band to convert to RGB, defaults to 1.

source_file: The input file.

dest _file: The output RGB file that will be created.

NOTE: pct2rgb.py is a Python script, and will only work if GDAL was built with Python
support.

The new "-expand rgb|rgba’ option of gdal_translate obsoletes that utility.

162 pct2rgb.py

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 30

gdaltransform

transforms coordinates

30.1 SYNOPSIS

gdaltransform [--help-general]
[-1] [-s_srs srs_def] [-t_srs srs_def] [-to "NAME=VALUE"]
[-order n] [-tps] [-rpc] [-geoloc]

[-gcp pixel line easting northing [elevation]]x
[srcfile [dstfile]]

30.2 DESCRIPTION

The gdaltransform utility reprojects a list of coordinates into any supported projec-
tion,including GCP-based transformations.

-s_srs srs def: source spatial reference set. The coordinate systems that can be
passed are anything supported by the OGRSpatialReference.SetFromUser-
Input() call, which includes EPSG PCS and GCSes (ie. EPSG:4296), PROJ.4
declarations (as above), or the name of a .prf file containing well known text.

-t_srs srs_def: target spatial reference set. The coordinate systems that can be
passed are anything supported by the OGRSpatialReference.SetFromUser-
Input() call, which includes EPSG PCS and GCSes (ie. EPSG:4296), PROJ.4
declarations (as above), or the name of a .prf file containing well known text.

-to NAME=VALUE: set a transformer option suitable to pass to GDALCreateGenlmg-
ProjTransformer2() (p. ??).

-order n: order of polynomial used for warping (1 to 3). The default is to select a
polynomial order based on the number of GCPs.

-tps: Force use of thin plate spline transformer based on available GCPs.

164 gdaltransform

-rpc: Force use of RPCs.
-geoloc: Force use of Geolocation Arrays.
-i Inverse transformation: from destination to source.

-gcppixel line easting northing [elevation]: Provide a GCP to be used for transfor-
mation (generally three or more are required)

srcfile: File with source projection definition or GCP’s. If not given, source projection
is read from the command-line -s_srs or -gcp parameters

dstfile: File with destination projection definition.

Coordinates are read as pairs (or triples) of numbers per line from standard input, trans-
formed, and written out to standard output in the same way. All transformations offered
by gdalwarp are handled, including gcp-based ones.

Note that input and output must always be in decimal form. There is currently no support
for DMS input or output.

If an input image file is provided, input is in pixel/line coordinates on that image. If an
output file is provided, output is in pixel/line coordinates on that image.

30.3 Reprojection Example

Simple reprojection from one projected coordinate system to another:

gdaltransform -s_srs EPSG:28992 -t_srs EPSG:31370
177502 311865

Produces the following output in meters in the "Belge 1972 / Belgian Lambert 72"
projection:

244510.77404604 166154.532871342 -1046.79270555763

30.4 Image RPC Example

The following command requests an RPC based transformation using the RPC model
associated with the named file. Because the -i (inverse) flag is used, the transformation
is from output georeferenced (WGS84) coordinates back to image coordinates.

gdaltransform —-i —-rpc 060CT20025052-P2AS-005553965230_01_PO0O01.TIF
125.67206 39.85307 50

Produces this output measured in pixels and lines on the image:

3499.49282422381 2910.83892848414 50

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 31

hearblack

convert nearly black/white borders to black

31.1 SYNOPSIS

nearblack [-white] [-near dist] [-nb non_black_pixels]
[-0 outfile] infile

31.2 DESCRIPTION

This utility will scan an image and try to set all pixels that are nearly black (or nearly
white) around the collar to exactly black (or white). This is often used to "fix up" lossy
compressed airphotos so that color pixels can be treated as transparent when mosaic-

ing.

-0 outfile: The name of the output file to be created. Newly created files are currently
always created with the HFA driver (Erdas Imagine - .img)

-white: Search for nearly white (255) pixels instead of nearly black pixels.

-near dist: Select how far from black (or white) the pixel values can be and still consid-
ered near black (white). Defaults to 15.

-nb non_black_pixels: number of non-black pixels that can be encountered before the
giving up search inwards. Defaults to 2.

infile: The input file. Any GDAL supported format, any number of bands, normally 8bit
Byte bands.

The algorithm processes the image one scanline at a time. A scan "in" is done from
either end setting pixels to black (white) until at least "non_black_pixels" pixels that are
more than "dist" gray levels away from black (white) have been encountered at which

166 nearblack

point the scan stops. The nearly black (white) pixels are set to black (white). The
algorithm also scans from top to bottom and from bottom to top to identify indentations
in the top or bottom.

The processing is all done in 8bit (Bytes).

If the output file is omitted, the processed results will be written back to the input file -
which must support update.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 32

gdal_merge.py

mosaics a set of images

32.1 SYNOPSIS

gdal_merge.py [-o out_filename] [-of out_format] [-co NAME=VALUE] %
[-ps pixelsize_x pixelsize_y] [-separate] [-v] [-pct]
[-ul_1lr ulx uly lrx lry] [-n nodata_value] [-init "value [value...]"]
[-ot datatype] [-createonly] input_files

32.2 DESCRIPTION

This utility will automatically mosaic a set of images. All the images must be in the same
coordinate system and have a matching number of bands, but they may be overlapping,
and at different resolutions. In areas of overlap, the last image will be copied over earlier
ones.

-0 out_filename: The name of the output file, which will be created if it does not already
exist (defaults to "out.tif").

-of format: Output format, defaults to GeoTIFF (GTiff).

-co NAME=VALUE: Creation option for output file. Multiple options can be specified.

-ot datatype: Force the output image bands to have a specific type. Use type names
(ie. Byte, Int16,...)

-ps pixelsize_x pixelsize_y: Pixel size to be used for the output file. If not specified
the resolution of the first input file will be used.

-ul_Ir ulx uly Irx Iry: The extents of the output file. If not specified the aggregate ex-
tents of all input files will be used.

168 gdal_merge.py

-v: Generate verbose output of mosaicing operations as they are done.
-separate: Place each input file into a separate stacked band.

-pct: Grab a pseudocolor table from the first input image, and use it for the output. -
Merging pseudocolored images this way assumes that all input files use the same
color table.

-h nodata_value: Ignore pixels from files being merged in with this pixel value.

-init value: Pre-initialize the output image bands with these values. However, it is not
marked as the nodata value in the output file. If only one value is given, the same
value is used in all the bands.

-createonly: The output file is created (and potentially pre-initialized) but no input im-

age data is copied into it.

NOTE: gdal_merge.py is a Python script, and will only work if GDAL was built with
Python support.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 33

gdal2tiles.py

generates directory with TMS tiles, KMLs and simple web viewers

33.1 SYNOPSIS

gdal2tiles.py [-title "Title"] [-publishurl http://yourserver/dir/]
[-nogooglemaps] [—noopenlayers] [—-nokml]
[-googlemapskey KEY] [-forcekml] [-V]

input_file [output_dir]

33.2 DESCRIPTION

This utility generates a directory with small tiles and metadata, following OSGeo Tile
Map Service Specification. Simple web pages with viewers based on Google Maps and
OpenLayers are generated as well - so anybody can comfortably explore your maps
on-line and you do not need to install or configure any special software (like mapserver)
and the map displays very fast in the webbrowser. You only need to upload generated
directory into a web server.

GDALZ2Tiles creates also necessary metadata for Google Earth (KML SuperOverlay),
in case the supplied map uses EPSG:4326 projection.

World files and embedded georeference is used during tile generation, but you can
publish a picture without proper georeference too.

-title "Title”: Title used for generated metadata, web viewers and KML files.

-publishurl http://yourserver/dir/: Address of a directory into which you
are going to upload the result. It should end with slash.

-nogooglemaps: Do not generate Google Maps based html page.

-noopenlayers: Do not generate OpenLayers based html page.

170 gdal2tiles.py

-nokml: Do not generate KML files for Google Earth.

-googlemapskey KEY: Key for your domain generated on Google Maps APl web
page (http://www.google.com/apis/maps/signup.html).

-forcekml Force generating of KML files. Input file must use EPSG:4326 coordinates!
-v Generate verbose output of tile generation.

NOTE: gdal2tiles.py is a Python script that needs to be run against "new generation”
Python GDAL binding.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 34

gdal-config

determines various information about a GDAL installation

34.1 SYNOPSIS

gdal-config [OPTIONS]
Options:
—-prefix[=DIR]]
—-1libs]
—-—cflags]
——-version]
——ogr—enabled]
——formats]

[
[
[
(
[
(

34.2 DESCRIPTION

This utility script (available on Unix systems) can be used to determine various informa-
tion about a GDAL installation. It is normally just used by configure scripts for applica-
tions using GDAL but can be queried by an end user.

--prefix: the top level directory for the GDAL installation.

--libs: The libraries and link directives required to use GDAL.

--cflags: The include and macro definition required to compiled modules using GDAL.

--version: Reports the GDAL version.

--ogr-enabled: Reports "yes" or "no" to standard output depending on whether OGR
is built into GDAL.

--formats: Reports which formats are configured into GDAL to stdout.

172 gdal-config

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 35

gdal_retile.py

gdal_retile.py retiles a set of tiles and/or build tiled pyramid levels

gdal_retile.py [-v] [-co NAME=VALUE]x [-of out_format] [-ps pixelWidth pixelHeight]

[-ot {Byte/Intl6/UIntl6/UInt32/Int32/Float32/Float64/
CIntl6/CInt32/CFloat32/CFloat64}]’

[-tileIndex tileIndexName [-tileIndexField tileIndexFieldName]]

[—csv fileName [-csvDelim delimiter]]

[-s_srs srs_def] [-pyramidOnly]

[-r {near/bilinear/cubic/cubicspline/lanczos}]
—levels numberoflevels

—-targetDir TileDirectory input_files

This utility will retile a set of input tile(s). All the input tile(s) must be georeferenced in
the same coordinate system and have a matching number of bands. Optionally pyramid
levels are generated. It is possible to generate shape file(s) for the tiled output.

If your number of input tiles exhausts the command line buffer, use the general --optfile
option

-targetDir directory: The Directory where the tile result is created. Pyramids are
stored in subdirs numbered from 1. Created tile names have a numbering schema
and contain the name of the source tiles(s)

-of format: Output format, defaults to GeoTIFF (GTiff).
-co NAME=VALUE: Creation option for output file. Multiple options can be specified.

-ot datatype: Force the output image bands to have a specific type. Use type names
(ie. Byte, Int16,...)

-ps pixelsize_x pixelsize_y: Pixel size to be used for the output file. If not specified,
256 x 256 is the default

-levels numberOfLevels: Number of pyramids levels to build.

-v: Generate verbose output of tile operations as they are done.

174 gdal_retile.py

-pyramidOnly: No retiling, build only the pyramids
-r algorithm: Resampling algorithm, default is near

-s_srs srs_def: Source spatial reference to use. The coordinate systems that can
be passed are anything supported by the OGRSpatialReference.SetFromUser-
Input() call, which includes EPSG PCS and GCSes (ie.EPSG:4296), PROJ.4
declarations (as above), or the name of a .prf file containing well known text.
If no srs_def is given, the srs_def of the source tiles is used (if there is any). The
srs_def will be propageted to created tiles (if possible) and to the optional shape
file(s)

-tileIndex tileiIndexName: The name of shape file containing the result tile(s) index

-tileIndexField tileIndexFieldName: The name of the attribute containing the tile
name

-csv csVFileName: The name of the csv file containing the tile(s) georeferencing infor-
mation. The file contains 5 columns: tilename,minx,maxx,miny,maxy

-csvDelim column delimiter: The column delimter used in the csv file, default value

is a semicolon ";

NOTE: gdal_merge.py is a Python script, and will only work if GDAL was built with
Python support.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 36
gdal_grid

creates regular grid from the scattered data

36.1 SYNOPSIS

Usage: gdal_grid [--help-general] [--formats]
[-ot {Byte/Intl6/UIntl6/UInt32/Int32/Float32/Float64/
CIntl6/CInt32/CFloat32/CFloat64}]

[-of format] [-co "NAME=VALUE"]

[-zfield field_name]

[-a_srs srs_def] [-spat xmin ymin xmax ymax]

[-1 layername]* [-where expression] [-sgl select_statement]
[-txe xmin xmax] [-tye ymin ymax] [-outsize xsize ysize]
[-a algorithm[:parameterl=valuell*] [-qg]

<src_datasource> <dst_filename>

36.2 DESCRIPTION

This program creates regular grid (raster) from the scattered data read from the OGR
datasource. Input data will be interpolated to fill grid nodes with values, you can choose
from various interpolation methods.

-ot type: For the output bands to be of the indicated data type.

-of format: Select the output format. The default is GeoTIFF (GTiff). Use the short
format name.

-txe xmin xmax: Set georeferenced X extents of output file to be created.
-tye ymin ymax: Set georeferenced Y extents of output file to be created.
-outsize xsize ysize: Set the size of the output file in pixels and lines.

-a_srs srs_def: Override the projection for the output file. The srs_def may be any of
the usual GDAL/OGR forms, complete WKT, PROJ.4, EPSG:n or a file containing
the WKT.

176 gdal_grid

-zfield field_name: |dentifies an attribute field on the features to be used to get a -
Z value from. This value overrides Z value read from feature geometry record
(naturally, if you have a Z value in geometry, otherwise you have no choice and
should specify a field name containing Z value).

-a [algorithm[:parameter1=value1][:parameter2=value2]...]: Set the interpolation
algorithm or data metric name and (optionally) its parameters. See INTERPOL-
ATION ALGORITHMS (p.??) and DATA METRICS (p. ??) sections for further
discussion of available options.

-spat xmin ymin xmax ymax: Adds a spatial filter to select only features contained
within the bounding box described by (xmin, ymin) - (xmax, ymax).

-clipsrc[xmin ymin xmax ymax]| WKT|datasource|spat_extent: Adds a spatial fil-
ter to select only features contained within the specified bounding box (expressed
in source SRS), WKT geometry (POLYGON or MULTIPOLYGON), from a data-
source or to the spatial extent of the -spat option if you use the spat_extent key-
word. When specifying a datasource, you will generally want to use it in combi-
nation of the -clipsrclayer, -clipsrcwhere or -clipsrcsql options.

-clipsrcsql sql_statement: Select desired geometries using an SQL query instead.

-clipsrclayer layername: Select the named layer from the source clip datasource.

-clipsrcwhere expression: Restrict desired geometries based on attribute query.

-l layername: Indicates the layer(s) from the datasource that will be used for input
features. May be specified multiple times, but at least one layer name or a -sql

option must be specified.

-where expression: An optional SQL WHERE style query expression to be applied to
select features to process from the input layer(s).

-sql select_statement: An SQL statement to be evaluated against the datasource to
produce a virtual layer of features to be processed.

-co "NAME=VALUE": Passes a creation option to the output format driver. Multiple
-co options may be listed. See format specific documentation for legal creation
options for each format.

-q: Suppress progress monitor and other non-error output.

src_datasource: Any OGR supported readable datasource.

dst_filename: The GDAL supported output file.

36.3 INTERPOLATION ALGORITHMS

There are number of interpolation algorithms to choose from.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

36.3 INTERPOLATION ALGORITHMS 177

36.3.1 invdist

Inverse distance to a power. This is default algorithm. It has following parameters:

power: Weighting power (default 2.0).
smoothing: Smoothing parameter (default 0.0).

radius1: The first radius (X axis if rotation angle is 0) of search ellipse. Set this pa-
rameter to zero to use whole point array. Default is 0.0.

radius2: The second radius (Y axis if rotation angle is 0) of search ellipse. Set this
parameter to zero to use whole point array. Default is 0.0.

angle: Angle of search ellipse rotation in degrees (counter clockwise, default 0.0).

max_points: Maximum number of data points to use. Do not search for more points
than this number. This is only used if search ellipse is set (both radiuses are
non-zero). Zero means that all found points should be used. Default is 0.

min_points: Minimum number of data points to use. If less amount of points found
the grid node considered empty and will be filled with NODATA marker. This is

only used if search ellipse is set (both radiuses are non-zero). Default is 0.

nodata: NODATA marker to fill empty points (default 0.0).

36.3.2 average

Moving average algorithm. It has following parameters:

radius1: The first radius (X axis if rotation angle is 0) of search ellipse. Set this pa-
rameter to zero to use whole point array. Default is 0.0.

radius2: The second radius (Y axis if rotation angle is 0) of search ellipse. Set this
parameter to zero to use whole point array. Default is 0.0.

angle: Angle of search ellipse rotation in degrees (counter clockwise, default 0.0).

min_points: Minimum number of data points to use. If less amount of points found
the grid node considered empty and will be filled with NODATA marker. Default
is 0.

nodata: NODATA marker to fill empty points (default 0.0).

Note, that it is essential to set search ellipse for moving average method. It is a window
that will be averaged when computing grid nodes values.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

178 gdal_grid

36.3.3 nearest

Nearest neighbor algorithm. It has following parameters:
radius1: The first radius (X axis if rotation angle is 0) of search ellipse. Set this pa-
rameter to zero to use whole point array. Default is 0.0.

radius2: The second radius (Y axis if rotation angle is 0) of search ellipse. Set this
parameter to zero to use whole point array. Default is 0.0.

angle: Angle of search ellipse rotation in degrees (counter clockwise, default 0.0).

nodata: NODATA marker to fill empty points (default 0.0).

36.4 DATA METRICS

Besides the interpolation functionality gdal_grid (p. ??) can be used to compute some
data metrics using the specified window and output grid geometry. These metrics are:
minimum: Minimum value found in grid node search ellipse.

maximum: Maximum value found in grid node search ellipse.

range: A difference between the minimum and maximum values found in grid node
search ellipse.

count: A number of data points found in grid node search ellipse.

average_distance: An average distance between the grid node (center of the search
ellipse) and all of the data points found in grid node search ellipse.

average_distance_pts: An average distance between the data points found in grid
node search ellipse. The distance between each pair of points within ellipse is
calculated and average of all distances is set as a grid node value.

All the metrics have the same set of options:
radius1: The first radius (X axis if rotation angle is 0) of search ellipse. Set this pa-

rameter to zero to use whole point array. Default is 0.0.

radius2: The second radius (Y axis if rotation angle is 0) of search ellipse. Set this
parameter to zero to use whole point array. Default is 0.0.

angle: Angle of search ellipse rotation in degrees (counter clockwise, default 0.0).

min_points: Minimum number of data points to use. If less amount of points found
the grid node considered empty and will be filled with NODATA marker. This is
only used if search ellipse is set (both radiuses are non-zero). Default is 0.

nodata: NODATA marker to fill empty points (default 0.0).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

36.5 READING COMMA SEPARATED VALUES 179

36.5 READING COMMA SEPARATED VALUES

Often you have a text file with a list of comma separated XYZ values to work with (so
called CSV file). You can easily use that kind of data source in gdal_grid (p. ??). All
you need is create a virtual dataset header (VRT) for you CSV file and use it as input
datasource for gdal_grid (p.??). You can find details on VRT format at Virtual
Format description page.

Here is a small example. Let we have a CSV file called dem.csv containing

Easting,Northing,Elevation
86943.4,891957,139.13
87124.3,892075,135.01
86962.4,892321,182.04
87077.6,891995,135.01

For above data we will create dem.vrt header with the following content:

<OGRVRTDataSource>
<OGRVRTLayer name="dem">
<SrcDataSource>dem.csv</SrcDataSource>
<GeometryType>wkbPoint</GeometryType>
<GeometryField encoding="PointFromColumns" x="Easting" y="Northing" z="Elevation"/>
</OGRVRTLayer>
</OGRVRTDataSource>

This description specifies so called 2.5D geometry with three coordinates X, Y and Z.
Z value will be used for interpolation. Now you can use dem.vrt with all OGR programs
(start with ogrinfo (p. ??) to test that everything works fine). The datasource will contain
single layer called "dem” filled with point features constructed from values in CSV file.
Using this technique you can handle CSV files with more than three columns, switch
columns, etc.

If your CSV file does not contain column headers then it can be handled in the following
way:

<GeometryField encoding="PointFromColumns" x="field_1" y="field_ 2" z="field_3"/>

Comma Separated Value description page contains details on CSV format sup-
ported by GDAL/OGR.

36.6 EXAMPLE

The following would create raster TIFF file from VRT datasource described in READING
COMMA SEPARATED VALUES (p. ??) section using the inverse distance to a power
method. Values to interpolate will be read from Z value of geometry record.

gdal_grid -a invdist:power=2.0:smoothing=1.0 -txe 85000 89000 -tye 894000 890000 -outsize 400 400 -of GI

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

180 gdal_grid

The next command does the same thing as the previos one, but reads values to interpo-
late from the attribute field specified with -zfield option instead of geometry record. So
in this case X and Y coordinates are being taken from geometry and Z is being taken
from the "Elevation" field.

gdal_grid -zfield "Elevation" -a invdist:power=2.0:smoothing=1.0 -txe 85000 89000 -tye 894000

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 37

gdaldem

Tools to analyze and visualize DEMs. (since GDAL 1.7.0)

37.1 SYNOPSIS

- To generate a shaded relief map from any GDAL-supported elevation raster
gdaldem hillshade input_dem output_hillshade

[-z ZFactor (default=1)] [-s scalex (default=1)]"
[-az Azimuth (default=315)] [-alt Altitude (default=45)]
[-b Band (default=1)] [-of format] [-co "NAME=VALUE"]x* [-q]

- To generate a slope map from any GDAL-supported elevation raster
gdaldem slope input_dem output_slope_map"
[-p use percent slope (default=degrees)] [-s scalex (default=1l)]
[-b Band (default=1)] [-of format] [-co "NAME=VALUE"]* [-q]

- To generate an aspect map from any GDAL-supported elevation raster
Outputs a 32-bit float raster with pixel values from 0-360 indicating azimuth
gdaldem aspect input_dem output_aspect_map"
[-trigonometric] [-zero_for_ flat]
[-b Band (default=1)] [-of format] [-co "NAME=VALUE"]x* [—-q]

- To generate a color relief map from any GDAL-supported elevation raster
gdaldem color-relief input_dem color_text_file output_color_relief map
[-alpha] [-exact_color_entry | -nearest_color_entry]
[-b Band (default=1)] [-of format] [-co "NAME=VALUE"]x* [-q]
where color_text_file contains lines of the format "elevation_value red green blue"

- To generate a Terrain Ruggedness Index (TRI) map from any GDAL-supported elevation raster:
gdaldem TRI input_dem output_TRI_map
[-b Band (default=1)] [-of format] [-qg]

- To generate a Topographic Position Index (TPI) map from any GDAL-supported elevation raster:

gdaldem TPI input_dem output_TPI_map
[-b Band (default=1)] [-of format] [-g]

- To generate a roughness map from any GDAL-supported elevation raster:
gdaldem roughness input_dem output_roughness_map
[-b Band (default=1)] [-of format] [-qg]

182 gdaldem

Notes :
Scale is the ratio of vertical units to horizontal
for Feet:Latlong use scale=370400, for Meters:LatLong use scale=111120)

This utility has 7 different modes :

hillshade (p. ??) to generate a shaded relief map from any GDAL-supported elevation
raster

slope (p. ??) to generate a slope map from any GDAL-supported elevation raster
aspect (p. ??) to generate an aspect map from any GDAL-supported elevation raster

color-relief (p. ??) to generate a color relief map from any GDAL-supported elevation
raster

TRI (p. ??) to generate a map of Terrain Ruggedness Index from any GDAL-supported
elevation raster

TPI (p. ??) to generate a map of Topographic Position Index from any GDAL-supported
elevation raster

roughness (p. ??) to generate a map of roughness from any GDAL-supported eleva-
tion raster

The following general options are available :

input_dem: The input DEM raster to be processed
output_xxx_map: The output raster produced

-of format: Select the output format. The default is GeoTIFF (GTiff). Use the short
format name.

-b band: Select an input band to be processed. Bands are numbered from 1.

-co "NAME=VALUE": Passes a creation option to the output format driver. Multiple
-co options may be listed. See format specific documentation for legal creation
options for each format.

-q: Suppress progress monitor and other non-error output.

37.2 Modes

37.2.1 hillshade

This command outputs an 8-bit raster with a nice shaded relief effect. It's very useful
for visualizing the terrain. You can optionally specify the azimuth and altitude of the light
source, a vertical exaggeration factor and a scaling factor to account for differences
between vertical and horizontal units.

The following specific options are available :

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

37.2 Modes 183

-z zFactor: vertical exaggeration used to pre-multiply the elevations

-s scale: ratio of vertical units to horizontal. If the horizontal unit of the source DEM
is degrees (e.g Lat/Long WGS84 projection), you can use scale=111120 if the
vertical units are meters (or scale=370400 if they are in feet)

-az azimuth: azimuth of the light, in degrees. 0 if it comes from the top of the raster,
90 from the east, ... The default value, 315, should rarely be changed as it is the
value generally used to generate shaded maps.

-alt altitude: altitude of the light, in degrees. 90 if the light comes from above the DEM,
0 if it is raking light.

37.2.2 slope

This command will take a DEM raster and output a 32-bit float raster with slope values.
You have the option of specifying the type of slope value you want: degrees or percent
slope. In cases where the horizontal units differ from the vertical units, you can also
supply a scaling factor.

The following specific options are available :

-p : if specified, the slope will be expressed as percent slope. Otherwise, it is expressed
as degrees

-s scale: ratio of vertical units to horizontal. If the horizontal unit of the source DEM
is degrees (e.g Lat/Long WGS84 projection), you can use scale=111120 if the
vertical units are meters (or scale=370400 if they are in feet)

37.2.3 aspect

This command outputs a 32-bit float raster with values between 0° and 360 ° represent-
ing the azimuth that slopes are facing. The definition of the azimuth is such that : 0°
means that the slope is facing the North, 90° it’s facing the East, 180° it’s facing the
South and 270° it’s facing the West (provided that the top of your input raster is north
oriented). The aspect value -9999 is used as the nodata value to indicate undefined
aspect in flat areas with slope=0.

The following specifics options are available :

-trigonometric: return trigonometric angle instead of azimuth. Thus 0° means East,
90° North, 180° West, 270° South

-zero_for_flat: return O for flat areas with slope=0, instead of -9999

By using those 2 options, the aspect returned by gdaldem aspect should be identical to
the one of GRASS r.slope.aspect. Otherwise, it’s identical to the one of Matthew Perry’s
aspect.cpp utility.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

184 gdaldem

37.2.4 color-relief

This command outputs a 3-band (RGB) or 4-band (RGBA) raster with values are com-
puted from the elevation and a text-based color configuration file, containing the associ-
ation between various elevation values and the corresponding wished color. By default,
the colors between the given elevation values are blended smoothly and the result is
a nice colorized DEM. The -exact_color_entry or -nearest_color_entry options can be
used to avoid that linear interpolation for values that don’t match an index of the color
configuration file.

The following specifics options are available :

color_text _file: text-based color configuration file
-alpha : add an alpha channel to the output raster

-exact_color_entry : use strict matching when searching in the color configuration file.
If none matching color entry is found, the "0,0,0,0" RGBA quadruplet will be used

-nearest_color_entry : use the RGBA quadruplet corresponding to the closest entry
in the color configuration file.

The color-relief mode is the only mode that supports VRT as output format. In that case,
it will translate the color configuration file into appropriate <LUT> elements. Note that
elevations specified as percentage will be translated as absolute values, which must be
taken into account when the statistics of the source raster differ from the one that was
used when building the VRT.

The text-based color configuration file generally contains 4 columns per line : the ele-
vation value and the corresponding Red, Green, Blue component (between 0 and 255).
The elevation value can be any floating point value, or the nv keyword for the nodata
value.. The elevation can also be expressed as a percentage : 0% being the minimum
value found in the raster, 100% the maximum value.

An extra column can be optionnaly added for the alpha component. If it is not specified,
full opacity (255) is assumed.

Various field separators are accepted : comma, tabulation, spaces, ’:'.

Common colors used by GRASS can also be specified by using their name, instead of
the RGB triplet. The supported list is : white, black, red, green, blue, yellow, magenta,
cyan, aqua, grey/gray, orange, brown, purple/violet and indigo.

Note: the syntax of the color configuration file is derived from the one supported by
GRASS r.colors utility. ESRI HDR color table files (.clr) also match that syntax. The
alpha component and the support of tablulations and commma as separators are GDA-
L specific extensions.

For example :
3500 white

2500 235:220:175
50% 190 185 135

700 240 250 150
0 50 180 50
nv 0 0 0 0

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

37.3 AUTHORS 185

37.25 TRI

This command outputs a single-band raster with values computed from the elevation.
TRI stands for Terrain Ruggedness Index, which is defined as the mean difference be-
tween a central pixel and its surrounding cells (see Wilson et al 2007, Marine Geodesy
30:3-35).

There are no specific options.

37.26 TPI

This command outputs a single-band raster with values computed from the elevation.
TPI stands for Topographic Position Index, which is defined as the difference between
a central pixel and the mean of its surrounding cells (see Wilson et al 2007, Marine
Geodesy 30:3-35).

There are no specific options.

37.2.7 roughness

This command outputs a single-band raster with values computed from the elevation.
Roughness is the the largest inter-cell difference of a central pixel and its surrounding
cell, as defined in Wilson et al (2007, Marine Geodesy 30:3-35).

There are no specific options.

37.3 AUTHORS

Matthew Perry <perrygeo@gmail.com>, Even Rouault <even.rouault@mines-paris.-
org>, Howard Butler <hobu.inc@gmail.com>, Chris Yesson <chris.-
yesson@ioz.ac.uk>

Derived from code by Michael Shapiro, Olga Waupotitsch, Marjorie Larson, Jim -
Westervelt : U.S. Army CERL, 1993. GRASS 4.1 Reference Manual. U.S. Army Corps
of Engineers, Construction Engineering Research Laboratories, Champaign, lllinois, 1-
425.

37.4 See also

Documentation of related GRASS utilities :

http://grass.osgeo.org/grass64/manuals/html64_user/r.-
slope.aspect.html

http://grass.osgeo.org/grass64/manuals/html64_user/r.-
shaded.relief.html

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

186 gdaldem

http://grass.osgeo.org/grass64/manuals/html64_user/r.-
colors.html

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 38

gdalwarp

image reprojection and warping utility

38.1 SYNOPSIS

gdalwarp [-—help-general] [--formats]
[-s_srs srs_def] [-t_srs srs_def] [-to "NAME=VALUE"]
[-order n] [-tps] [-rpc] [-geoloc] [-et err_threshold]
[-te xmin ymin xmax ymax] [-tr xres yres] [-ts width height]
[-wo "NAME=VALUE"] [-ot Byte/Intl6/...] [-wt Byte/Intl6]
[-srcnodata "value [value...]"] [-dstnodata "value [value...]"] -dstalpha
[-r resampling_method] [-wm memory_in_mb] [-multi] [-qg]
[-cutline datasource] [-cl layer] [-cwhere expression]
[-csgl statement] [-cblend dist_in_pixels]
[-of format] [-co "NAME=VALUE"]

srcfilex dstfile

38.2 DESCRIPTION

The gdalwarp utility is an image mosaicing, reprojection and warping utility. The pro-
gram can reproject to any supported projection, and can also apply GCPs stored with
the image if the image is "raw" with control information.

-s_srs srs def: source spatial reference set. The coordinate systems that can be
passed are anything supported by the OGRSpatialReference.SetFromUser-
Input() call, which includes EPSG PCS and GCSes (ie. EPSG:4296), PROJ.4
declarations (as above), or the name of a .prf file containing well known text.

-t_srs srs_def: target spatial reference set. The coordinate systems that can be
passed are anything supported by the OGRSpatialReference.SetFromUser-
Input() call, which includes EPSG PCS and GCSes (ie. EPSG:4296), PROJ.4
declarations (as above), or the name of a .prf file containing well known text.

188 gdalwarp

-to NAME=VALUE: set a transformer option suitable to pass to GDALCreateGenlmg-
ProjTransformer2() (p. ??).

-order n: order of polynomial used for warping (1 to 3). The default is to select a
polynomial order based on the number of GCPs.

-tps: Force use of thin plate spline transformer based on available GCPs.
-rpc: Force use of RPCs.
-geoloc: Force use of Geolocation Arrays.

-et err_threshold: error threshold for transformation approximation (in pixel units - de-
faults to 0.125).

-te xmin ymin xmax ymax: set georeferenced extents of output file to be created (in
target SRS).

-tr xres yres: set output file resolution (in target georeferenced units)

-ts width height: set output file size in pixels and lines. If width or height is set to 0,
the other dimension will be guessed from the computed resolution. Note that -ts
cannot be used with -tr

-wo "NAME=VALUE": Set a warp options. The GDALWarpOptions::papszWarp-
Options (p. ??) docs show all options. Multiple -wo options may be listed.

-ot type: For the output bands to be of the indicated data type.

-wt type: Working pixel data type. The data type of pixels in the source image and
destination image buffers.

-r resampling_method: Resampling method to use. Available methods are:
near: nearest neighbour resampling (default, fastest algorithm, worst interpola-
tion quality).
bilinear: bilinear resampling.
cubic: cubic resampling.
cubicspline: cubic spline resampling.
lanczos: Lanczos windowed sinc resampling.
-srcnodata value [value...]: Set nodata masking values for input bands (different val-
ues can be supplied for each band). If more than one value is supplied all values
should be quoted to keep them together as a single operating system argument.

Masked values will not be used in interpolation. Use a value of None to ignore
intrinsic nodata settings on the source dataset.

-dstnodata value [value...]: Set nodata values for output bands (different values can
be supplied for each band). If more than one value is supplied all values should
be quoted to keep them together as a single operating system argument. New
files will be initialized to this value and if possible the nodata value will be recorded
in the output file.

-dstalpha: Create an output alpha band to identify nodata (unset/transparent) pixels.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

38.3 EXAMPLE 189

-wm memory_in_mb: Set the amount of memory (in megabytes) that the warp APl is
allowed to use for caching.

-multi: Use multithreaded warping implementation. Multiple threads will be used to
process chunks of image and perform input/output operation simultaneously.

-q: Be quiet.

-of format: Select the output format. The default is GeoTIFF (GTiff). Use the short
format name.

-co "NAME=VALUE": passes a creation option to the output format driver. Multiple
-co options may be listed. See format specific documentation for legal creation
options for each format.

-cutline datasource: Enable use of a blend cutline from the name OGR support data-
source.

-cl layername: Select the named layer from the cutline datasource.
-cwhere expression: Restrict desired cutline features based on attribute query.

-csql query: Select cutline features using an SQL query instead of from a layer with
-cl.

-cblend distance: Set a blend distance to use to blend over cutlines (in pixels).
srcfile: The source file name(s).

dstfile: The destination file name.

Mosaicing into an existing output file is supported if the output file already exists. The

spatial extent of the existing file will not be modified to accomodate new data, so you
may have to remove it in that case.

Polygon cutlines may be used to restrict the the area of the destination file that may be
updated, including blending. Cutline features must be in the georeferenced units of the
destination file.

38.3 EXAMPLE

For instance, an eight bit spot scene stored in GeoTIFF with control points mapping the
corners to lat/long could be warped to a UTM projection with a command like this:

gdalwarp -t_srs ’+proj=utm +zone=11 +datum=WGS84’ raw_spot.tif utmll.tif

For instance, the second channel of an ASTER image stored in HDF with control points
mapping the corners to lat/long could be warped to a UTM projection with a command
like this:

gdalwarp HDF4_SDS:ASTER_LIB:"pg-PR1B0000-2002031402_100_001":2 pg-PR1IB0000-2002031402_100_001_2.tif

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

190 gdalwarp

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 39

OGR Utility Programs

The following utilities are distributed as part of the OGR Simple Features toolkit:

+ ogrinfo (p. ??) - Lists information about an OGR supported data source
+ ogr2ogr (p. ??) - Converts simple features data between file formats

+ ogrtindex (p. ??) - Creates a tileindex

192 OGR Utility Programs

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 40
ogrinfo

lists information about an OGR supported data source

ogrinfo [--help-general] [-ro] [-gq] [-where restricted_where]
[-spat xmin ymin xmax ymax] [-fid fid]
[-sgl statement] [-al] [-so] [-fields={YES/NO}]
[-geom={YES/NO/SUMMARY }] [-—formats]
datasource_name [layer [layer ...]]

The ogrinfo program lists various information about an OGR supported data source to
stdout (the terminal).

-ro: Open the data source in read-only mode.

-al: List all features of all layers (used instead of having to give layer names as argu-
ments).

-so: Summary Only: supress listing of features, show only the summary information
like projection, schema, feature count and extents.

-q: Quiet verbose reporting of various information, including coordinate system, layer
schema, extents, and feature count.

-where restricted_where: An attribute query in a restricted form of the queries used
in the SQL WHERE statement. Only features matching the attribute query will be
reported.

-sql statement: Execute the indicated SQL statement and return the result.

-spat xmin ymin xmax ymax: The area of interest. Only features within the rectangle
will be reported.

-fid fid: If provided, only the feature with this feature id will be reported. Operates
exclusive of the spatial or attribute queries. Note: if you want to select several
features based on their feature id, you can also use the fact the 'fid’ is a special
field recognized by OGR SQL. So, -where "fid in (1,3,5)" would select features
1,3 and 5.

194 ogrinfo

-fields={YES/NO}: (starting with GDAL 1.6.0) If set to NO, the feature dump will not
display field values. Default value is YES.

-geom={YES/NO/SUMMARY}: (starting with GDAL 1.6.0) If set to NO, the feature
dump will not display the geometry. If set to SUMMARY, only a summary of
the geometry will be displayed. If set to YES, the geometry will be reported in full
OGC WKT format. Default value is YES.

--formats: List the format drivers that are enabled.

datasource_name: The data source to open. May be a filename, directory or other
virtual name. See the OGR Vector Formats list for supported datasources.

layer: One or more layer names may be reported.

If no layer names are passed then ogrinfo will report a list of available layers (and their
layerwide geometry type). If layer name(s) are given then their extents, coordinate sys-
tem, feature count, geometry type, schema and all features matching query parameters
will be reported to the terminal. If no query parameters are provided, all features are
reported.

Geometries are reported in OGC WKT format.
Example reporting all layers inan NTF file:

% ogrinfo wrk/SHETLAND_ISLANDS.NTF

INFO: Open of ‘wrk/SHETLAND_ISLANDS.NTF’
using driver ‘UK .NTF’ successful.

1: BL2000_LINK (Line String)

2: BL2000_POLY (None)

3: BL2000_COLLECTIONS (None)

4: FEATURE_CLASSES (None)

Example using an attribute query is used to restrict the output of the features in a layer:

% ogrinfo -ro -where ’GLOBAL_LINK_ID=185878’ wrk/SHETLAND_ISLANDS.NTF BL2000_LINK
INFO: Open of ‘wrk/SHETLAND_ISLANDS.NTEF’
using driver ‘UK .NTF’ successful.

Layer name: BL2000_LINK
Geometry: Line String
Feature Count: 1
Extent: (419794.100000, 1069031.000000) - (419927.900000, 1069153.500000)
Layer SRS WKT:
PROJCS["OSGB 1936 / British National Grid",

GEOGCS["OSGB 1936",

DATUM["OSGB_1936",

SPHEROID["Airy 1830",6377563.396,299.324964611,
PRIMEM|["Greenwich",0],
UNIT["degree",0.017453292519943317,

PROJECTION["Transverse_Mercator"],
PARAMETER(["latitude_of_origin",49],
PARAMETER["central_meridian",-27,
PARAMETER["scale_factor",0.999601272],
PARAMETER(["false_easting",400000],
PARAMETER(["false_northing",-100000],
UNIT["metre",1]]

LINE_ID: Integer (6.0)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

195

GEOM_ID: Integer (6.0
FEAT_CODE: String (4.
GLOBAL_LINK_ID: Integ
TILE_REF: String (10.

)

0)
er
0)

(10.0)

OGRFeature (BL2000_LINK) :2

LINE_ID (Integer) =
GEOM_ID (Integer)
FEAT_CODE (String)
GLOBAL_LINK_ID
TILE_REF (String)
LINESTRING (419832.
1069048.800,419805.
1069037.400,419827.
1069032.800,419879.
1069070.500,419890.
1069092.900,419896.
1069085.600,419875.
1069094.600,419890.
1069133.800,419927.
1069153.500,419917.
1069152.500,419903.
1069149.300,419890.
1069149.800,419876.
1069146.400,419862.
1069138.600,419850
1069130,419836.200
1069126.900,419815.
1069117.600,419794.
1069106.800,419805.

2
2

(null)
(Integer)

SHETLAND I

100
100
400
500
900
700
400
400
900
100
400
700
900
100

1069046.

1069046

1069146

185878

300,419820.

.000,419805.
1069035.
1069049.
1069081.
1069094.
1069087.
1069106.

600,419842

500,419886.
800,419896.
800,419892.
300,419875.
400,419907.

.300,419927.
1069153.
1069150.
1069149.
1069148.
1069143.

500,419911.
800,419898.
400,419890.
900,419873.
000,419860

100 1069043.800,419808.
000 1069040.600,4198009.

1069031,419859.000
700 1069061
500 1069086.
500 1069094
100 1069091.
600 1069112.
600 1069152
500 1069153.
800 1069149
600 1069149
100 1069147.500,419870
1069142,419854.900

100,419872

1069135,419848.800 1069134.100,419843
1069127.600,419824.600 1069123.800,419820.200

500 1069126.900,419808.200 1069116.500,419798.
100 1069115.100,419796.300 1069109.100,419801.

000

1069107.300)

.400,419890.
800,419898.
.300,419878.
.200
800,419924.
.400,419922.
000,419908.
.400,419894.
.400,419880.
.200

300
400

100
400
100

600
600
700
800
800

700
800

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

196 ogrinfo

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 41
ogr2ogr

converts simple features data between file formats

Usage: ogr2ogr [--help-general] [-skipfailures] [-append] [-update] [-gt n]
[-select field list] [-where restricted_where]
[-progress] [-sgl <sgl statement>] [-dialect dialect]
[-preserve_fid] [-fid FID]
[-spat xmin ymin xmax ymax] [-wrapdateline]
[-clipsrc [xmin ymin xmax ymax] |WKT|datasource]|spat_extent]
[-clipsrcsgl sgl_statement] [-clipsrclayer layer]
[-clipsrcwhere expression]
[-clipdst [xmin ymin xmax ymax] |WKT|datasource]

[-clipdstsgl sqgl_statement] [-clipdstlayer layer]

[-clipdstwhere expression]

[-a_srs srs_def] [-t_srs srs_def] [-s_srs srs_def]

[-f format_name] [-overwrite] [[-dsco NAME=VALUE] ...]
[-segmentize max_dist] [-fieldTypeToString All| (typell[,type2]x*)]
dst_datasource_name src_datasource_name

[-1lco NAME=VALUE] [-nln name] [-nlt type] [layer [layer ...]]

This program can be used to convert simple features data between file formats per-
forming various operations during the process such as spatial or attribute selections,
reducing the set of attributes, setting the output coordinate system or even reprojecting
the features during translation.

-fformat_name: output file format name (default is ESRI Shapefile), some possible
values are:

—f "ESRI Shapefile"

-f "TIGER"
—-f "MapInfo File"
— f n GML n

—-f "PostgreSQL"

-append: Append to existing layer instead of creating new
-overwrite: Delete the output layer and recreate it empty

-update: Open existing output datasource in update mode rather than trying to create
a new one

198 ogr2ogr

-selectfield_list: Comma-delimited list of fields from input layer to copy to the new
layer. A field is skipped if mentioned previously in the list even if the input layer
has duplicate field names. (Defaults to all; any field is skipped if a subsequent
field with same name is found.)

-progress: (starting with GDAL 1.7.0) Display progress on terminal. Only works if input
layers have the "fast feature count" capability.

-sql sql_statement: SQL statement to execute. The resulting table/layer will be saved
to the output.

-dialect dialect: SQL dialect. In some cases can be used to use (unoptimized) OGR
SQL instead of the native SQL of an RDBMS by passing OGRSQL.

-wrapdateline: (starting with GDAL 1.7.0) split geometries crossing the dateline merid-
ian (long. = +/- 180deg)

-whererestricted_where: Attribute query (like SQL WHERE)
-skipfailures: Continue after a failure, skipping the failed feature.
-gt n: group n features per transaction (default 200)

-spatxmin ymin xmax ymax: spatial query extents. Only features whose geometry
intersects the extents will be selected. The geometries will not be clipped unless
-clipsrc is specified

-clipsrc[xmin ymin xmax ymax]| WKT|datasource|spat_extent: (starting with GD-
AL 1.7.0) clip geometries to the specified bounding box (expressed in source
SRS), WKT geometry (POLYGON or MULTIPOLYGON), from a datasource or to
the spatial extent of the -spat option if you use the spat_extent keyword. When
specifying a datasource, you will generally want to use it in combination of the
-clipsrclayer, -clipsrcwhere or -clipsrcsql options

-clipsrcsql sql_statement: Select desired geometries using an SQL query instead.
-clipsrclayer layername: Select the named layer from the source clip datasource.
-clipsrcwhere expression: Restrict desired geometries based on attribute query.

-clipdstxmin ymin xmax ymax: (starting with GDAL 1.7.0) clip geometries after re-
projection to the specified bounding box (expressed in dest SRS), WKT geome-
try (POLYGON or MULTIPOLYGON) or from a datasource. When specifying a
datasource, you will generally want to use it in combination of the -clipdstlayer,
-clipdstwhere or -clipdstsql options

-clipdstsql sql_statement: Select desired geometries using an SQL query instead.
-clipdstlayer layername: Select the named layer from the destination clip datasource.
-clipdstwhere expression: Restrict desired geometries based on attribute query.
-dsco NAME=VALUE: Dataset creation option (format specific)

-lcoNAME=VALUE: Layer creation option (format specific)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

199

-nlnname: Assign an alternate name to the new layer

-nlttype: Define the geometry type for the created layer. One of NONE, GEOMETR-
Y, POINT, LINESTRING, POLYGON, GEOMETRYCOLLECTION, MULTIPOINT,
MULTIPOLYGON or MULTILINESTRING. Add "25D" to the name to get 2.5D
versions.

-a_srssrs_def: Assign an output SRS
-t_srssrs_def: Reproject/transform to this SRS on output
-s_srssrs_def: Override source SRS

-fid fid: If provided, only the feature with this feature id will be reported. Operates
exclusive of the spatial or attribute queries. Note: if you want to select several
features based on their feature id, you can also use the fact the 'fid’ is a special
field recognized by OGR SQL. So, ’-where "fid in (1,3,5)" would select features
1, 3 and 5.

-segmentizemax_dist: (starting with GDAL 1.6.0) maximum distance between 2
nodes. Used to create intermediate pointsspatial query extents

-fieldTypeToStringtype1, ...: (starting with GDAL 1.7.0) converts any field of the spec-
ified type to a field of type string in the destination layer. Valid types are : Integer,
Real, String, Date, Time, DateTime, Binary, IntegerList, RealList, StringList. -
Special value All can be used to convert all fields to strings. This is an alternate
way to using the CAST operator of OGR SQL, that may avoid typing a long SQL

query.

Srs_def can be a full WKT definition (hard to escape properly), or a well known definition
(ie. EPSG:4326) or a file with a WKT definition.

Example appending to an existing layer (both flags need to be used):

% ogr2ogr -update —append -f PostgreSQL PG:dbname=warmerda abc.tab

Example reprojecting from ETRS_1989_LAEA_52N_10E to EPSG:4326 and clipping to
a bounding box

o

% ogr2ogr -wrapdateline -t_srs EPSG:4326 -clipdst -5 40 15 55 france_4326.shp europe_laea.shp

More examples are given in the individual format pages.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

200 ogr2ogr

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 42

ogrtindex

creates a tileindex

ogrtindex [-lnum n]... [-lname name]... [-f output_format]
[-write_absolute_path] [-skip_different_projection]
output_dataset src_dataset...

The ogrtindex program can be used to create a tileindex - a file containing a list of the
identities of a bunch of other files along with there spatial extents. This is primarily
intended to be used with MapServer for tiled access to layers using the OGR connec-
tion type.

-lnum n: Add layer number 'n’ from each source file in the tile index.

-lname name: Add the layer named 'name’ from each source file in the tile index.

-f output_format: Select an output format name. The default is to create a shapefile.
-tileindex field_name: The name to use for the dataset name. Defaults to LOCATION.
-write_absolute_path: Filenames are written with absolute paths

-skip_different_projection: Only layers with same projection ref as layers already in-
serted in the tileindex will be inserted.

If no -Inum or -Iname arguments are given it is assumed that all layers in source datasets
should be added to the tile index as independent records.

If the tile index already exists it will be appended to, otherwise it will be created.

It is a flaw of the current ogrtindex program that no attempt is made to copy the coor-
dinate system definition from the source datasets to the tile index (as is expected by
MapServer when PROJECTION AUTO is in use).

This example would create a shapefile (tindex.shp) containing a tile index of the B-
L2000_LINK layers in all the NTF files in the wrk directory:

o

% ogrtindex tindex.shp wrk/x.NTF

202 ogrtindex

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 43

gdal filinodata.py

fill raster regions by interpolation from edges

43.1 SYNOPSIS

gdal_nodatafill.py [-gq] [-md max_distance] [-si smooth_iterations]
[0 name=value] [-b band]
srcfile [-nomask] [-mask filename] [-of format] [dstfile]

43.2 DESCRIPTION

The gdal_nodatafill.py script fills selection regions (usually nodata areas) by interpolat-
ing from valid pixels around the edges of the area.

Additional details on the algorithm are available in the GDALFillNodata() (p. ??) docs.
-q: The script runs in quiet mode. The progress monitor is supressed and routine
messages are not displayed.

-md max_distance: The maximum distance (in pixels) that the algorithm will search
out for values to interpolate.

-si smooth_iterations: The number of 3x3 average filter smoothing iterations to run
after the interpolation to dampen artifacts. The default is zero smoothing itera-
tions.

-0 name=value: Specify a special argument to the algorithm. Currently none are sup-
ported.

-b band: The band to operate on, by default the first band is operated on.
srcfile The source raster file used to identify target pixels. Only one band is used.

-nomask: Do not use the default validity mask for the input band (such as nodata, or
alpha masks).

204 gdal_fillnodata.py

-mask filename: Use the first band of the specified file as a validity mask (zero is
invalid, non-zero is valid).

dstfile The new file to create with the interpolated result. If not provided, the source
band is updated in place.

-of format: Select the output format. The default is GeoTIFF (GTiff). Use the short
format name.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 44

gdal_sieve.py

removes small raster polygons

44.1 SYNOPSIS

gdal_sieve.py [-gq] [-st threshold] [-4] [-8] [-0o name=value]
srcfile [-nomask] [-mask filename] [-of format] [dstfile]

44.2 DESCRIPTION

The gdal_sieve.py script removes raster polygons smaller than a provided threshold
size (in pixels) and replaces replaces them with the pixel value of the largest neighbour
polygon. The result can be written back to the existing raster band, or copied into a new
file.

Additional details on the algorithm are available in the GDALSieveFilter() (p. ??) docs.
-q: The script runs in quiet mode. The progress monitor is supressed and routine
messages are not displayed.

-st threshold: Set the size threshold in pixels. Only raster polygons smaller than this
size will be removed.

-0 name=value: Specify a special argument to the algorithm. Currently none are sup-
ported.

-4: Four connectedness should be used when determining polygons. That is diagonal
pixels are not considered directly connected. This is the default.

-8: Eight connectedness should be used when determining polygons. That is diagonal
pixels are considered directly connected.

srcfile The source raster file used to identify target pixels. Only the first band is used.

206 gdal_sieve.py

-nomask: Do not use the default validity mask for the input band (such as nodata, or
alpha masks).

-mask filename: Use the first band of the specified file as a validity mask (zero is
invalid, non-zero is valid).

dstfile The new file to create with the filtered result. If not provided, the source band is
updated in place.

-of format: Select the output format. The default is GeoTIFF (GTiff). Use the short
format name.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 45

Deprecated List

Page GDAL for Windows CE (p. ??)
Following directories and projects are deprecated. DON’T USE THEM!

208 Deprecated List

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 46

Class Index

46.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

_CPLHashSet e
CCPLList e e e
_CPLQuadTree o v o e e
_GDALProxyPoolCacheEntry
_QuadTreeNode
ApproxTransforminfo
BandProperty
ColorAssociation
colorbox e
Control_Points
CPLErrorContext e e e
CPLHTTPResult e
CPLKeywordParser
CPLLocaleC e
CPLMimePart e
CPLMutexHolder e
CPLODBCDriverlnstaller
CPLODBGCSESSION o e e e e e e
CPLODBCStatement e
CPLRectObj e
CPLSharedFilelnfo
CPLStdCallThreadInfo
CPLString e
CPLXMLNode e e e
ctb . e
CutlineTransformer
DatasetCtxt e
DatasetProperty
DefaultCSVFileNameTLS

??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??
??

210 Class Index

EnhanceCBInfo 2?
errtHandler L ??
file_in_zip_read_info_s ??
FindFileTLS e ??
GCPTransforminfo ??
GDAL_GCP e ??
GDALAspectAlgData ?2?
GDALColorEntry ??
GDALColorTable e 2?
GDALContourGenerator ??
GDALContourltemo 2?
GDALContourLevel ??
GDALDatasetPaminfoo ??
GDALDatasetPool ?2?
GDALDefaultOverviews e ?2?
GDALGenImgProjTransforminfo ??
GDALGeoLocTransformInfo, 2?
GDALGridDataMetricsOptionso ??
GDALGridInverseDistanceToAPowerOptions ??
GDALGridMovingAverageOptions oo ??
GDALGridNearestNeighborOptions 2?
GDALHillshadeAlgData ?2?
GDALJP2BOX o e e e ??
GDALJP2Metadata ??
GDALMajorObject 2?
GDALDataset e 2?
GDALColorReliefDataset ??
GDALGeneric3x3Dataset ??
GDALPamDataset ??
GDALProxyDataset ??
GDALProxyPoolDataset, ?2?
VRTDataset 2?
VRTWarpedDataset, ??
GDALDriver e e ?2?
VRTDriver e ?2?
GDALDriverManagero ??
GDALRasterBand ?2?
GDALAIlIValidMaskBand oL ??
GDALColorReliefRasterBand L. ??
GDALGeneric3x3RasterBand ??
GDALNoDataMaskBand ??
GDALNoDataValuesMaskBand ??
GDALPamRasterBand ??
GDALProxyRasterBando oo ??
GDALProxyPoolRasterBand ?2?
GDALProxyPoolMaskBand ??
GDALProxyPoolOverviewRasterBand ??
VRTRasterBand 2?
VRTRawRasterBand ??

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

46.1 Class Hierarchy 211

VRTSourcedRasterBand ?2?
VRTDerivedRasterBand 2?
VRTWarpedRasterBand ??
GDALMultiDomainMetadata ??
GDALOpenInfo ??
GDALPamProxyDB ??
GDALRasterAttributeField oo ?2?
GDALRasterAttributeTable ??
GDALRasterBandPaminfo, 2?
GDALRasterBlock ?2?
GDALRasterizelnfo ??
GDALRasterPolygonEnumerator oL ??
GDALReprojectionTransforminfo oL ??
GDALRPCInfo ??
GDALRPCTransforminfo 2?
GDALScaledProgressinfo oL ??
GDALSIopeAlgData ??
GDALTransformerInfo ?2?
GDALWarpKernel ??
GDALWarpOperation o e ??
GDALWarpOptions o e ??
GetMetadataElt ??
GetMetadataltemElto oo ?2?
GWKResampleWrkStruct L ??
GZipSnapshot ??
MATRIX . . . e ??
NamedColor ??
OGRContourWriterinfo ?2?
ParseContext ?2?
RPolygon e ??
SharedDatasetCtxt ??
StackContext ??
tM_unz_s e e e ?2?
TPSTransforminfo ?2?
unz_file_info_internal_so oL 2?
unz_file_info_s. 2?
unz_file_pos_s ?2?
unz_global_info_s ?2?
UNZ_S o v o e e e e e e e e e e e e e e ?2?
VizGeorefSpline2D ??
VRTSoUrce i e e e e e e e 2?
VRTFUNCSOUrce o i e e e e e e e 2?
VRTSimpleSource ??
VRTAveragedSource i ??
VRTComplexSource o ??
VRTFilteredSource ??
VRTKernelFilteredSource ??
VRTAverageFilteredSource ??

VSIFileManager ??

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

212 Class Index

VSIFilesystemHandler L ?2?
VSIGZipFilesystemHandler, ??
VSIMemFilesystemHandler ??
VSIStdoutFilesystemHandler oo L. ??
VSISubFileFilesystemHandler ??
VSIUnixStdioFilesystemHandler. ??
VSIZipFilesystemHandler ?2?

VSIMemFile e ??

VSIVirtualHandle ?2?
VSIGZipHandle ??
VSIGZipWriteHandle ?2?
VSIMemHandle 2?
VSIStdoutHandle ??
VSISubFileHandle 2?
VSIUnixStdioHandle ??

VWOTInfo e e ?2?

WarpChunk ?2?

ZIPContent ?2?

ZIPENtry . . . o e 2?

zlib_filefunc def s ??

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 47

Class Index

471 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

_CPLHashSet

_CPLList

List element structure . .
_CPLQuadTree
_GDALProxyPoolCacheEntry . .
_QuadTreeNode
ApproxTransforminfo
BandProperty
ColorAssociation
colorbox
Control_Points
CPLErrorContext
CPLHTTPResult
CPLKeywordParser
CPLLocaleC
CPLMimePart
CPLMutexHolder

CPLODBCDriverinstaller

A class providing functions to install or remove ODBC driver

CPLODBCSession

A class representing an ODBC database session

CPLODBCStatement

Abstraction for statement, and resultset

CPLRectObj
CPLSharedFilelnfo
CPLStdCallThreadinfo
CPLString

CPLXMLNode
Document node structure

22

??
??
??
??
??
??
??
??
??
??
??
??
??
??
??

22
22
22
22
22
22

??

22

214 Class Index

ctb . . . 2?
CutlineTransformer ??
DatasetCtxt ?2?
DatasetProperty ??
DefaultCSVFileNameTLS ?2?
EnhanceCBInfo ??
errHandler ??
file_in_zip_read_info_so ??
FindFileTLS 2?
GCPTransforminfo ??
GDAL_GCP

Ground Control Point ??
GDALAIlIValidMaskBand 2?
GDALAspectAlgData ??
GDALColorEntry

Colortuple ?2?
GDALColorReliefDataset ??
GDALColorReliefRasterBand ??
GDALColorTable ??
GDALContourGenerator, ?2?
GDALContourltem ?2?
GDALContourLevel ??
GDALDataset

A set of associated raster bands, usually from one file ?2?
GDALDatasetPaminfo ?2?
GDALDatasetPool ??
GDALDefaultOverviews 2?
GDALDriver

Format specificdriver ??
GDALDriverManager

Class for managing the registration of file format drivers ??
GDALGeneric3x3Dataset 2?
GDALGeneric3x3RasterBand ?2?
GDALGenImgProjTransforminfo ??
GDALGeolLocTransforminfo ??
GDALGridDataMetricsOptions

Data metrics method controloptions ?2?
GDALGridinverseDistanceToAPowerOptions

Inverse distance to a power method control options ?2?
GDALGridMovingAverageOptions

Moving average method control options ??
GDALGridNearestNeighborOptions

Nearest neighbor method control options ?2?
GDALHillshadeAlgData ??
GDALJP2BOX e ?2?
GDALJP2Metadata ?2?
GDALMajorObject

Object withmetadata ??
GDALMultiDomainMetadata ??
GDALNoDataMaskBand, ??

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

47.1 Class List 215

GDALNoDataValuesMaskBand ?2?
GDALOpenInfo ??
GDALPambDataset

A subclass of GDALDataset (p.??) which introduces the ability
to save and restore auxilary information (coordinate system, gcps,
metadata, etc) not supported by a file format via an "auxilary meta-

data" file with the .aux.xml extension ?2?
GDALPamProxyDB ??
GDALPamRasterBand ??
GDALProxyDataset ??
GDALProxyPoolDataset ??
GDALProxyPoolMaskBand, ??
GDALProxyPoolOverviewRasterBand ??
GDALProxyPoolRasterBand ??
GDALProxyRasterBand ??
GDALRasterAttributeField L. ?2?
GDALRasterAttributeTable

Raster Attribute Table container ??
GDALRasterBand

A single raster band (orchannel) ??
GDALRasterBandPamiInfo ??
GDALRasterBlock

A single raster block in the block cache ??
GDALRasterizelnfo ?2?
GDALRasterPolygonEnumerator ??
GDALReprojectionTransforminfo ??
GDALRPCInfo ??
GDALRPCTransforminfo ??
GDALScaledProgressinfo oL ??
GDALSIopeAlgData ??
GDALTransformerinfo ??
GDALWarpKernel

Low level image warpingclass ??
GDALWarpOperation

High level image warpingclass ??
GDALWarpOptions

Warp control options for use with GDALWarpOperation::Initialize()

(P-22) . o ??
GetMetadataEIlt ??
GetMetadataltemEIt o ?2?
GWKResampleWrkStruct oL ??
GZipSnapshot ??
MATRIX ?2?
NamedColor ??
OGRContourWriterinfo ??
ParseContext ??
RPolygon ??
SharedDatasetCtxt 2?
StackContext ??
tm_unz_s ?2?

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

216 Class Index

TPSTransforminfo ??
unz_file_info_internal_so oo ??
unz_file_info_s ??
unz_file_pos_s ??
unz_global_info_s ?2?
UNZ_S o e e e e e e ??
VizGeorefSpline2D ??
VRTAveragedSource ??
VRTAverageFilteredSource, ??
VRTComplexSource ??
VRTDataset ??
VRTDerivedRasterBand ??
VRTDriver e ??
VRTFilteredSource ??
VRTFuncSource e ??
VRTKernelFilteredSource ?2?
VRTRasterBand ??
VRTRawRasterBand ??
VRTSimpleSource ??
VRTSource e e ??
VRTSourcedRasterBand 2?
VRTWarpedDataset ??
VRTWarpedRasterBand ??
VSIFileManager ??
VSIFilesystemHandler, ??
VSIGZipFilesystemHandler ??
VSIGZipHandle ?2?
VSIGZipWriteHandle ?2?
VSIMemFile ??
VSIMemFilesystemHandler ??
VSIMemHandle ??
VSIStdoutFilesystemHandler ??
VSIStdoutHandle ?2?
VSISubFileFilesystemHandler ??
VSISubFileHandle ??
VSIUnixStdioFilesystemHandler ??
VSIUnixStdioHandle ?2?
VSWlVirtualHandle ?2?
VSIZipFilesystemHandler ?2?
VWOTInfo ??
WarpChunk ??
ZIPContent ??
ZIPEntry ?2?
zlib_filefunc_def s ??

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 48

File Index

48.1 File List

Here is a list of all documented files with brief descriptions:

cpl_atomic_ops.h

cpl_config.h

cpl_config_extras.h oo

cpl_conv.h

Various convenience functionsfor CPL

cpl_csv.h .
cpl_error.h

CPL error handling services
cpl_hash_set.h
Hash set implementation

cpl_http.h

Interface for downloading HTTP, FTP documents

cpl_list.h

Simplest list implementation
cpl_minixml.h

Definitions for CPL mini XML Parser/Serializer
cpl_minizip_ioapi.h
cpl_minizip_unzip.h
cpl_multiproc.h

cpl_odbc.h

ODBC Abstraction Layer (C++)« . oo oo

cpl_port.h

Core portability definitions for CPL
cpl_quad_tree.h
Quad tree implementation oL

cpl_string.h

Various convenience functions for working with strings and string

lists
cpl_time.h

22
22
22

??
??

??

22

?2?

??

22

??

?2?

??

??

22

??

22
22

218 File Index

cpl_vsi.h

Standard CCovers ??
cpl_vsi_virtual.lh ??
cpl_win32ce_api.h ??
cpl_wince.h ?2?
cplkeywordparser.h ??
gdal.h

Public (C callable) GDAL entry points ??
gdal_alg.h

Public (C callable) GDAL algorithm entry points, and definitions . . . ??
gdal_alg_privh ?2?
gdal_frmts.h ??
gdal_pam.h ??
gdal_privh ??
gdal_proxy.h ?2?
gdal_rath ?2?
gdal_version.h 2?
gdal_vrt.h

Public (C callable) entry points for virtual GDAL dataset objects . . . ??
gdalgrid.h

GDAL gridder related entry points and definitions ??
gdaljp2metadata.h oo ?2?
gdalwarper.h

GDAL warper related entry points and definitons ??
gvgepfith ??
thinplatespline.h ??
vrtdataset.h ?2?

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

Chapter 49

Class Documentation

49.1 _CPLHashSet Struct Reference

Public Attributes

» CPLHashSetHashFunc fnHashFunc
+ CPLHashSetEqualFunc fnEqualFunc
» CPLHashSetFreeEltFunc fnFreeEItFunc
* CPLList *x tabList
* int nSize
« int nindiceAllocatedSize
« int nAllocatedSize
The documentation for this struct was generated from the following file:

» cpl_hash_set.cpp

49.2 CPLList Struct Reference

List element structure.

#include <cpl_list.h>

Public Attributes

+ void x pData
+ struct _CPLList « psNext

49.2.1 Detailed Description

List element structure.

220 Class Documentation

49.2.2 Member Data Documentation
49.2.21 void« _CPLList::pData

Pointer to the data object. Should be allocated and frred by the caller.

Referenced by CPLHashSetDestroy(), CPLHashSetForeach(), CPLHashSetRemove(),
CPLListAppend(), CPLListInsert(), and CPLListGetData().

49.2.2.2 struct_CPLListx _CPLList::psNext

Pointer to the next element in list. NULL, if current element is the last one

Referenced by CPLHashSetDestroy(), CPLHashSetForeach(), CPLHashSetRemove(),
CPLListAppend(), CPLListInsert(), CPLListGetLast(), CPLListGet(), CPLListCount(), C-
PLListRemove(), CPLListDestroy(), and CPLListGetNext().

The documentation for this struct was generated from the following file:

- cpl_list.h

49.3 _CPLQuadTree Struct Reference

Public Attributes

* QuadTreeNode * psRoot

» CPLQuadTreeGetBoundsFunc pfnGetBounds
* int nFeatures

+ int nMaxDepth

« int nBucketCapacity

+ double dfSplitRatio

The documentation for this struct was generated from the following file:

» cpl_quad_tree.cpp

49.4 GDALProxyPoolCacheEntry Struct Reference

Public Attributes

+ GIntBig responsiblePID

+ char x pszFileName

+ GDALDataset + poDS

+ int refCount

+ GDALProxyPoolCacheEntry * prev

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.5 QuadTreeNode Struct Reference

221

+ GDALProxyPoolCacheEntry * next

The documentation for this struct was generated from the following file:

+ gdalproxypool.cpp

49,5 _QuadTreeNode Struct Reference

Public Attributes

* CPLRectODbj rect

* int nFeatures

« void x* pahFeatures

+ int nNumSubNodes

* QuadTreeNode x apSubNode [MAX_SUBNODES]

The documentation for this struct was generated from the following file:

» cpl_quad_tree.cpp

49.6 ApproxTransforminfo Struct Reference

Public Attributes

+ GDALTransformerlinfo sTI

+ GDALTransformerFunc pfnBaseTransformer
+ void x pBaseCBData

+ double dfMaxError

+ int bOwnSubtransformer

The documentation for this struct was generated from the following file:

+ gdaltransformer.cpp

49.7 BandProperty Struct Reference

Public Attributes

+ GDALColorInterp colorinterpretation
+ GDALDataType dataType

» GDALColorTableH colorTable

« int bHasNoData

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

222 Class Documentation

» double noDataValue

The documentation for this struct was generated from the following file:

+ gdalbuildvrt.cpp

49.8 ColorAssociation Struct Reference

Public Attributes

+ double dfVal
* intnR
- intnG
* intnB
e intnA

The documentation for this struct was generated from the following file:

» gdaldem.cpp

49.9 colorbox Struct Reference

Public Attributes

« struct colorbox * next
« struct colorbox * prev
* int rmin

* int rmax

* int gmin

* int gmax

* int bmin

* int bmax

« int total

The documentation for this struct was generated from the following file:

» gdalmediancut.cpp

49.10 Control_Points Struct Reference

Public Attributes

* int count

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.11 CPLErrorContext Struct Reference 223

+ double * el
 double * n1
» double x e2
» double * n2
* int x status

The documentation for this struct was generated from the following file:

» gdal_crs.c

49.11 CPLErrorContext Struct Reference

Public Attributes

+ int nLastErrNo

« CPLErr eLastErrType

+ CPLErrorHandlerNode + psHandlerStack

+ int nLastErrMsgMax

 char szLastErrMsg [DEFAULT_LAST_ERR_MSG_SIZE]

The documentation for this struct was generated from the following file:

 cpl_error.cpp

49.12 CPLHTTPResult Struct Reference

#include <cpl_http.h>

Public Attributes

* int nStatus

 char x pszContentType
 char x pszErrBuf

« int nDatalLen

+ int nDataAlloc

- GByte * pabyData

+ int nMimePartCount

+ CPLMimePart « pasMimePart

49.12.1 Detailed Description

Describe the result of a CPLHTTPFetch() (p. ??) call

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

224 Class Documentation

49.12.2 Member Data Documentation
49.12.2.1 int CPLHTTPResult::nDatalLen

Length of the pabyData buffer
Referenced by CPLHTTPParseMultipartMime().

49.12.2.2 int CPLHTTPResult::nMimePartCount

Number of parts in a multipart message

Referenced by CPLHTTPParseMultipartMime().

49.12.2.3 int CPLHTTPResult::nStatus

HTTP status code : 200=success, value < 0 if request failed
Referenced by CPLHTTPFetch().

49.12.2.4 GBytex CPLHTTPResult::pabyData

Buffer with downloaded data

Referenced by CPLHTTPDestroyResult(), and CPLHTTPParseMultipartMime().
49.12.2.5 CPLMimePartx CPLHTTPResult::pasMimePart

Array of parts (resolved by CPLHTTPParseMultipartMime() (p. ??))
Referenced by CPLHTTPParseMultipartMime().

49.12.2.6 charx CPLHTTPResult::pszContentType

Content-Type of the response

Referenced by CPLHTTPFetch(), CPLHTTPDestroyResult(), and CPLHTTPParse-
MultipartMime().

49.12.2.7 charx CPLHTTPResult::pszErrBuf

Error message from curl, or NULL
Referenced by CPLHTTPFetch(), and CPLHTTPDestroyResult().

The documentation for this struct was generated from the following file:

» cpl_http.h

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.13 CPLKeywordParser Class Reference 225

49.13 CPLKeywordParser Class Reference

Public Member Functions

+ int Ingest (FILE xfp)
« const char * GetKeyword (const char *pszPath, const char xpszDefault=NULL)
 char xx GetAllKeywords ()

The documentation for this class was generated from the following files:

» cplkeywordparser.h
 cplkeywordparser.cpp

49.14 CPLLocaleC Class Reference

The documentation for this class was generated from the following files:

» cpl_conv.h
» cpl_conv.cpp

49.15 CPLMimePart Struct Reference

#include <cpl_http.h>

Public Attributes
 char *x papszHeaders
+ GByte * pabyData
« int nDataLen

49.15.1 Detailed Description

Describe a part of a multipart message

49.15.2 Member Data Documentation
49.15.2.1 int CPLMimePart::nDatalLen

Buffer length
Referenced by CPLHTTPParseMultipartMime().

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

226 Class Documentation

49.15.2.2 GBytex CPLMimePart::pabyData

Buffer with data of the part
Referenced by CPLHTTPParseMultipartMime().

49.15.2.3 char+x CPLMimePart::papszHeaders

NULL terminated array of headers
Referenced by CPLHTTPParseMultipartMime().

The documentation for this struct was generated from the following file:

+ cpl_http.h

49.16 CPLMutexHolder Class Reference

Public Member Functions

« CPLMutexHolder (void *xphMutex, double dfWaitinSeconds=1000.0, const char
x«pszFile=__FILE__, int nLine=__LINE_)

The documentation for this class was generated from the following files:

+ cpl_multiproc.h
 cpl_multiproc.cpp

49.17 CPLODBCDriverinstaller Class Reference

A class providing functions to install or remove ODBC driver.

#include <cpl_odbc.h>

Public Member Functions

« int InstallDriver (const char xpszDriver, const char xpszPathin, WORD f-
Request=ODBC_INSTALL_COMPLETE)
Installs ODBC driver or updates definition of already installed driver.

+ int RemoveDriver (const char xpszDriverName, int fRemoveDSN=FALSE)
Removes or changes information about the driver from the Odbcinst.ini entry in the
system information.

+ int GetUsageCount () const

+ const char * GetPathOut () const

+ const char * GetLastError () const

DWORD GetLastErrorCode () const

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.17 CPLODBCDriverinstaller Class Reference 227

49.17.1 Detailed Description

A class providing functions to install or remove ODBC driver.

49.17.2 Member Function Documentation

49.17.2.1 int CPLODBCDriverinstaller::InstallDriver (const char « pszDriver, const char x
pszPathin, WORD fRequest = ODBC_INSTALL_COMPLETE)

Installs ODBC driver or updates definition of already installed driver.

Interanally, it calls ODBC’s SQLInstallDriverEx function.

Parameters

pszDriver | - The driver definition as a list of keyword-value pairs describing the
driver (See ODBC API Reference).

pszPathin | - Full path of the target directory of the installation, or a null pointer (for
unixODBC, NULL is passed).

fRequest | - The fRequest argument must contain one of the following values: OD-
BC_INSTALL_COMPLETE - (default) complete the installation request
ODBC_INSTALL_INQUIRY - inquire about where a driver can be in-
stalled

Returns

TRUE indicates success, FALSE if it fails.

49.17.2.2 int CPLODBCDriverinstaller::RemoveDriver (const char « pszDriverName, int
fRemoveDSN = FALSE)

Removes or changes information about the driver from the Odbcinst.ini entry in the
system information.

Parameters

pszDriver- | - The name of the driver as registered in the Odbcinst.ini key of the
Name | system information.

fRemoveDS- | - TRUE: Remove DSNs associated with the driver specified in Ipsz-
N | Driver. FALSE: Do not remove DSNs associated with the driver speci-
fied in IpszDriver.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

228 Class Documentation

Returns

The function returns TRUE if it is successful, FALSE if it fails. If no entry exists in
the system information when this function is called, the function returns FALSE. In
order to obtain usage count value, call GetUsageCount().

The documentation for this class was generated from the following files:

» cpl_odbc.h
* cpl_odbc.cpp

49.18 CPLODBCSession Class Reference

A class representing an ODBC database session.

#include <cpl_odbc.h>

Public Member Functions

« int EstablishSession (const char xpszDSN, const char «pszUserid, const char
*pszPassword)
Connect to database and logon.
+ const char x GetLastError ()
Returns the last ODBC error message.
« int CloseSession ()
« int Failed (int, HSTMT=NULL)
+ HDBC GetConnection ()
HENV GetEnvironment ()

49.18.1 Detailed Description

A class representing an ODBC database session.

Includes error collection services.

49.18.2 Member Function Documentation

49.18.2.1 int CPLODBCSession::EstablishSession (const char pszDSN, const char
pszUserid, const char x pszPassword)

Connect to database and logon.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.19 CPLODBCStatement Class Reference 229

Parameters

pszDSN | The name of the DSN being used to connect. This is not optional.

pszUserid | the userid to logon as, may be NULL if not not required, or provided by
the DSN.

psz- | the password to logon with. May be NULL if not required or provided by
Password | the DSN.

Returns

TRUE on success or FALSE on failure. Call GetLastError() (p. ??) to get details
on failure.

References GetlLastError().

49.18.2.2 const char + CPLODBCSession::GetLastError ()
Returns the last ODBC error message.

Returns

pointer to an internal buffer with the error message in it. Do not free or alter. Will
be an empty (but not NULL) string if there is no pending error info.

Referenced by EstablishSession(), and CPLODBCStatement::Fetch().

The documentation for this class was generated from the following files:

+ cpl_odbc.h
 cpl_odbc.cpp

49.19 CPLODBCStatement Class Reference

Abstraction for statement, and resultset.

#include <cpl_odbc.h>

Public Member Functions

+ CPLODBCStatement (CPLODBCSession x)
* HSTMT GetStatement ()
+ void Clear ()

Clear internal command text and result set definitions.
» void AppendEscaped (const char x)

Append text to internal command.
« void Append (const char)

Append text to internal command.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

230

Class Documentation

void Append (int)
Append to internal command.
void Append (double)
Append to internal command.
int Appendf (const char x,...)
Append to internal command.
const char * GetCommand ()
int ExecuteSQL (const char x=NULL)

Execute an SQL statement.
int Fetch (int nOrientation=SQL_FETCH_NEXT, int nOffset=0)

Fetch a new record.
void ClearColumnData ()
int GetColCount ()
Fetch the resultset column count.
const char x GetColName (int)
Fetch a column name.
short GetColType (int)
Fetch a column data type.
const char * GetColTypeName (int)
Fetch a column data type name.
short GetColSize (int)
Fetch the column width.
short GetColPrecision (int)
Fetch the column precision.
short GetColNullable (int)
Fetch the column nullability.
int GetColld (const char)
Fetch column index.
const char x GetColData (int, const char «=NULL)
Fetch column data.
const char * GetColData (const char *, const char *=NULL)
Fetch column data.
int GetColDatalLength (int)
int GetColumns (const char xpszTable, const char xpszCatalog=NULL, const
char xpszSchema=NULL)
Fetch column definitions for a table.
int GetPrimaryKeys (const char xpszTable, const char xpszCatalog=NULL,
const char xpszSchema=NULL)
Fetch primary keys for a table.
int GetTables (const char xpszCatalog=NULL, const char xpszSchema=NULL)
Fetch tables in database.
void DumpResult (FILE xfp, int bShowSchema=FALSE)
Dump resultset to file.
int CollectResultsInfo ()

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.19 CPLODBCStatement Class Reference 231

Static Public Member Functions

« static CPLString GetTypeName (int)

Get name for SQL column type.
« static SQLSMALLINT GetTypeMapping (SQLSMALLINT)

Get appropriate C data type for SQL column type.
49.19.1 Detailed Description

Abstraction for statement, and resultset.

Includes methods for executing an SQL statement, and for accessing the resultset from
that statement. Also provides for executing other ODBC requests that produce results
sets such as SQLColumns() and SQLTables() requests.

49.19.2 Member Function Documentation
49.19.2.1 void CPLODBCStatement::Append (const char x pszText)

Append text to internal command.

The passed text is appended to the internal SQL command text.

Parameters

\ pszText | text to append.

Referenced by ExecuteSQL(), AppendEscaped(), Append(), and Appendf().

49.19.2.2 void CPLODBCStatement::Append (int nValue)

Append to internal command.

The passed value is formatted and appended to the internal SQL command text.

Parameters

\ nValue \ value to append to the command.

References Append().

49.19.2.3 void CPLODBCStatement::Append (double dfValue)

Append to internal command.

The passed value is formatted and appended to the internal SQL command text.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

232 Class Documentation

Parameters

\ dfValue | value to append to the command.

References Append().

49.19.2.4 void CPLODBCStatement::AppendEscaped (const char x pszText)

Append text to internal command.

The passed text is appended to the internal SQL command text after escaping any
special characters so it can be used as a character string in an SQL statement.

Parameters

\ pszText | text to append.

References Append().

49.19.2.5 int CPLODBCStatement::Appendf (const char x pszFormat, ...)

Append to internal command.

The passed format is used to format other arguments and the result is appended to
the internal command text. Long results may not be formatted properly, and should be
appended with the direct Append() (p. ??) methods.

Parameters

\ pstormaz‘\ printf() style format string.

Returns

FALSE if formatting fails dueto result being too large.

References Append().

49.19.2.6 void CPLODBCStatement::DumpResult (FILE x fp, int bShowSchema = FALSE)

Dump resultset to file.

The contents of the current resultset are dumped in a simply formatted form to the
provided file. If requested, the schema definition will be written first.

Parameters

fp | the file to write to. stdout or stderr are acceptable.

bShow- | TRUE to force writing schema information for the rowset before the
Schema | rowset data itself. Default is FALSE.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.19 CPLODBCStatement Class Reference 233

References GetColCount(), GetColName(), GetColPrecision(), GetColSize(), GetType-
Name(), GetColType(), GetColNullable(), Fetch(), and GetColData().

49.19.2.7 int CPLODBCStatement::ExecuteSQL (const char x pszStatement =NULL)

Execute an SQL statement.

This method will execute the passed (or stored) SQL statement, and initialize informa-
tion about the resultset if there is one. If a NULL statement is passed, the internal stored
statement that has been previously set via Append() (p. ??) or Appendf() (p. ??) calls
will be used.

Parameters

psz- | the SQL statement to execute, or NULL if the internally saved one
Statement | should be used.

Returns

TRUE on success or FALSE if there is an error. Error details can be fetched with
OGRODBCSession::GetLastError().

References Clear(), and Append().

49.19.2.8 int CPLODBCStatement::Fetch (int nOrientation = SQL._FETCH_NEXT, int nOffset
=0)
Fetch a new record.

Requests the next row in the current resultset using the SQLFetchScroll() call. Note that
many ODBC drivers only support the default forward fetching one record at a time. Only
SQL_FETCH_NEXT (the default) should be considered reliable on all drivers.

Currently it isn’'t clear how to determine whether an error or a normal out of data condi-
tion has occured if Fetch() (p. ??) fails.

Parameters

nOrientation | One of SQL_FETCH_NEXT, SQL_FETCH_LAST, SQL_FETCH_PRIO-
R, SQL_FETCH_ABSOLUTE, or SQL_FETCH_RELATIVE (default is
SQL_FETCH_NEXT).

nOffset | the offset (number of records), ignored for some orientations.

Returns

TRUE if a new row is successfully fetched, or FALSE if not.

References CPLODBCSession::GetLastError(), and GetTypeMapping().
Referenced by DumpResult().

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

234 Class Documentation

49.19.2.9 int CPLODBCStatement::GetColCount ()

Fetch the resultset column count.
Returns

the column count, or zero if there is no resultset.

Referenced by DumpResult().

49.19.2.10 const char x CPLODBCStatement::GetColData (int iCol, const char x pszDefault =
NULL)
Fetch column data.

Fetches the data contents of the requested column for the currently loaded row. The
result is returned as a string regardless of the column type. NULL is returned if an illegal
column is given, or if the actual column is "NULL".

Parameters

iCol | the zero based column to fetch.

pszDefault | the value to return if the column does not exist, or is NULL. Defaults to
NULL.

Returns

pointer to internal column data or NULL on failure.

Referenced by GetColData(), and DumpResult().

49.19.2.11 const char x CPLODBCStatement::GetColData (const char x pszColName, const
char x pszDefault = NULL)
Fetch column data.

Fetches the data contents of the requested column for the currently loaded row. The
result is returned as a string regardless of the column type. NULL is returned if an illegal
column is given, or if the actual column is "NULL".

Parameters

pszColName | the name of the column requested.

pszDefault | the value to return if the column does not exist, or is NULL. Defaults to
NULL.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.19 CPLODBCStatement Class Reference 235

Returns

pointer to internal column data or NULL on failure.

References GetColld(), and GetColData().

49.19.2.12 int CPLODBCStatement::GetColld (const char x pszColName)

Fetch column index.

Gets the column index corresponding with the passed name. The name comparisons
are case insensitive.

Parameters

| pszColName | the name to search for.

Returns

the column index, or -1 if not found.

Referenced by GetColData().

49.19.2.13 const char x CPLODBCStatement::GetColName (int iCol)

Fetch a column name.

Parameters

iCol \ the zero based column index.

Returns

NULL on failure (out of bounds column), or a pointer to an internal copy of the
column name.

Referenced by DumpResult().

49.19.2.14 short CPLODBCStatement::GetColNullable (int iCol)

Fetch the column nullability.

Parameters

\ iCol | the zero based column index.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

236 Class Documentation

Returns

TRUE if the column may contains or FALSE otherwise.

Referenced by DumpResult().

49.19.2.15 short CPLODBCStatement::GetColPrecision (int iCol)

Fetch the column precision.

Parameters

\ iCol | the zero based column index.

Returns

column precision, may be zero or the same as column size for columns to which it
does not apply.

Referenced by DumpResult().

49.19.2.16 short CPLODBCStatement::GetColSize (int iCol)

Fetch the column width.

Parameters

iCo/\ the zero based column index.

Returns

column width, zero for unknown width columns.

Referenced by DumpResult().

49.19.2.17 short CPLODBCStatement::GetColType (int iCol)

Fetch a column data type.

The return type code is a an ODBC SQL_ code, one of SQL_UNKNOWN_TYPE, SQL-
_CHAR, SQL_NUMERIC, SQL_DECIMAL, SQL_INTEGER, SQL_SMALLINT, SQL_F-
LOAT, SQL_REAL, SQL_DOUBLE, SQL_DATETIME, SQL_VARCHAR, SQL_TYPE_-
DATE, SQL_TYPE_TIME, SQL_TYPE_TIMESTAMPT.

Parameters

\ iCo/\ the zero based column index.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.19 CPLODBCStatement Class Reference 237

Returns

type code or -1 if the column is illegal.

Referenced by DumpResult().

49.19.2.18 const char x CPLODBCStatement::GetColTypeName (int iCol)

Fetch a column data type name.

Returns data source-dependent data type name; for example, "CHAR", "VARCHAR",
"MONEY", "LONG VARBINAR", or "CHAR () FOR BIT DATA".

Parameters

\ iCol | the zero based column index.

Returns

NULL on failure (out of bounds column), or a pointer to an internal copy of the
column dat type name.

49.19.2.19 int CPLODBCStatement::GetColumns (const char x pszTable, const char x
pszCatalog = NULL, const char « pszSchema = NULL)

Fetch column definitions for a table.

The SQLColumn() method is used to fetch the definitions for the columns of a table
(or other queriable object such as a view). The column definitions are digested and
used to populate the CPLODBCStatement (p. ??) column definitions essentially as if a
"SELECT x FROM tablename" had been done; however, no resultset will be available.

Parameters

pszTable | the name of the table to query information on. This should not be empty.

pszCatalog | the catalog to find the table in, use NULL (the default) if no catalog is
available.

pszSchema | the schema to find the table in, use NULL (the default) if no schema is
available.

Returns

TRUE on success or FALSE on failure.

49.19.2.20 int CPLODBCStatement::GetPrimaryKeys (const char x pszTable, const char x
pszCatalog = NULL, const char *« pszSchema =NULL)

Fetch primary keys for a table.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

238 Class Documentation

The SQLPrimaryKeys() function is used to fetch a list of fields forming the primary key.
The result is returned as a result set matching the SQLPrimaryKeys() function result
set. The 4th column in the result set is the column name of the key, and if the result set
contains only one record then that single field will be the complete primary key.

Parameters

pszTable | the name of the table to query information on. This should not be empty.

pszCatalog | the catalog to find the table in, use NULL (the default) if no catalog is
available.

pszSchema | the schema to find the table in, use NULL (the default) if no schema is
available.

Returns

TRUE on success or FALSE on failure.

49.19.2.21 int CPLODBCStatement::GetTables (const char * pszCatalog = NULL, const char
pszSchema =NULL)
Fetch tables in database.

The SQLTables() function is used to fetch a list tables in the database. The result is
returned as a result set matching the SQLTables() function result set. The 3rd column
in the result set is the table name. Only tables of type "TABLE" are returned.

Parameters

pszCatalog | the catalog to find the table in, use NULL (the default) if no catalog is
available.

pszSchema | the schema to find the table in, use NULL (the default) if no schema is
available.

Returns

TRUE on success or FALSE on failure.

49.19.2.22 SQLSMALLINT CPLODBCStatement::GetTypeMapping (SQLSMALLINT nTypeCode)
[static]

Get appropriate C data type for SQL column type.

Returns a C data type code, corresponding to the indicated SQL data type code (as
returned from CPLODBCStatement::GetColType() (p. ??)).

Parameters

| nTypeCode | the SQL_ code, such as SQL_CHAR.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.20 CPLRectODbj Struct Reference 239

Returns

data type code. The valid code is always returned. If SQL code is not recognised,
SQL_C _BINARY will be returned.

Referenced by Fetch().

49.19.2.23 CPLString CPLODBCStatement::GetTypeName (int nTypeCode) [static]

Get name for SQL column type.

Returns a string name for the indicated type code (as returned from CPLODBC-
Statement::GetColType() (p. ??)).

Parameters

| nTypeCode | the SQL _ code, such as SQL_CHAR.

Returns

internal string, "UNKNOWN" if code not recognised.

Referenced by DumpResult().

The documentation for this class was generated from the following files:

» cpl_odbc.h
+ cpl_odbc.cpp

49.20 CPLRectObj Struct Reference

Public Attributes

» double minx
+ double miny
+ double maxx
+ double maxy

The documentation for this struct was generated from the following file:

» cpl_quad_tree.h

49.21 CPLSharedFilelnfo Struct Reference

Public Attributes

- FILE * fp

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

240 Class Documentation

+ int nRefCount

« int bLarge

+ char x pszFilename
» char x pszAccess

The documentation for this struct was generated from the following file:

» cpl_conv.h

49.22 CPLStdCallThreadInfo Struct Reference

Public Attributes

+ void x pAppData
+ CPLThreadFunc pfnMain
 pthread_t hThread

The documentation for this struct was generated from the following file:

 cpl_multiproc.cpp

49.23 CPLString Class Reference

Public Member Functions

» CPLString (const std::string &oStr)

» CPLString (const char xpszStr)

» operator const char x (void) const

+ char & operator|[] (std::string::size_type i)

+ const char & operator[] (std::string::size_type i) const

 char & operator[] (int i)

+ const char & operator|[] (int i) const

+ void Clear ()

« CPLString & Printf (const char xpszFormat,...)

+ CPLString & vPrintf (const char xpszFormat, va_list args)

« CPLString & FormatC (double dfValue, const char xpszFormat=NULL)
Format double in C locale.

» CPLString & Trim ()

Trim white space.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.24 CPLXMLNode Struct Reference 241

49.23.1 Member Function Documentation

49.23.1.1 CPLString & CPLString::FormatC (double dfValue, const char x pszFormat =
NULL)

Format double in C locale.

The passed value is formatted using the C locale (period as decimal seperator) and
appended to the target CPLString (p. ?7?).

Parameters

dfValue | the value to format.

pszFormat | the sprintf() style format to use or omit for default. Note that this format
string should only include one substitution argument and it must be for
a double (f or g).

Returns

a reference to the CPLString (p. ??).

49.23.1.2 CPLString & CPLString::Trim ()

Trim white space.

Trims white space off the let and right of the string. White space is any of a space, a
tab, a newline (’

') or a carriage control (7).

Returns

a reference to the CPLString (p. ??).

Referenced by GDALLoadWorldFile().

The documentation for this class was generated from the following files:

» cpl_string.h
* cplstring.cpp

49.24 CPLXMLNode Struct Reference

Document node structure.

#include <cpl_minixml.h>

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

242 Class Documentation

Public Attributes

+ CPLXMLNodeType eType

Node type.
+ char x pszValue

Node value.
« struct CPLXMLNode * psNext

Next sibling.
+ struct CPLXMLNode * psChild
Child node.

49.24.1 Detailed Description

Document node structure.

This C structure is used to hold a single text fragment representing a component of the
document when parsed. It should be allocated with the appropriate CPL function, and
freed with CPLDestroyXMLNode() (p. ??). The structure contents should not normally
be altered by application code, but may be freely examined by application code.

Using the psChild and psNext pointers, a heirarchical tree structure for a document can
be represented as a tree of CPLXMLNode (p. ??) structures.

49.24.2 Member Data Documentation
49.24.2.1 CPLXMLNodeType CPLXMLNode::eType

Node type.
One of CXT_Element, CXT_Text, CXT_Attribute, CXT_Comment, or CXT _Literal.

Referenced by CPLCreateXMLNode(), CPLSearchXMLNode(), CPLGetXMLNode(), -
CPLGetXMLValue(), CPLAddXMLChild(), CPLCloneXMLTree(), CPLSetXMLValue(), -
CPLStripXMLNamespace(), GDALPamRasterBand::GetDefaultHistogram(), and VRT-
RasterBand::GetDefaultHistogram().

49.24.2.2 struct CPLXMLNode:x CPLXMLNode::psChild

Child node.

Pointer to first child node, if any. Only CXT_Element and CXT_Attribute nodes should
have children. For CXT_Attribute it should be a single CXT_Text value node, while CX-
T_Element can have any kind of child. The full list of children for a node are identified
by walking the psNext’s starting with the psChild node.

Referenced by CPLCreateXMLNode(), CPLDestroyXMLNode(), CPLSearchXML-
Node(), CPLGetXMLNode(), CPLGetXMLValue(), CPLAdIXMLChild(), CPLRemove-
XMLChild(), CPLCloneXMLTree(), CPLSetXMLValue(), CPLStripXMLNamespace(),

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.25 ctb Struct Reference 243

GDAL ValidateCreationOptions(), GDALPamRasterBand::SetDefaultHistogram(), GD-
ALPamRasterBand::GetDefaultHistogram(), VRTRasterBand::SetDefaultHistogram(),
and VRTRasterBand::GetDefaultHistogram().

49.24.2.3 struct CPLXMLNodex CPLXMLNode::psNext

Next sibling.

Pointer to next sibling, that is the next node appearing after this one that has the same
parent as this node. NULL if this node is the last child of the parent element.

Referenced by CPLSerializeXMLTree(), CPLCreateXMLNode(), CPLDestroyXML-
Node(), CPLSearchXMLNode(), CPLGetXMLNode(), CPLGetXMLValue(), CPLAdd-
XMLChild(), CPLRemoveXMLChild(), CPLAddXMLSibling(), CPLCloneXMLTree(),
CPLSetXMLValue(), CPLStripXMLNamespace(), GDALValidateCreationOptions(),
GDALPamRasterBand::SetDefaultHistogram(), GDALPamRasterBand::GetDefault-
Histogram(), VRTRasterBand::SetDefaultHistogram(), and VRTRasterBand::Get-
DefaultHistogram().

49.24.2.4 charx CPLXMLNode::pszValue

Node value.

For CXT_Element this is the name of the element, without the angle brackets. Note
there is a single CXT_Element even when the document contains a start and end el-
ement tag. The node represents the pair. All text or other elements between the start
and end tag will appear as children nodes of this CXT_Element node.

For CXT_Attribute the pszValue is the attribute name. The value of the attribute will be
a CXT_Text child.

For CXT_Text this is the text itself (value of an attribute, or a text fragment between an
element start and end tags.

For CXT_Literal it is all the literal text. Currently this is just used for IDOCTYPE lines,
and the value would be the entire line.

For CXT_Comment the value is all the literal text within the comment, but not including
the comment start/end indicators ("<--" and "-->").

Referenced by CPLParseXMLString(), CPLCreateXMLNode(), CPLDestroyXML-
Node(), CPLSearchXMLNode(), CPLGetXMLNode(), CPLGetXMLValue(), CPLClone-
XMLTree(), CPLSetXMLValue(), CPLStripXMLNamespace(), GDALValidateCreation-
Options(), GDALPamRasterBand::GetDefaultHistogram(), and VRTRasterBand::Get-
DefaultHistogram().

The documentation for this struct was generated from the following file:

+ cpl_minixml.h

49.25 ctb Struct Reference

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

244

Class Documentation

Public Attributes

 FILE x fp
« struct ctb x psNext
+ char x pszFilename

+ char =x papszFieldNames
* char xx papszRecFields

« int iLastLine

+ int bNonUniqueKey
+ int nLineCount
 char xx papszLines
* int x panLinelndex
+ char x pszRawData

The documentation for this struct was generated from the following file:

» cpl_csv.cpp

49.26 CutlineTransformer Class Reference

Public Member Functions

« virtual OGRSpatialReference * GetSourceCS ()

« virtual OGRSpatialReference x GetTargetCS ()

« virtual int Transform (int nCount, double *x, double xy, double xz=NULL)

« virtual int TransformEx (int nCount, double xx, double xy, double xz=NULL, int

xpabSuccess=NULL)

Public Attributes

+ void * hSrclmageTransformer

The documentation for this class was generated from the following file:

+ gdalwarp.cpp

49.27 DatasetCtixt Struct Reference

Public Attributes

+ GDALDataset * poDS
» GIntBig nPIDCreatorForShared

The documentation for this struct was generated from the following file:

+ gdaldataset.cpp

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.28 DatasetProperty Struct Reference 245

49.28 DatasetProperty Struct Reference

Public Attributes

« int isFileOK

+ int nRasterXSize

+ int nRasterYSize

 double adfGeoTransform [6]

« int nBlockXSize

« int nBlockYSize

+ GDALDataType firstBandType
+ int *x panHasNoData

» double x padfNoDataValues

The documentation for this struct was generated from the following file:

+ gdalbuildvrt.cpp

49.29 DefaultCSVFileNameTLS Struct Reference

Public Attributes

+ char szPath [512]
« int bCSVFinderlnitialized

The documentation for this struct was generated from the following file:

* cpl_csv.cpp

49.30 EnhanceCBiInfo Struct Reference

Public Attributes

+ GDALRasterBand * poSrcBand
+ GDALDataType eWrkType

+ double dfScaleMin

+ double dfScaleMax

* int nLUTBins

» constint x panLUT

The documentation for this struct was generated from the following file:

+ gdalenhance.cpp

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

246 Class Documentation

49.31 errHandler Struct Reference

Public Attributes

+ struct errHandler x psNext
+ CPLErrorHandler pfnHandler

The documentation for this struct was generated from the following file:

* cpl_error.cpp

49.32 file_in_zip_read_info_s Struct Reference

Public Attributes

» char % read_buffer

+ z_stream stream

» uLong64 pos_in_zipfile

» uLong stream_initialised

» uLong64 offset_local_extrafield
* ulnt size_local_extrafield

» uLong64 pos_local_extrafield

» ulLong crc32

» ulLong cre32_wait

» uLong64 rest_read_compressed
» uLong64 rest_read_uncompressed
+ zlib_filefunc_def z_filefunc

+ voidpf filestream

» uLong compression_method

» uLong64 byte_before_the_zipfile
* intraw

The documentation for this struct was generated from the following file:

* cpl_minizip_unzip.cpp

49.33 FindFileTLS Struct Reference

Public Attributes

« int bFinderlnitialized

« int nFileFinders

» CPLFileFinder x papfnFinders
+ char xx papszFinderLocations

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.34 GCPTransforminfo Struct Reference

247

The documentation for this struct was generated from the following file:

+ cpl_findfile.cpp

49.34 GCPTransforminfo Struct Reference

Public Attributes

+ GDALTransformerlnfo sTI
+ double adfToGeoX [20]

» double adfToGeoY [20]

+ double adfFromGeoX [20]
+ double adfFromGeoY [20]
* int nOrder

* int bReversed

* int NnGCPCount

+ GDAL_GCP * pasGCPList

The documentation for this struct was generated from the following files:

» gdal_crs.c
« gdal_nrgcrs.c

49.35 GDAL_GCP Struct Reference

Ground Control Point.

#include <gdal.h>

Public Attributes

* char * pszld

Unique identifier, often numeric.
* char * pszinfo

Informational message or "".
+ double dfGCPPixel

Pixel (x) location of GCP on raster.
+ double dfGCPLine

Line (y) location of GCP on raster.
+ double dfGCPX

X position of GCP in georeferenced space.
+ double dfGCPY

Y position of GCP in georeferenced space.
+ double dfGCPZ

Elevation of GCP, or zero if not known.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

248 Class Documentation

49.35.1 Detailed Description

Ground Control Point.

The documentation for this struct was generated from the following file:

+ gdal.h

49.36 GDALAIIValidMaskBand Class Reference

Inheritance diagram for GDALAIIValidMaskBand:

\ GDALMgjorObject \

|

\ GDAL RasterBand \

|

\ GDALAIIVaidMaskBand \

Public Member Functions

+ GDALAIIValidMaskBand (GDALRasterBand)
+ virtual GDALRasterBand « GetMaskBand ()

Return the mask band associated with the band.
« virtual int GetMaskFlags ()

Return the status flags of the mask band associated with the band.

Protected Member Functions

« virtual CPLErr IReadBlock (int, int, void)

49.36.1 Member Function Documentation
49.36.1.1 GDALRasterBand x GDALAIlIValidMaskBand::GetMaskBand() [virtual]

Return the mask band associated with the band.
The GDALRasterBand (p. ??) class includes a default implementation of GetMask-
Band() (p. ??) that returns one of four default implementations :

+ If a corresponding .msk file exists it will be used for the mask band.

« If the dataset has a NODATA_VALUES metadata item, an instance of the new
GDALNoDataValuesMaskBand (p. ??) class will be returned. GetMaskFlags()
(p.??) will return GMF_NODATA | GMF_PER_DATASET.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.36 GDALAIlIValidMaskBand Class Reference 249

Since

GDAL 1.6.0

« |If the band has a nodata value set, an instance of the new GDALNodataMask-
RasterBand class will be returned. GetMaskFlags() (p. ??) will return GMF_NO-
DATA.

« If there is no nodata value, but the dataset has an alpha band that seems to apply
to this band (specific rules yet to be determined) and that is of type GDT_Byte
then that alpha band will be returned, and the flags GMF_PER_DATASET and
GMF_ALPHA will be returned in the flags.

« If neither of the above apply, an instance of the new GDALAIIValidRasterBand
class will be returned that has 255 values for all pixels. The null flags will return
GMF_ALL_VALID.

Note that the GetMaskBand() (p. ??) should always return a GDALRasterBand (p. ??)
mask, even if it is only an all 255 mask with the flags indicating GMF_ALL_VALID.
Returns

a valid mask band.

Since

GDAL 1.5.0

See also

http://trac.osgeo.org/gdal/wiki/rfcl5_nodatabitmask

Reimplemented from GDALRasterBand (p.??).

49.36.1.2 int GDALAIIValidMaskBand::GetMaskFlags () [virtual]

Return the status flags of the mask band associated with the band.

The GetMaskFlags() (p. ??) method returns an bitwise OR-ed set of status flags with
the following available definitions that may be extended in the future:

+ GMF_ALL_VALID(0x01): There are no invalid pixels, all mask values will be 255.
When used this will normally be the only flag set.

+ GMF_PER_DATASET(0x02): The mask band is shared between all bands on
the dataset.

* GMF_ALPHA(0x04): The mask band is actually an alpha band and may have
values other than 0 and 255.

+ GMF_NODATA(0x08): Indicates the mask is actually being generated from no-
data values. (mutually exclusive of GMF_ALPHA)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

250 Class Documentation

The GDALRasterBand (p. ??) class includes a default implementation of GetMask-
Band() (p. ??) that returns one of four default implementations :
« If a corresponding .msk file exists it will be used for the mask band.

« If the dataset has a NODATA_VALUES metadata item, an instance of the new
GDALNoDataValuesMaskBand (p. ??) class will be returned. GetMaskFlags()
(p-??) will return GMF_NODATA | GMF_PER_DATASET.

Since

GDAL 1.6.0

If the band has a nodata value set, an instance of the new GDALNodataMask-
RasterBand class will be returned. GetMaskFlags() (p. ??) will return GMF_NO-
DATA.

If there is no nodata value, but the dataset has an alpha band that seems to apply
to this band (specific rules yet to be determined) and that is of type GDT_Byte
then that alpha band will be returned, and the flags GMF_PER_DATASET and
GMF_ALPHA will be returned in the flags.

If neither of the above apply, an instance of the new GDALAIIValidRasterBand
class will be returned that has 255 values for all pixels. The null flags will return
GMF_ALL_VALID.

Since

GDAL 1.5.0

Returns

a valid mask band.

See also

http://trac.osgeo.org/gdal/wiki/rfcl5_nodatabitmask

Reimplemented from GDALRasterBand (p. ??).

The documentation for this class was generated from the following files:

+ gdal_priv.h
+ gdalallvalidmaskband.cpp

49.37 GDALAspectAlgData Struct Reference

Public Attributes
+ int bAngleAsAzimuth
The documentation for this struct was generated from the following file:

+ gdaldem.cpp

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.38 GDALColorEntry Struct Reference

251

49.38 GDALColorEntry Struct Reference

Color tuple.
#include <gdal.h>

Public Attributes

* short ¢1
» short c2
» short ¢3
* short c4

49.38.1 Detailed Description

Color tuple.

49.38.2 Member Data Documentation
49.38.2.1 short GDALColorEntry::c1

gray, red, cyan or hue

Referenced by GDALRasterAttributeTable::InitializeFromColorTable(), GDALRaster-

AttributeTable:: TranslateToColorTable(), GDALColorTable::SetColorEntry(),

GDAL-

ColorTable::CreateColorRamp(), GDALDitherRGB2PCT(), GDALComputeMedianCut-

PCT(), and GDALRasterBand::GetIndexColorTranslationTo().

49.38.2.2 short GDALColorEntry::c2

green, magenta, or lightness

Referenced by GDALRasterAttributeTable::InitializeFromColorTable(), GDALRaster-

AttributeTable::TranslateToColorTable(), GDALColorTable::SetColorEntry(),

GDAL-

ColorTable::CreateColorRamp(), GDALDitherRGB2PCT(), GDALComputeMedianCut-

PCT(), and GDALRasterBand::GetIndexColorTranslationTo().

49.38.2.3 short GDALColorEntry::c3

blue, yellow, or saturation

Referenced by GDALRasterAttributeTable::InitializeFromColorTable(), GDALRaster-

AttributeTable::TranslateToColorTable(), GDALColorTable::SetColorEntry(),

GDAL-

ColorTable::CreateColorRamp(), GDALDitherRGB2PCT(), GDALComputeMedianCut-

PCT(), and GDALRasterBand::GetIndexColorTranslationTo().

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

252 Class Documentation

49.38.2.4 short GDALColorEntry::c4

alpha or blackband

Referenced by GDALRasterAttributeTable::InitializeFromColorTable(), GDALRaster-
Attrioute Table::TranslateToColorTable(), GDALColorTable::SetColorEntry(), GDAL-
ColorTable::CreateColorRamp(), and GDALComputeMedianCutPCT().

The documentation for this struct was generated from the following file:

+ gdal.h

49.39 GDALColorReliefDataset Class Reference

Inheritance diagram for GDALColorReliefDataset:

‘ GDALMgjorObject \

|

‘ GDAL Dataset \

\ GDAL ColorRelief Dataset \

Public Member Functions

+ GDALColorReliefDataset (GDALDatasetH hSrcDS, GDALRasterBandH h-
SrcBand, const char xpszColorFilename, ColorSelectionMode eColorSelection-
Mode, int bAlpha)

» CPLErr GetGeoTransform (double xpadfGeoTransform)

Fetch the affine transformation coefficients.
« const char x GetProjectionRef ()

Fetch the projection definition string for this dataset.

Friends

 class GDALColorReliefRasterBand

49.39.1 Member Function Documentation

49.39.1.1 CPLErr GDALColorReliefDataset::GetGeoTransform (double x padfTransform)
[virtual]

Fetch the affine transformation coefficients.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.39 GDALColorReliefDataset Class Reference 253

Fetches the coefficients for transforming between pixel/line (P.L) raster space, and pro-
jection coordinates (Xp,Yp) space.

Xp
Yp

padfTransform[0] + PsxpadfTransform[l] + LxpadfTransform[2];
padfTransform[3] + PxpadfTransform[4] + LxpadfTransform[5];

In a north up image, padfTransform[1] is the pixel width, and padfTransform[5] is the pixel
height. The upper left corner of the upper left pixel is at position (padfTransform[0],padf-
Transform[3]).

The default transform is (0,1,0,0,0,1) and should be returned even when a CE_Failure
error is returned, such as for formats that don’t support transformation to projection
coordinates.

NOTE: GetGeoTransform() (p. ??) isn’t expressive enough to handle the variety of -
OGC Grid Coverages pixel/line to projection transformation schemes. Eventually this
method will be depreciated in favour of a more general scheme.

This method does the same thing as the C GDALGetGeoTransform() (p. ??) function.

Parameters

padf- | an existing six double buffer into which the transformation will be placed.
Transform

Returns

CE_None on success, or CE_Failure if no transform can be fetched.

Reimplemented from GDALDataset (p.??).
References GDALGetGeoTransform().

49.39.1.2 const char = GDALColorReliefDataset::GetProjectionRef (void) [virtuall]

Fetch the projection definition string for this dataset.
Same as the C function GDALGetProjectionRef() (p. ??).

The returned string defines the projection coordinate system of the image in OpenGIS
WKT format. It should be suitable for use with the OGRSpatialReference class.

When a projection definition is not available an empty (but not NULL) string is returned.

Returns

a pointer to an internal projection reference string. It should not be altered, freed or
expected to last for long.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

254 Class Documentation

See also

http://www.gdal.org/ogr/osr_tutorial.html

Reimplemented from GDALDataset (p.??).
References GDALGetProjectionRef().

The documentation for this class was generated from the following file:

+ gdaldem.cpp

49.40 GDALColorReliefRasterBand Class Reference

Inheritance diagram for GDALColorReliefRasterBand:

\ GDALMgjorObject \

T

\ GDAL RagterBand \

T

\ GDAL ColorReliefRasterBand \

Public Member Functions

+ GDALColorReliefRasterBand (GDALColorReliefDataset x, int)
« virtual CPLErr IReadBlock (int, int, void *)
« virtual GDALColorinterp GetColorinterpretation ()

How should this band be interpreted as color?

Friends

 class GDALColorReliefDataset

49.40.1 Member Function Documentation

49.40.1.1 GDALColorinterp GDALColorReliefRasterBand::GetColorinterpretation ()
[virtual]
How should this band be interpreted as color?

GCIl_Undefined is returned when the format doesn’t know anything about the color in-
terpretation.

This method is the same as the C function GDALGetRasterColorinterpretation()
(p.??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.41 GDALColorTable Class Reference 255

Returns

color interpretation value for band.

Reimplemented from GDALRasterBand (p.??).
References GCI_RedBand.

The documentation for this class was generated from the following file:

» gdaldem.cpp

49.41 GDALColorTable Class Reference

#include <gdal_priv.h>

Public Member Functions

+ GDALColorTable (GDALPalettelnterp=GPI_RGB)

Construct a new color table.
+ ~GDALColorTable ()

Destructor.
* GDALColorTable *« Clone () const

Make a copy of a color table.
+ GDALPalettelnterp GetPalettelnterpretation () const

Fetch palette interpretation.
« int GetColorEntryCount () const

Get number of color entries in table.

» const GDALColorEntry « GetColorEntry (int) const

Fetch a color entry from table.
+ int GetColorEntryAsRGB (int, GDALColorEntry) const

Fetch a table entry in RGB format.
+ void SetColorEntry (int, const GDALColorEntry x)

Set entry in color table.

+ int CreateColorRamp (int, const GDALColorEntry *, int, const GDALColor-
Entry x)

Create color ramp.

49.41.1 Detailed Description

A color table / palette.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

256 Class Documentation

49.41.2 Constructor & Destructor Documentation
49.41.2.1 GDALColorTable::GDALColorTable (GDALPalettelnterp elnterpin = GPT_RGB)

Construct a new color table.

This constructor is the same as the C GDALCreateColorTable() (p. ??) function.

Parameters

| elnterpin | the interpretation to be applied to GDALColorEntry (p. 2?) values.

Referenced by Clone().

49.41.2.2 GDALColorTable::~GDALColorTable ()

Destructor.

This descructor is the same as the C GDALDestroyColorTable() (p. ??) function.

49.41.3 Member Function Documentation
49.41.3.1 GDALColorTable + GDALColorTable::Clone () const

Make a copy of a color table.
This method is the same as the C function GDALCloneColorTable() (p. ??).
References GDALColorTable().

Referenced by GDALPamRasterBand::SetColorTable(), GDALProxyPoolRasterBand::-
GetColorTable(), and VRTRasterBand::SetColorTable().

49.41.3.2 int GDALColorTable::CreateColorRamp (int nStartindex, const GDALColorEntry
psStartColor, int nEndindex, const GDALColorEntry psEndColor)
Create color ramp.

Automatically creates a color ramp from one color entry to another. It can be called
several times to create multiples ramps in the same color table.

This function is the same as the C function GDALCreateColorRamp() (p. ??).

Parameters

nStartindex | index to start the ramp on the color table [0..255]

psStartColor | a color entry value to start the ramp

nEndlindex | index to end the ramp on the color table [0..255]

psEndColor | a color entry value to end the ramp

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.41 GDALColorTable Class Reference 257

Returns

total number of entries, -1 to report error

References SetColorEntry(), GetColorEntryCount(), GDALColorEntry::c1, GDALColor-
Entry::c2, GDALColorEntry::c3, and GDALColorEntry::c4.

49.41.3.3 const GDALColorEntry « GDALColorTable::GetColorEntry (int i) const

Fetch a color entry from table.

This method is the same as the C function GDALGetColorEntry() (p. ??).

Parameters

i \ entry offset from zero to GetColorEntryCount() (p. ??)-1.

Returns

pointer to internal color entry, or NULL if index is out of range.

Referenced by GDALRasterBand::GetlndexColorTranslationTo().

49.41.3.4 int GDALColorTable::GetColorEntryAsRGB (int i GDALColorEntry x poEntry)
const
Fetch a table entry in RGB format.

In theory this method should support translation of color palettes in non-RGB color
spaces into RGB on the fly, but currently it only works on RGB color tables.

This method is the same as the C function GDALGetColorEntryAsRGB() (p. ??).

Parameters

-

entry offset from zero to GetColorEntryCount() (p. ??)-1.

poEntry | the existing GDALColorEntry (p. ??) to be overrwritten with the RGB
values.

Returns

TRUE on success, or FALSE if the conversion isn’t supported.

References GPI_RGB.
Referenced by GDALRasterAttributeTable::InitializeFromColorTable().

49.41.3.5 int GDALColorTable::GetColorEntryCount () const

Get number of color entries in table.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

258 Class Documentation

This method is the same as the function GDALGetColorEntryCount() (p. ??).

Returns

the number of color entries.

Referenced by GDALRasterAttributeTable::InitializeFromColorTable(), CreateColor-
Ramp(), and GDALRasterBand::GetlndexColorTranslationTo().

49.41.3.6 GDALPalettelnterp GDALColorTable::GetPalettelnterpretation () const

Fetch palette interpretation.
The returned value is used to interprete the values in the GDALColorEntry (p. ??).

This method is the same as the C function GDALGetPalettelnterpretation() (p. ??).

Returns

palette interpretation enumeration value, usually GPI_RGB.

Referenced by GDALRegenerateOverviews().

49.41.3.7 void GDALColorTable::SetColorEntry (int i, const GDALColorEntry * poEntry)

Set entry in color table.

Note that the passed in color entry is copied, and no internal reference to it is main-
tained. Also, the passed in entry must match the color interpretation of the table to
which it is being assigned.

The table is grown as needed to hold the supplied offset.

This function is the same as the C function GDALSetColorEntry() (p. ??).

Parameters

-

entry offset from zero to GetColorEntryCount() (p. ??)-1.

poEntry | value to assign to table.

References GDALColorEntry::c1, GDALColorEntry::c2, GDALColorEntry::c3, and GD-
ALColorEntry::cé4.

Referenced by GDALRasterAttributeTable::TranslateToColorTable(), and CreateColor-
Ramp().

The documentation for this class was generated from the following files:

+ gdal_priv.h
+ gdalcolortable.cpp

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.42 GDALContourGenerator Class Reference 259

49.42 GDALContourGenerator Class Reference

Public Member Functions

+ GDALContourGenerator (int nWidth, int nHeight, GDALContourWriter pfn-
Writer, void xpWriterCBData)

« void SetNoData (double dfNoDataValue)

 void SetContourLevels (double dfContourInterval, double dfContourOffset=0.0)

« void SetFixedLevels (int, double)

» CPLErr FeedLine (double xpadfScanline)

» CPLErr EjectContours (int bOnlyUnused=FALSE)

Public Attributes

« GDALContourWriter pfnWriter
« void * pWriterCBData

The documentation for this class was generated from the following file:

+ contour.cpp

49.43 GDALContourltem Class Reference

Public Member Functions

+ GDALContourltem (double dfLevel)

« int AddSegment (double dfXStart, double dfYStart, double dfXEnd, double dfY-
End, int bLeftHigh)

» void MakeRoomFor (int)

+ int Merge (GDALContourltem x)

 void PrepareEjection ()

Public Attributes

« int bRecentlyAccessed
+ double dfLevel

* int nPoints

« int nMaxPoints
 double * padfX

+ double * padfY

« int bLeftlsHigh

» double dfTailX

The documentation for this class was generated from the following file:

» contour.cpp

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

260

Class Documentation

49.44 GDALContourLevel Class Reference

Public Member Functions

+ GDALContourLevel (double)

+ double GetLevel ()

+ int GetContourCount ()

+ GDALContourltem x GetContour (int i)
+ void AdjustContour (int)

+ void RemoveContour (int)

« int FindContour (double dfX, double dfY)
+ int InsertContour (GDALContourltem x)

The documentation for this class was generated from the following file:

» contour.cpp

49.45 GDALDataset Class Reference

A set of associated raster bands, usually from one file.
#include <gdal_priv.h>

Inheritance diagram for GDALDataset:

| GDALMgjorObject |

| GDALIDataset |
GDALCoIor‘ReIiefDatasetl |GDALGener‘ic3x3Dataset| | GDALP;mDataset | | GDALPro‘xyDataset | | VRTD‘ataset \
| GDAL ProxyPool Dataset | | VRTWarpedDataset \

Public Member Functions

« virtual ~GDALDataset ()

Destroy an open GDALDataset (p. ??).
+ int GetRasterXSize (void)

Fetch raster width in pixels.
* int GetRasterYSize (void)

Fetch raster height in pixels.
+ int GetRasterCount (void)

Fetch the number of raster bands on this dataset.
GDALRasterBand *« GetRasterBand (int)

Fetch a band object for a dataset.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.45 GDALDataset Class Reference 261

« virtual void FlushCache (void)
Flush all write cached data to disk.
« virtual const char x GetProjectionRef (void)
Fetch the projection definition string for this dataset.
« virtual CPLErr SetProjection (const char)
Set the projection reference string for this dataset.
« virtual CPLErr GetGeoTransform (double x)
Fetch the affine transformation coefficients.
« virtual CPLErr SetGeoTransform (double x)
Set the affine transformation coefficients.
« virtual CPLErr AddBand (GDALDataType eType, char *xpapszOptions=NUL-
L)
Add a band to a dataset.
« virtual void x GetlnternalHandle (const char x)
Fetch a format specific internally meaningful handle.
« virtual GDALDriver x GetDriver (void)
Fetch the driver to which this dataset relates.
« virtual char *x GetFileList (void)
Fetch files forming dataset.
« virtual int GetGCPCount ()
Get number of GCPs.
« virtual const char x GetGCPProjection ()
Get output projection for GCPs.
« virtual const GDAL_GCP *« GetGCPs ()
Fetch GCPs.

« virtual CPLErr SetGCPs (int nGCPCount, const GDAL_GCP xpasGCPList, const

char xpszGCPProjection)
Assign GCPs.

« virtual CPLErr AdviseRead (int nXOff, int nYOff, int nXSize, int nYSize, int nBuf-
XSize, int nBufYSize, GDALDataType eDT, int nBandCount, int xpanBandList,
char *xpapszOptions)

Adavise driver of upcoming read requests.
« virtual CPLErr CreateMaskBand (int nFlags)
Adds a mask band to the dataset.

» CPLErr RasterlO (GDALRWFlag, int, int, int, int, void x, int, int, GDALDataType,
int, int x, int, int, int)

Read/write a region of image data from multiple bands.

« int Reference ()

Add one to dataset reference count.
« int Dereference ()

Subtract one from dataset reference count.
* GDALAccess GetAccess ()
* int GetShared ()

Returns shared flag.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

262 Class Documentation

+ void MarkAsShared ()

Mark this dataset as available for sharing.
« CPLErr BuildOverviews (const char x, int, int *, int, int x, GDALProgressFunc,
void x)
Build raster overview(s)

Static Public Member Functions

- static GDALDataset <+ GetOpenDatasets (int xpnDatasetCount)
Fetch all open GDAL dataset handles.

Protected Member Functions

« void Rasterlnitialize (int, int)

+ void SetBand (int, GDALRasterBand x)

« virtual CPLErr IBuildOverviews (const char x, int, int *, int, int x, GDAL-
ProgressFunc, void)

« virtual CPLErr IRasterlO (GDALRWFlag, int, int, int, int, void x, int, int, GDAL-
DataType, int, int x, int, int, int)

+ CPLErr BlockBasedRasterlO (GDALRWFlag, int, int, int, int, void x, int, int, G-
DALDataType, int, int *, int, int, int)

 void BlockBasedFlushCache ()

Protected Attributes

+ GDALDriver x poDriver

+ GDALAccess eAccess

+ int nRasterXSize

« int nRasterYSize

 int nBands

« GDALRasterBand xx papoBands

« int bForceCachedlO

+ int nRefCount

+ int bShared

+ GDALDefaultOverviews oOvManager

Friends

* class GDALDriver

* class GDALDefaultOverviews

+ class GDALProxyDataset

+ class GDALRasterBand

+ GDALDatasetH GDALOpen (const char *, GDALAccess)

Open a raster file as a GDALDataset (p. ??).
+ GDALDatasetH GDALOpenShared (const char x, GDALAccess)

Open a raster file as a GDALDataset (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.45 GDALDataset Class Reference 263

49.45.1 Detailed Description

A set of associated raster bands, usually from one file.
A dataset encapsulating one or more raster bands.
Details are further discussed in the GDAL Data Model.

Use GDALOpen() (p.??) or GDALOpenShared() (p.??) to create a GDALDataset
(p. ??) for a named file, or GDALDriver::Create() (p.??) or GDALDriver::Create-
Copy() (p. ??) to create a new dataset.

49.45.2 Constructor & Destructor Documentation
49.45.2.1 GDALDataset::~GDALDataset() [virtual]

Destroy an open GDALDataset (p. ??).

This is the accepted method of closing a GDAL dataset and deallocating all resources
associated with it.

Equivelent of the C callable GDALCIlose() (p. ??). Except that GDALClose() (p. ??)
first decrements the reference count, and then closes only if it has dropped to zero.

For Windows users, it is not recommanded using the delete operator on the dataset
object because of known issues when allocating and freeing memory across module
boundaries. Calling GDALCIlose() (p. ??) is then a better option.

References GDALMajorObject::GetDescription().

49.45.3 Member Function Documentation

49.45.3.1 CPLErr GDALDataset::AddBand (GDALDataType eType, char xx papszOptions =
NULL) [virtual]

Add a band to a dataset.

This method will add a new band to the dataset if the underlying format supports this
action. Most formats do not.

Note that the new GDALRasterBand (p. ??) is not returned. It may be fetched after suc-
cessful completion of the method by calling GDALDataset::GetRasterBand (p. ??)(G-
DALDataset::GetRasterCount() (p. ??)-1) as the newest band will always be the last
band.

Parameters

eType | the data type of the pixels in the new band.

papsz- | a list of NAME=VALUE option strings. The supported options are for-
Options | mat specific. NULL may be passed by default.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

264 Class Documentation

Returns

CE_None on success or CE_Failure on failure.

Reimplemented in VRTWarpedDataset (p.??), and VRTDataset (p.??).

49.45.3.2 CPLErr GDALDataset::AdviseRead (int nXOff, int nYOff, int nXSize, int nYSize,
int nBufXSize, int nBufYSize, GDALDataType eDT, int nBandCount, int
panBandMap, char xx papszOptions) [virtuall]

Advise driver of upcoming read requests.

Some GDAL drivers operate more efficiently if they know in advance what set of upcom-
ing read requests will be made. The AdviseRead() (p. ??) method allows an application
to notify the driver of the region and bands of interest, and at what resolution the region
will be read.

Many drivers just ignore the AdviseRead() (p. ??) call, but it can dramatically accelerate
access via some drivers.

Parameters

nXOff| The pixel offset to the top left corner of the region of the band to be
accessed. This would be zero to start from the left side.

nYOff| The line offset to the top left corner of the region of the band to be
accessed. This would be zero to start from the top.

nXSize | The width of the region of the band to be accessed in pixels.

nYSize | The height of the region of the band to be accessed in lines.

nBufXSize | the width of the buffer image into which the desired region is to be read,
or from which it is to be written.

nBufYSize | the height of the buffer image into which the desired region is to be
read, or from which it is to be written.

eBufType | the type of the pixel values in the pData data buffer. The pixel values
will automatically be translated to/from the GDALRasterBand (p. ??)
data type as needed.

nBandCount | the number of bands being read or written.

panBand- | the list of nBandCount band numbers being read/written. Note band
Map | numbers are 1 based. This may be NULL to select the first nBandCount
bands.

papsz- | a list of name=value strings with special control options. Normally this
Options | is NULL.

Returns

CE_Failure if the request is invalid and CE_None if it works or is ignored.

Reimplemented in GDALProxyDataset (p.??).
References GetRasterBand(), and GDALRasterBand::AdviseRead)().

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.45 GDALDataset Class Reference 265

49.45.3.3 CPLErr GDALDataset::BuildOverviews (const char pszResampling, int nOverviews,
int s« panOverviewList, int nListBands, int « panBandList, GDALProgressFunc
pfnProgress, void x pProgressData)

Build raster overview(s)

If the operation is unsupported for the indicated dataset, then CE_Failure is returned,
and CPLGetLastErrorNo() (p. ??) will return CPLE_NotSupported.

This method is the same as the C function GDALBuildOverviews() (p. ??).

Parameters

psz- | one of "NEAREST", "GAUSS", "CUBIC", "AVERAGE", "MODE", "AVE-
Resampling | RAGE_MAGPHASE" or "NONE" controlling the downsampling method
applied.
nOverviews | number of overviews to build.
pan- | the list of overview decimation factors to build.
OverviewList
nBand | number of bands to build overviews for in panBandList. Build for all
bands if this is 0.
panBandList | list of band numbers.
pfnProgress | a function to call to report progress, or NULL.
pProgress- | application data to pass to the progress function.
Data

Returns

CE_None on success or CE_Failure if the operation doesn’t work.

For example, to build overview level 2, 4 and 8 on all bands the following call could be
made:

int anOverviewList[3] = { 2, 4, 8 };
poDataset->BuildOverviews ("NEAREST", 3, anOverviewList, 0, NULL,

GDALDummyProgress, NULL);

See also

GDALRegenerateOverviews() (p. ??)

References GetRasterCount(), and GDALDummyProgress().

49.45.3.4 CPLErr GDALDataset::CreateMaskBand (int nFlags) [virtuall]

Adds a mask band to the dataset.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

266 Class Documentation

The default implementation of the CreateMaskBand() (p. ??) method is implemented
based on similar rules to the .ovr handling implemented using the GDALDefault-
Overviews (p. ??) object. A TIFF file with the extension .msk will be created with the
same basename as the original file, and it will have one band. The mask images will
be deflate compressed tiled images with the same block size as the original image if
possible.

Since

GDAL 1.5.0

Parameters

nFlags \ ignored. GMF_PER_DATASET will be assumed.

Returns

CE_None on success or CE_Failure on an error.

See also

http://trac.osgeo.org/gdal/wiki/rfcl5_nodatabitmask

Reimplemented in GDALProxyDataset (p.??).

49.45.3.5 int GDALDataset::Dereference ()

Subtract one from dataset reference count.

The reference is one after instantiation. Generally when the reference count has
dropped to zero the dataset may be safely deleted (closed).

This method is the same as the C GDALDereferenceDataset() (p. ??) function.

Returns

the post-decrement reference count.

Referenced by GDALClose().

49.45.3.6 void GDALDataset::FlushCache (void) [virtuall]

Flush all write cached data to disk.

Any raster (or other GDAL) data written via GDAL calls, but buffered internally will be
written to disk.

Using this method does not prevent use from calling GDALClose() (p. ??) to properly
close a dataset and ensure that important data not addressed by FlushCache() (p. ??)
is written in the file.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.45 GDALDataset Class Reference 267

This method is the same as the C function GDALFlushCache() (p. ??).

Reimplemented in GDALPamDataset (p.??), VRTDataset (p.??), and GDALProxy-
Dataset (p.??).

References GDALRasterBand::FlushCache().
Referenced by GDALProxyDataset::FlushCache().

49.45.3.7 GDALDriver x GDALDataset::GetDriver (void) [virtual]

Fetch the driver to which this dataset relates.

This method is the same as the C GDALGetDatasetDriver() (p. ??) function.

Returns

the driver on which the dataset was created with GDALOpen() (p. ??) or GDAL-
Create() (p. ??).

Reimplemented in GDALProxyDataset (p.??).

49.45.3.8 char xx GDALDataset::GetFileList (void) [virtual]

Fetch files forming dataset.

Returns a list of files believed to be part of this dataset. If it returns an empty list of files
it means there is believed to be no local file system files associated with the dataset (for
instance a virtual dataset). The returned file list is owned by the caller and should be
deallocated with CSLDestroy() (p. ??).

The returned filenames will normally be relative or absolute paths depending on the
path used to originally open the dataset.

This method is the same as the C GDALGetFileList() (p. ??) function.

Returns

NULL or a NULL terminated array of file names.

Reimplemented in VRTWarpedDataset (p.??), GDALPamDataset (p.??), VRT-
Dataset (p.??), and GDALProxyDataset (p.??).

References GDALMajorObject::GetDescription(), VSIStatL(), GetFileList(), CPLGet-
Extension(), and CPLResetExtension().

Referenced by GetFileList().
49.45.3.9 int GDALDataset::GetGCPCount() [virtual]

Get number of GCPs.
This method is the same as the C function GDALGetGCPCount() (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

268 Class Documentation

Returns

number of GCPs for this dataset. Zero if there are none.

Reimplemented in GDALPamDataset (p.??), VRTDataset (p.??), and GDALProxy-
Dataset (p.??).

Referenced by GDALProxyPoolDataset::GetGCPs().

49.45.3.10 const char x GDALDataset::GetGCPProjection () [virtuall]

Get output projection for GCPs.
This method is the same as the C function GDALGetGCPProjection() (p. ??).

The projection string follows the normal rules from GetProjectionRef() (p. ??).

Returns

internal projection string or "" if there are no GCPs.

Reimplemented in GDALProxyPoolDataset (p.??), GDALPamDataset (p.??), VRT-
Dataset (p.??), and GDALProxyDataset (p.??).

Referenced by GDALProxyPoolDataset::GetGCPProjection().

49.45.3.11 const GDAL_GCP x GDALDataset::GetGCPs() [virtual]

Fetch GCPs.
This method is the same as the C function GDALGetGCPs() (p. ??).

Returns

pointer to internal GCP structure list. It should not be modified, and may change on
the next GDAL call.

Reimplemented in GDALProxyPoolDataset (p.??), GDALPamDataset (p.??), VRT-
Dataset (p.??), and GDALProxyDataset (p.??).

Referenced by GDALProxyPoolDataset::GetGCPs().

49.45.3.12 CPLErr GDALDataset::GetGeoTransform (double x padfTransform)
[virtual]
Fetch the affine transformation coefficients.
Fetches the coefficients for transforming between pixel/line (P.L) raster space, and pro-

jection coordinates (Xp,Yp) space.

padfTransform[0] + PxpadfTransform[l] + LxpadfTransform[2];
padfTransform[3] + PxpadfTransform[4] + LxpadfTransform[5];

Xp
Yp

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.45 GDALDataset Class Reference 269

In a north up image, padfTransform[1] is the pixel width, and padfTransform[5] is the pixel
height. The upper left corner of the upper left pixel is at position (padfTransform[0],padf-
Transform[3]).

The default transform is (0,1,0,0,0,1) and should be returned even when a CE_Failure
error is returned, such as for formats that don’t support transformation to projection
coordinates.

NOTE: GetGeoTransform() (p. ??) isn’t expressive enough to handle the variety of -
OGC Grid Coverages pixel/line to projection transformation schemes. Eventually this
method will be depreciated in favour of a more general scheme.

This method does the same thing as the C GDALGetGeoTransform() (p. ??) function.

Parameters

padf- | an existing six double buffer into which the transformation will be placed.
Transform

Returns

CE_None on success, or CE_Failure if no transform can be fetched.

Reimplemented in GDALGeneric3x3Dataset (p.??), GDALColorReliefDataset
(p. ??), GDALProxyPoolDataset (p.??), GDALPamDataset (p.??), VRTDataset
(p. ??), and GDALProxyDataset (p.??).

49.45.3.13 void « GDALDataset::GetInternalHandle (constchar«+) [virtual]

Fetch a format specific internally meaningful handle.

This method is the same as the C GDALGetInternalHandle() (p. ??) method.

Parameters

pszHandle- | the handle name desired. The meaningful names will be specific to the
Name | file format.

Returns

the desired handle value, or NULL if not recognised/supported.

Reimplemented in GDALProxyPoolDataset (p.??), and GDALProxyDataset (p.??).

49.45.3.14 GDALDataset +x GDALDataset::GetOpenDatasets (int + pnCount)
[static]

Fetch all open GDAL dataset handles.

This method is the same as the C function GDALGetOpenDatasets() (p. ??).

NOTE: This method is not thread safe. The returned list may changed at any time.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

270 Class Documentation

Parameters
\ pnCount\ integer into which to place the count of dataset pointers being returned. \

Returns

a pointer to an array of dataset handles.

Referenced by GDALGetOpenDatasets().

49.45.3.15 const char « GDALDataset::GetProjectionRef (void) [virtual]

Fetch the projection definition string for this dataset.
Same as the C function GDALGetProjectionRef() (p. ??).

The returned string defines the projection coordinate system of the image in OpenGIS
WKT format. It should be suitable for use with the OGRSpatialReference class.

When a projection definition is not available an empty (but not NULL) string is returned.

Returns

a pointer to an internal projection reference string. It should not be altered, freed or
expected to last for long.

See also

http://www.gdal.org/ogr/osr_tutorial.html

Reimplemented in GDALGeneric3x3Dataset (p.??), GDALColorReliefDataset
(p. ??), GDALProxyPoolDataset (p.??), GDALPamDataset (p.??), VRTDataset
(p. ??), and GDALProxyDataset (p.??).

49.45.3.16 GDALRasterBand « GDALDataset::GetRasterBand (int nBandld)

Fetch a band object for a dataset.

Equivalent of the C function GDALGetRasterBand() (p. ??).

Parameters

nBandld | the index number of the band to fetch, from 1 to GetRasterCount()
(p-??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.45 GDALDataset Class Reference 271

Returns

the nBandld th band object

Referenced by RasterlO(), AdviseRead(), GDALRasterBand::GetMaskBand(), GDAL-
RasterizeGeometries(), GDALRasterizeLayers(), GDALCreateWarpedVRT(), and VR-
TWarpedRasterBand::GetOverview().

49.45.3.17 int GDALDataset::GetRasterCount (void)

Fetch the number of raster bands on this dataset.

Same as the C function GDALGetRasterCount() (p. ??).

Returns

the number of raster bands.

Referenced by BuildOverviews(), RasterlO(), GDALRasterBand::GetMaskBand(), VR-
TDataset::AddBand(), and VRTWarpedDataset::AddBand().

49.45.3.18 int GDALDataset::GetRasterXSize (void)

Fetch raster width in pixels.

Equivelent of the C function GDALGetRasterXSize() (p. ??).

Returns

the width in pixels of raster bands in this GDALDataset (p. ??).

Referenced by GDALRasterizeGeometries(), GDALRasterizeLayers(), and VRT-
Dataset::AddBand().

49.45.3.19 int GDALDataset::GetRasterYSize (void)

Fetch raster height in pixels.

Equivelent of the C function GDALGetRasterYSize() (p. ??).

Returns

the height in pixels of raster bands in this GDALDataset (p. ??).

Referenced by GDALRasterizeGeometries(), GDALRasterizeLayers(), and VRT-
Dataset::AddBand().

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

272 Class Documentation

49.45.3.20 int GDALDataset::GetShared ()
Returns shared flag.

Returns

TRUE if the GDALDataset (p. ??) is available for sharing, or FALSE if not.

Referenced by GDALClose().

49.45.3.21 CPLErr GDALDataset::RasterlO (GDALRWFlag eRWFlag, int nXOff, int nYOff, int
nXSize, int nYSize, void x pData, int nBufXSize, int nBufYSize, GDALDataType
eBufType, int nBandCount, int x panBandMap, int nPixelSpace, int nLineSpace, int
nBandSpace)

Read/write a region of image data from multiple bands.

This method allows reading a region of one or more GDALRasterBands from this
dataset into a buffer, or writing data from a buffer into a region of the GDALRaster-
Bands. It automatically takes care of data type translation if the data type (eBufType)
of the buffer is different than that of the GDALRasterBand (p. ??). The method also
takes care of image decimation / replication if the buffer size (nBufXSize x nBufYSize)
is different than the size of the region being accessed (nXSize x nYSize).

The nPixelSpace, nLineSpace and nBandSpace parameters allow reading into or writ-
ing from various organization of buffers.

For highest performance full resolution data access, read and write on "block bound-
aries" as returned by GetBlockSize(), or use the ReadBlock() and WriteBlock() meth-
ods.

This method is the same as the C GDALDatasetRasterlO() (p. ??) function.

Parameters

eRWFlag | Either GF_Read to read a region of data, or GF_Write to write a region
of data.

nXOff| The pixel offset to the top left corner of the region of the band to be
accessed. This would be zero to start from the left side.

nYOff| The line offset to the top left corner of the region of the band to be
accessed. This would be zero to start from the top.

nXSize | The width of the region of the band to be accessed in pixels.

nYSize | The height of the region of the band to be accessed in lines.

pData | The buffer into which the data should be read, or from which it should
be written. This buffer must contain at least nBufXSize * nBufYSize *
nBandCount words of type eBufType. It is organized in left to right,top
to bottom pixel order. Spacing is controlled by the nPixelSpace, and
nLineSpace parameters.

nBufXSize | the width of the buffer image into which the desired region is to be read,
or from which it is to be written.

nBufYSize | the height of the buffer image into which the desired region is to be
read, or from which it is to be written.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.45 GDALDataset Class Reference 273

eBufType

the type of the pixel values in the pData data buffer. The pixel values
will automatically be translated to/from the GDALRasterBand (p. ??)
data type as needed.

nBandCount

the number of bands being read or written.

panBand-
Map

the list of nBandCount band numbers being read/written. Note band
numbers are 1 based. This may be NULL to select the first nBandCount
bands.

nPixelSpace

The byte offset from the start of one pixel value in pData to the start
of the next pixel value within a scanline. If defaulted (0) the size of the
datatype eBufType is used.

nLineSpace

The byte offset from the start of one scanline in pData to the start of the
next. If defaulted (0) the size of the datatype eBufType * nBufXSize is
used.

nBandSpace

the byte offset from the start of one bands data to the start of the next.
If defaulted (0) the value will be nLineSpace * nBufYSize implying band
sequential organization of the data buffer.

Returns

CE_Failure if the access fails, otherwise CE_None.

References GDALGetDataTypeSize(), GetRasterCount(), VSIMalloc2(), GF_Read, GF-
_Write, and GetRasterBand().

Referenced by GDALDatasetRasterlO(), GDALRasterizeGeometries(), and GDAL-
RasterizelLayers().

49.45.3.22 int GDALDataset::Reference ()

Add one to dataset reference count.

The reference is one after instantiation.

This method is the same as the C GDALReferenceDataset() (p. ??) function.

Returns

the post-increment reference count.

Referenced by GDALOpenShared().

49.45.3.23 CPLErr GDALDataset::SetGCPs (int nGCPCount, const GDAL_GCP x
pasGCPList, const char x pszGCPProjection) [virtual]

Assign GCPs.

This method is the same as the C function GDALSetGCPs() (p. ??).

This method assigns the passed set of GCPs to this dataset, as well as setting their
coordinate system. Internally copies are made of the coordinate system and list of
points, so the caller remains resposible for deallocating these arguments if appropriate.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

274 Class Documentation

Most formats do not support setting of GCPs, even foramts that can handle GCPs.
These formats will return CE_Failure.

Parameters

nGCPCount | number of GCPs being assigned.

pasGCPList | array of GCP structures being assign (hnGCPCount in array).

pszGCP- | the new OGC WKT coordinate system to assign for the GCP output
Projection | coordinates. This parameter should be " if no output coordinate system
is known.

Returns

CE_None on success, CE_Failure on failure (including if action is not supported for
this format).

Reimplemented in GDALPamDataset (p.??), VRTDataset (p.??), and GDALProxy-
Dataset (p.??).

49.45.3.24 CPLErr GDALDataset::SetGeoTransform (double x) [virtual]

Set the affine transformation coefficients.

See GetGeoTransform() (p. ??) for details on the meaning of the padfTransform coeffi-
cients.

This method does the same thing as the C GDALSetGeoTransform() (p. ??) function.

Parameters

padf- | a six double buffer containing the transformation coefficients to be writ-
Transform | ten with the dataset.

Returns

CE_None on success, or CE_Failure if this transform cannot be written.

Reimplemented in GDALProxyPoolDataset (p.??), GDALPamDataset (p.??), VRT-
Dataset (p.??), and GDALProxyDataset (p.??).

49.45.3.25 CPLErr GDALDataset::SetProjection (constchar x) [virtual]

Set the projection reference string for this dataset.

The string should be in OGC WKT or PROJ.4 format. An error may occur because of
incorrectly specified projection strings, because the dataset is not writable, or because
the dataset does not support the indicated projection. Many formats do not support
writing projections.

This method is the same as the C GDALSetProjection() (p. ??) function.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.45 GDALDataset Class Reference 275

Parameters

psz- | projection reference string.
Projection

Returns

CE_Failure if an error occurs, otherwise CE_None.

Reimplemented in GDALProxyPoolDataset (p.??), GDALPamDataset (p.??), VRT-
Dataset (p.??), and GDALProxyDataset (p.??).

49.45.4 Friends And Related Function Documentation

494541 GDALDatasetH GDALOpen (const char x pszFilename, GDALAccess eAccess
) [friend]

Open a raster file as a GDALDataset (p. ??).

This function will try to open the passed file, or virtual dataset name by invoking the
Open method of each registered GDALDriver (p. ??) in turn. The first successful open
will result in a returned dataset. If all drivers fail then NULL is returned.

Several recommandations :

+ If you open a dataset object with GA_Update access, it is not recommanded to
open a new dataset on the same underlying file.

» The returned dataset should only be accessed by one thread at a time. If you
want to use it from different threads, you must add all necessary code (mutexes,
etc.) to avoid concurrent use of the object. (Some drivers, such as GeoTIFF,
maintain internal state variables that are updated each time a new block is read,
thus preventing concurrent use.)

See also

GDALOpenShared() (p. ??)

Parameters

pszFilename | the name of the file to access. In the case of exotic drivers this may not
refer to a physical file, but instead contain information for the driver on
how to access a dataset.

eAccess | the desired access, either GA_Update or GA_ReadOnly. Many drivers
support only read only access.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

276 Class Documentation

Returns

A GDALDatasetH handle or NULL on failure. For C++ applications this handle can
be cast to a GDALDataset (p. ??) .

Referenced by GDALDriver::Delete(), GDALDriver::Rename(), and GDALDriver::Copy-
Files().

494542 GDALDatasetH GDALOpenShared (const char * pszFilename, GDALAccess
eAccess) [friend]

Open a raster file as a GDALDataset (p. ??).

This function works the same as GDALOpen() (p. ??), but allows the sharing of GDAL-
Dataset (p. ??) handles for a dataset with other callers to GDALOpenShared() (p. ??).

In particular, GDALOpenShared() (p.??) will first consult it's list of currently open
and shared GDALDataset’s, and if the GetDescription() (p. ??) name for one exactly
matches the pszFilename passed to GDALOpenShared() (p. ??) it will be referenced
and returned.

Starting with GDAL 1.6.0, if GDALOpenShared() (p. ??) is called on the same psz-
Filename from two different threads, a different GDALDataset (p.??) object will be
returned as it is not safe to use the same dataset from different threads, unless the user
does explicitely use mutexes in its code.

See also

GDALOpen() (p. ??)

Parameters

pszFilename | the name of the file to access. In the case of exotic drivers this may not
refer to a physical file, but instead contain information for the driver on
how to access a dataset.

eAccess | the desired access, either GA_Update or GA_ReadOnly. Many drivers
support only read only access.

Returns

A GDALDatasetH handle or NULL on failure. For C++ applications this handle can
be cast to a GDALDataset (p. ??) *.

The documentation for this class was generated from the following files:

+ gdal_priv.h
+ gdaldataset.cpp

49.46 GDALDatasetPaminfo Class Reference

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.47 GDALDatasetPool Class Reference 277

Public Attributes

 char x pszPamFilename

* char x pszProjection

+ int bHaveGeoTransform

» double adfGeoTransform [6]

+ int nGCPCount

+ GDAL_GCP * pasGCPList

+ char x pszGCPProjection

+ CPLString osPhysicalFilename
* CPLString osSubdatasetName

The documentation for this class was generated from the following file:

+ gdal_pam.h

49.47 GDALDatasetPool Class Reference

Static Public Member Functions

« static void Ref ()

« static void Unref ()

« static GDALProxyPoolCacheEntry « RefDataset (const char xpszFileName, G-
DALAccess eAccess)

« static void UnrefDataset (GDALProxyPoolCacheEntry xcacheEntry)

The documentation for this class was generated from the following file:

+ gdalproxypool.cpp

49.48 GDALDefaultOverviews Class Reference

Public Member Functions

« void Initialize (GDALDataset *poDS, const char xpszName=NULL, char
xxpapszSiblingFiles=NULL, int bNamelsOVR=FALSE)

« int Islnitialized ()

+ int GetOverviewCount (int)

+ GDALRasterBand « GetOverview (int, int)

« CPLErr BuildOverviews (const char xpszBasename, const char xpsz-
Resampling, int nOverviews, int xpanOverviewList, int nBands, int xpanBandList,
GDALProgressFunc pfnProgress, void xpProgressData)

+ CPLErr BuildOverviewsSubDataset (const char xpszPhysicalFile, const char
xpszResampling, int nOverviews, int xpanOverviewList, int nBands, int *pan-
BandList, GDALProgressFunc pfnProgress, void xpProgressData)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

278 Class Documentation

+ CPLErr CleanOverviews ()

» CPLErr CreateMaskBand (int nFlags, int nBand=-1)
+ GDALRasterBand « GetMaskBand (int nBand)

+ int GetMaskFlags (int nBand)

+ int HaveMaskFile (char *xpapszSiblings=NULL, const char *pszBasename=N-
ULL)

Friends
+ class GDALDataset

The documentation for this class was generated from the following files:
+ gdal_priv.h

+ gdaldefaultoverviews.cpp

49.49 GDALDriver Class Reference

Format specific driver.
#include <gdal_priv.h>

Inheritance diagram for GDALDriver:

\ GDALMagjorObject \

T

\ GDALDriver \

T

\ VRTDriver \

Public Member Functions

« GDALDataset « Create (const char xpszName, int nXSize, int nYSize, int n-
Bands, GDALDataType eType, char *xxpapszOptions)

Create a new dataset with this driver.
» CPLErr Delete (const char xpszName)

Delete named dataset.
« CPLErr Rename (const char xpszNewName, const char xpszOldName)

Rename a dataset.
» CPLErr CopyFiles (const char xpszNewName, const char xpszOldName)

Copy the files of a dataset.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.49 GDALDriver Class Reference 279

+ GDALDataset « CreateCopy (const char x, GDALDataset x, int, char x*, GDA-
LProgressFunc pfnProgress, void *pProgressData)

Create a copy of a dataset.
+ GDALDataset + DefaultCreateCopy (const char %, GDALDataset x, int, char
x*, GDALProgressFunc pfnProgress, void xpProgressData)

Static Public Member Functions

« static CPLErr DefaultCopyMasks (GDALDataset xpoSrcDS, GDALDataset
xpoDstDS, int bStrict)
« static CPLErr QuietDelete (const char xpszName)

Delete dataset if found.

Public Attributes

+ GDALDataset *(+x pfnOpen)(GDALOpeninfo x)

+ GDALDataset «(+ pfnCreate)(const char xpszName, int nXSize, int nYSize, int
nBands, GDALDataType eType, char *xpapszOptions)

+ CPLErr(x pfnDelete)(const char xpszName)

+ GDALDataset «(+ pfnCreateCopy)(const char x, GDALDataset x, int, char s,
GDALProgressFunc pfnProgress, void xpProgressData)

+ void x pDriverData

+ void(x pfnUnloadDriver)(GDALDriver x)

« int(x pfnildentify)(GDALOpenInfo x)

» CPLErr(x pfnRename)(const char xpszNewName, const char xpszOldName)

* CPLErr(x pfnCopyFiles)(const char xpszNewName, const char xpszOldName)

49.49.1 Detailed Description

Format specific driver.

An instance of this class is created for each supported format, and manages information
about the format.

This roughly corresponds to a file format, though some drivers may be gateways to
many formats through a secondary multi-library.

49.49.2 Member Function Documentation

49.49.2.1 CPLErr GDALDriver::CopyFiles (const char « pszNewName, const char x
pszOldName)

Copy the files of a dataset.

Copy all the files associated with a dataset.

Equivelent of the C function GDALCopyDatasetFiles() (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

280 Class Documentation

Parameters

pszNew- | new name for the dataset.
Name

pszOld- | old name for the dataset.
Name

Returns

CE_None on success, or CE_Failure if the operation fails.

References GDALDataset::GDALOpen, GA_ReadOnly, GDALGetFileList(), GDAL-
Close(), CPLCorrespondingPaths(), and VSIUnlink().

49.49.2.2 GDALDataset « GDALDriver::Create (const char « pszFilename, int nXSize, int
nYSize, int nBands, GDALDataType eType, char xx papszParmList)

Create a new dataset with this driver.

What argument values are legal for particular drivers is driver specific, and there is no
way to query in advance to establish legal values.

That function will try to validate the creation option list passed to the driver with the GD-
ALValidateCreationOptions() (p. ??) method. This check can be disabled by defining
the configuration option GDAL_VALIDATE_CREATION_OPTIONS=NO.

After you have finished working with the returned dataset, it is required to close it with
GDALCIose() (p. ??). This does not only close the file handle, but also ensures that all
the data and metadata has been written to the dataset (GDALFlushCache() (p. ??) is
not sufficient for that purpose).

Equivelent of the C function GDALCreate() (p. ??).

Parameters

pszFilename | the name of the dataset to create.

nXSize | width of created raster in pixels.

nYSize | height of created raster in pixels.

nBands | number of bands.

eType | type of raster.

papszParm- | list of driver specific control parameters.
List

Returns

NULL on failure, or a new GDALDataset (p. ??).

References QuietDelete(), GDALValidateCreationOptions(), GDALMajorObject::Get-
Description(), GDALGetDataTypeName(), and GDALMajorObject::SetDescription().

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.49 GDALDriver Class Reference 281

49.49.2.3 GDALDataset + GDALDriver::CreateCopy (const char * pszFilename,
GDALDataset *« poSrcDS, int bStrict, char xx papszOptions,
GDALProgressFunc pfnProgress, void « pProgressData)

Create a copy of a dataset.

This method will attempt to create a copy of a raster dataset with the indicated filename,
and in this drivers format. Band number, size, type, projection, geotransform and so
forth are all to be copied from the provided template dataset.

Note that many sequential write once formats (such as JPEG and PNG) don’t implement
the Create() (p. ??) method but do implement this CreateCopy() (p. ??) method. If the
driver doesn’t implement CreateCopy() (p.??), but does implement Create() (p.??)
then the default CreateCopy() (p. ??) mechanism built on calling Create() (p. ??) will
be used.

It is intended that CreateCopy() (p. ??) will often be used with a source dataset which
is a virtual dataset allowing configuration of band types, and other information without
actually duplicating raster data (see the VRT driver). This is what is done by the gdal_-
translate utility for example.

That function will try to validate the creation option list passed to the driver with the GD-
ALValidateCreationOptions() (p. ??) method. This check can be disabled by defining
the configuration option GDAL_VALIDATE_CREATION_OPTIONS=NO.

After you have finished working with the returned dataset, it is required to close it with
GDALCIose() (p. ??). This does not only close the file handle, but also ensures that all
the data and metadata has been written to the dataset (GDALFlushCache() (p.??) is
not sufficient for that purpose).

Parameters

pszFilename | the name for the new dataset.

poSrcDS | the dataset being duplicated.

bStrict | TRUE if the copy must be strictly equivelent, or more normally FALSE
indicating that the copy may adapt as needed for the output format.

papsz- | additional format dependent options controlling creation of the output
Options | file.

pfnProgress | a function to be used to report progress of the copy.

pProgress- | application data passed into progress function.
Data

Returns

a pointer to the newly created dataset (may be read-only access).

References GDALDummyProgress(), QuietDelete(), GDALValidateCreationOptions(), -
GDALMajorObject::GetDescription(), and GDALMajorObject::SetDescription().

49.49.2.4 CPLErr GDALDriver::Delete (const char * pszFilename)

Delete named dataset.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

282 Class Documentation

The driver will attempt to delete the named dataset in a driver specific fashion. Full
featured drivers will delete all associated files, database objects, or whatever is appro-
priate. The default behaviour when no driver specific behaviour is provided is to attempt
to delete the passed name as a single file.

It is unwise to have open dataset handles on this dataset when it is deleted.

Equivelent of the C function GDALDeleteDataset() (p. ??).

Parameters

| pszFilename | name of dataset to delete.

Returns

CE_None on success, or CE_Failure if the operation fails.

References GDALDataset::GDALOpen, GA_ReadOnly, GDALGetFileList(), GDAL-
Close(), and VSIUnlink().

Referenced by QuietDelete().

49.49.2.5 CPLErr GDALDriver::QuietDelete (const char x pszName) [static]

Delete dataset if found.

This is a helper method primarily used by Create() (p. ??) and CreateCopy() (p. ??)
to predelete any dataset of the name soon to be created. It will attempt to delete the
named dataset if one is found, otherwise it does nothing. An error is only returned if the
dataset is found but the delete fails.

This is a static method and it doesn’t matter what driver instance it is invoked on. It will
attempt to discover the correct driver using ldentify().

Parameters

| pszName | the dataset name to try and delete.

Returns

CE_None if the dataset does not exist, or is deleted without issues.

References GDALIdentifyDriver(), and Delete().
Referenced by Create(), and CreateCopy().

49.49.2.6 CPLErr GDALDriver::Rename (const char «x pszNewName, const char * pszOldName
)
Rename a dataset.

Rename a dataset. This may including moving the dataset to a new directory or even a
new filesystem.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.50 GDALDriverManager Class Reference 283

It is unwise to have open dataset handles on this dataset when it is being renamed.

Equivelent of the C function GDALRenameDataset() (p. ??).

Parameters

pszNew- | new name for the dataset.
Name

pszOld- | old name for the dataset.
Name

Returns
CE_None on success, or CE_Failure if the operation fails.
References GDALDataset::GDALOpen, GA_ReadOnly, GDALGetFileList(), GDAL-
Close(), and CPLCorrespondingPaths().
The documentation for this class was generated from the following files:

+ gdal_priv.h
 gdaldriver.cpp

49.50 GDALDriverManager Class Reference

Class for managing the registration of file format drivers.
#include <gdal_priv.h>

Inheritance diagram for GDALDriverManager:

| GDALMajorObject \

T

| GDAL DriverManager \

Public Member Functions

« int GetDriverCount (void)

Fetch the number of registered drivers.
+ GDALDriver x GetDriver (int)

Fetch driver by index.
+ GDALDriver x GetDriverByName (const char)

Fetch a driver based on the short name.
+ int RegisterDriver (GDALDriver x)

Register a driver for use.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

284 Class Documentation

void MoveDriver (GDALDriver x, int)
void DeregisterDriver (GDALDriver x)

Deregister the passed driver.
void AutoLoadDrivers ()

Auto-load GDAL drivers from shared libraries.
void AutoSkipDrivers ()

This method unload undesirable drivers.
+ const char * GetHome ()
void SetHome (const char)

49.50.1 Detailed Description

Class for managing the registration of file format drivers.

Use GetGDALDriverManager() to fetch the global singleton instance of this class.

49.50.2 Member Function Documentation
49.50.2.1 void GDALDriverManager::AutoLoadDrivers ()

Auto-load GDAL drivers from shared libraries.

This function will automatically load drivers from shared libraries. It searches the "driver
path" for .so (or .dll) files that start with the prefix "gdal_X.so". It then tries to load them
and then tries to call a function within them called GDALRegister_X() where the "X’ is
the same as the remainder of the shared library basename (’X’ is case sensitive), or
failing that to call GDALRegisterMe().

There are a few rules for the driver path. If the GDAL_DRIVER_PATH environment
variable it set, it is taken to be a list of directories to search separated by colons on U-
NIX, or semi-colons on Windows. Otherwise the /usr/local/lib/gdalplugins directory, and
(if known) the lib/gdalplugins subdirectory of the gdal home directory are searched on
UNIX and on Windows.

References CPLGetExecPath(), CPLGetDirname(), CPLFormFilename(), CPLGet-
Extension(), CPLGetBasename(), and CPLGetSymbol().
(

Referenced by GDALAIIRegister().

49.50.2.2 void GDALDriverManager::AutoSkipDrivers ()

This method unload undesirable drivers.

All drivers specified in the space delimited list in the GDAL_SKIP environmentvariable)
will be deregistered and destroyed. This method should normally be called after regis-
tration of standard drivers to allow the user a way of unloading undesired drivers. The
GDALAIIRegister() (p. ??) function already invokes AutoSkipDrivers() (p. ??) at the
end, so if that functions is called, it should not be necessary to call this method from
application code.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.50 GDALDriverManager Class Reference

285

References GetDriverByName(), and DeregisterDriver().
Referenced by GDALAIIRegister().
49.50.2.3 void GDALDriverManager::DeregisterDriver (GDALDriver x poDriver)

Deregister the passed driver.
If the driver isn’t found no change is made.

The C analog is GDALDeregisterDriver() (p. ??).

Parameters

\ poDriver | the driver to deregister.

Referenced by GDALDeregisterDriver(), and AutoSkipDrivers().

49.50.2.4 GDALDriver « GDALDriverManager::GetDriver (int iDriver)

Fetch driver by index.
This C analog to this is GDALGetDriver() (p. ??).

Parameters

\ iDriver | the driver index from 0 to GetDriverCount() (p. 2?)-1.

Returns

the driver identified by the index or NULL if the index is invalid

Referenced by GDALOpen(), GDALIdentifyDriver(), and GDALGetDriver().

49.50.2.5 GDALDriver x GDALDriverManager::GetDriverByName (const char pszName)

Fetch a driver based on the short name.

The C analog is the GDALGetDriverByName() (p. ??) function.

Parameters

\ pszName \ the short name, such as GTiff, being searched for.

Returns

the identified driver, or NULL if no match is found.

References GDALMajorObject::GetDescription().
Referenced by RegisterDriver(), and AutoSkipDrivers().

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

286 Class Documentation

49.50.2.6 int GDALDriverManager::GetDriverCount (void)

Fetch the number of registered drivers.

This C analog to this is GDALGetDriverCount() (p. ?2?).

Returns

the number of registered drivers.

Referenced by GDALOpen(), GDALIdentifyDriver(), and GDALGetDriverCount().

49.50.2.7 int GDALDriverManager::RegisterDriver (GDALDriver * poDriver)

Register a driver for use.
The C analog is GDALRegisterDriver() (p. ??).

Normally this method is used by format specific C callable registration entry points such
as GDALRegister_GTiff() rather than being called directly by application level code.

If this driver (based on the object pointer, not short name) is already registered, then no
change is made, and the index of the existing driver is returned. Otherwise the driver
list is extended, and the new driver is added at the end.

Parameters

\ poDriver | the driver to register.

Returns

the index of the new installed driver.

References GetDriverByName(), GDALMajorObject::GetDescription(), and GDAL-
MajorObject::SetMetadataltem().

Referenced by GDALRegisterDriver().

The documentation for this class was generated from the following files:

+ gdal_priv.h

+ gdaldrivermanager.cpp

49.51 GDALGeneric3x3Dataset Class Reference

Inheritance diagram for GDALGeneric3x3Dataset:

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.51 GDALGeneric3x3Dataset Class Reference 287

\ GDALMgjorObject \

T

\ GDAL Dataset \

T

\ GDAL Generic3x3Dataset \

Public Member Functions

* GDALGeneric3x3Dataset (GDALDatasetH hSrcDS, GDALRasterBandH hSrc-
Band, GDALDataType eDstDataType, int bDstHasNoData, double dfDstNoData-
Value, GDALGeneric3x3ProcessingAlg pfnAlg, void xpAlgData)

» CPLErr GetGeoTransform (double xpadfGeoTransform)

Fetch the affine transformation coefficients.
+ const char x GetProjectionRef ()

Fetch the projection definition string for this dataset.

Friends

» class GDALGeneric3x3RasterBand

49.51.1 Member Function Documentation

49.51.1.1 CPLErr GDALGeneric3x3Dataset::GetGeoTransform (double * padfTransform)
[virtual]

Fetch the affine transformation coefficients.
Fetches the coefficients for transforming between pixel/line (PL) raster space, and pro-
jection coordinates (Xp,Yp) space.

padfTransform[0] + PxpadfTransform[l] + LxpadfTransform[2];
padfTransform[3] + PxpadfTransform[4] + LxpadfTransform[5];

Xp
Yp

In a north up image, padfTransform[1] is the pixel width, and padfTransform[5] is the pixel
height. The upper left corner of the upper left pixel is at position (padfTransform[0],padf-
Transform[3]).

The default transform is (0,1,0,0,0,1) and should be returned even when a CE_Failure
error is returned, such as for formats that don’t support transformation to projection
coordinates.

NOTE: GetGeoTransform() (p.??) isn’t expressive enough to handle the variety of -
OGC Grid Coverages pixel/line to projection transformation schemes. Eventually this
method will be depreciated in favour of a more general scheme.

This method does the same thing as the C GDALGetGeoTransform() (p. ??) function.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

288 Class Documentation

Parameters

padf- | an existing six double buffer into which the transformation will be placed.
Transform

Returns

CE_None on success, or CE_Failure if no transform can be fetched.

Reimplemented from GDALDataset (p.??).
References GDALGetGeoTransform().

49.51.1.2 const char +« GDALGeneric3x3Dataset::GetProjectionRef (void) [virtual]

Fetch the projection definition string for this dataset.
Same as the C function GDALGetProjectionRef() (p. ??).

The returned string defines the projection coordinate system of the image in OpenGIS
WKT format. It should be suitable for use with the OGRSpatialReference class.

When a projection definition is not available an empty (but not NULL) string is returned.

Returns

a pointer to an internal projection reference string. It should not be altered, freed or
expected to last for long.

See also
http://www.gdal.org/ogr/osr_tutorial.html

Reimplemented from GDALDataset (p.??).
References GDALGetProjectionRef().

The documentation for this class was generated from the following file:

» gdaldem.cpp

49.52 GDALGeneric3x3RasterBand Class Reference

Inheritance diagram for GDALGeneric3x3RasterBand:

\ GDALMagjorObject \

T

\ GDALRasterBand \

T

‘ GDAL Generic3x3RasterBand ‘

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.53 GDALGenIlmgProjTransforminfo Struct Reference 289

Public Member Functions

+ GDALGeneric3x3RasterBand (GDALGeneric3x3Dataset xpoDS, GDALData-
Type eDstDataType)

« virtual CPLErr IReadBlock (int, int, void)

« virtual double GetNoDataValue (int xpbHasNoData)

Fetch the no data value for this band.

Friends

» class GDALGeneric3x3Dataset

49.52.1 Member Function Documentation

49.52.1.1 double GDALGeneric3x3RasterBand::GetNoDataValue (int x pbSuccess)
[virtual]

Fetch the no data value for this band.

If there is no out of data value, an out of range value will generally be returned. The no
data value for a band is generally a special marker value used to mark pixels that are
not valid data. Such pixels should generally not be displayed, nor contribute to analysis
operations.

This method is the same as the C function GDALGetRasterNoDataValue() (p. ??).

Parameters

pbSuccess | pointer to a boolean to use to indicate if a value is actually associated
with this layer. May be NULL (default).

Returns

the nodata value for this band.

Reimplemented from GDALRasterBand (p. ??).

The documentation for this class was generated from the following file:

+ gdaldem.cpp

49.53 GDALGenImgProjTransforminfo Struct Reference

Public Attributes

« GDALTransformerinfo sTI
» double adfSrcGeoTransform [6]

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

290 Class Documentation

+ double adfSrcinvGeoTransform [6]
+ void * pSrcGCPTransformArg

+ void * pSrcRPCTransformArg

+ void * pSrcTPSTransformArg

+ void * pSrcGeolLocTransformArg
» void x pReprojectArg

double adfDstGeoTransform [6]
double adfDstinvGeoTransform [6]
void * pDstGCPTransformArg

The documentation for this struct was generated from the following file:

+ gdaltransformer.cpp

49.54 GDALGeoLocTransforminfo Struct Reference

Public Attributes

+ GDALTransformerinfo sTI

* int bReversed

int nBackMapWidth

int nBackMapHeight

double adfBackMapGeoTransform [6]
float * pafBackMapX

float x pafBackMapY

+ GDALDatasetH hDS_X

+ GDALRasterBandH hBand_X
+ GDALDatasetH hDS_Y

+ GDALRasterBandH hBand_Y
+ int nGeoLocXSize

* int nGeolLocYSize

double * padfGeoLocX
double x padfGeoLocY
double dfNoDataX

double dfNoDataY

double dfPIXEL_OFFSET
double dfPIXEL_STEP

double dfLINE_OFFSET
double dfLINE_STEP

* char xx papszGeolocationinfo

The documentation for this struct was generated from the following file:

+ gdalgeoloc.cpp

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.55 GDALGridDataMetricsOptions Struct Reference 291

49.55 GDALGridDataMetricsOptions Struct Reference

Data metrics method control options.

#include <gdal_alg.h>

Public Attributes

+ double dfRadius1

» double dfRadius2

+ double dfAngle

* GUInt32 nMinPoints

» double dfNoDataValue

49.55.1 Detailed Description

Data metrics method control options.

49.55.2 Member Data Documentation

49.55.2.1 double GDALGridDataMetricsOptions::dfAngle

Angle of ellipse rotation in degrees.

Ellipse rotated counter clockwise.

49.55.2.2 double GDALGridDataMetricsOptions::dfNoDataValue

No data marker to fill empty points.

49.55.2.3 double GDALGridDataMetricsOptions::dfRadius1

The first radius (X axis if rotation angle is 0) of search ellipse.

49.55.2.4 double GDALGridDataMetricsOptions::dfRadius2

The second radius (Y axis if rotation angle is 0) of search ellipse.

49.55.2.,5 GUInt32 GDALGridDataMetricsOptions::nMinPoints

Minimum number of data points to average.

If less amount of points found the grid node considered empty and will be filled with
NODATA marker.

The documentation for this struct was generated from the following file:

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

292 Class Documentation

+ gdal_alg.h

49.56 GDALGridInverseDistanceToAPowerOptions Struct Reference

Inverse distance to a power method control options.

#include <gdal_alg.h>

Public Attributes

+ double dfPower

+ double dfSmoothing

+ double dfAnisotropyRatio
+ double dfAnisotropyAngle
» double dfRadius1

» double dfRadius2

+ double dfAngle

+ GUInt32 nMaxPoints

* GUInt32 nMinPoints

» double dfNoDataValue

49.56.1 Detailed Description

Inverse distance to a power method control options.

49.56.2 Member Data Documentation
49.56.2.1 double GDALGridInverseDistanceToAPowerOptions::dfAngle

Angle of ellipse rotation in degrees.

Ellipse rotated counter clockwise.

49.56.2.2 double GDALGridInverseDistanceToAPowerOptions::dfAnisotropyAngle

Reserved for future use.

49.56.2.3 double GDALGridInverseDistanceToAPowerOptions::dfAnisotropyRatio

Reserved for future use.

49.56.2.4 double GDALGridInverseDistanceToAPowerOptions::dfNoDataValue

No data marker to fill empty points.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.57 GDALGridMovingAverageOptions Struct Reference 293

49.56.2.5 double GDALGridInverseDistanceToAPowerOptions::dfPower

Weighting power.

49.56.2.6 double GDALGridinverseDistanceToAPowerOptions::dfRadiusi

The first radius (X axis if rotation angle is 0) of search ellipse.

49.56.2.7 double GDALGridInverseDistanceToAPowerOptions::dfRadius2

The second radius (Y axis if rotation angle is 0) of search ellipse.

49.56.2.8 double GDALGridInverseDistanceToAPowerOptions::dfSmoothing

Smoothing parameter.

49.56.2.9 GUInt32 GDALGridInverseDistanceToAPowerOptions::nMaxPoints

Maximum number of data points to use.

Do not search for more points than this number. If less amount of points found the grid
node considered empty and will be filled with NODATA marker.

49.56.2.10 GUInt32 GDALGridInverseDistanceToAPowerOptions::nMinPoints

Minimum number of data points to use.

If less amount of points found the grid node considered empty and will be filled with
NODATA marker.

The documentation for this struct was generated from the following file:

+ gdal_alg.h

49.57 GDALGridMovingAverageOptions Struct Reference

Moving average method control options.

#include <gdal_alg.h>

Public Attributes

» double dfRadius1
» double dfRadius2
+ double dfAngle

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

294 Class Documentation

+ GUInt32 nMinPoints
* double dfNoDataValue

49.57.1 Detailed Description

Moving average method control options.

49.57.2 Member Data Documentation

49.57.2.1 double GDALGridMovingAverageOptions::dfAngle

Angle of ellipse rotation in degrees.

Ellipse rotated counter clockwise.

49.57.2.2 double GDALGridMovingAverageOptions::dfNoDataValue

No data marker to fill empty points.

49.57.2.3 double GDALGridMovingAverageOptions::dfRadius1

The first radius (X axis if rotation angle is 0) of search ellipse.

49.57.2.4 double GDALGridMovingAverageOptions::dfRadius2

The second radius (Y axis if rotation angle is 0) of search ellipse.

49.57.2.5 GUInt32 GDALGridMovingAverageOptions::nMinPoints

Minimum number of data points to average.

If less amount of points found the grid node considered empty and will be filled with
NODATA marker.

The documentation for this struct was generated from the following file:

+ gdal_alg.h

49.58 GDALGridNearestNeighborOptions Struct Reference

Nearest neighbor method control options.

#include <gdal_alg.h>

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.59 GDALHillshadeAlgData Struct Reference

295

Public Attributes

» double dfRadius1

» double dfRadius2
 double dfAngle

» double dfNoDataValue

49.58.1 Detailed Description

Nearest neighbor method control options.

49.58.2 Member Data Documentation

49.58.2.1 double GDALGridNearestNeighborOptions::dfAngle

Angle of ellipse rotation in degrees.

Ellipse rotated counter clockwise.

49.58.2.2 double GDALGridNearestNeighborOptions::dfNoDataValue

No data marker to fill empty points.

49.58.2.3 double GDALGridNearestNeighborOptions::dfRadius1

The first radius (X axis if rotation angle is 0) of search ellipse.

49.58.2.4 double GDALGridNearestNeighborOptions::dfRadius2

The second radius (Y axis if rotation angle is 0) of search ellipse.

The documentation for this struct was generated from the following file:

+ gdal_alg.h

49.59 GDALHillshadeAlgData Struct Reference

Public Attributes

» double nsres

» double ewres

» double sin_altRadians

» double cos_altRadians_mul_z_scale_factor
+ double azRadians

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

296 Class Documentation

» double square_z_scale_factor

The documentation for this struct was generated from the following file:

» gdaldem.cpp

49.60 GDALJP2Box Class Reference

Public Member Functions

» GDALJP2Box (FILE x=NULL)

« int SetOffset (GIntBig nNewOffset)

+ int ReadBox ()

+ int ReadFirst ()

+ int ReadNext ()

+ int ReadFirstChild (GDALJP2Box *xpoSuperBox)
+ int ReadNextChild (GDALJP2Box *xpoSuperBox)
+ GIntBig GetDataLength ()

+ const char * GetType ()

+ GByte * ReadBoxData ()

* int IsSuperBox ()

+ int DumpReadable (FILE x)

* FILE x GeftFILE ()

+ const GByte « GetUUID ()

« void SetType (const char)

+ void SetWritableData (int nLength, const GByte xpabyData)
» const GByte x GetWritableData ()

Static Public Member Functions

« static GDALJP2Box * CreateAsocBox (int nCount, GDALJP2Box xxpapo-
Boxes)

« static GDALJP2Box x CreateLblBox (const char xpszLabel)

« static GDALJP2Box * CreateLabelledXMLAssoc (const char xpszLabel, const
char xpszXML)

» static GDALJP2Box * CreateUUIDBox (const GByte xpabyUUID, int nDataSize,
GByte xpabyData)

The documentation for this class was generated from the following files:

+ gdaljp2metadata.h
+ gdaljp2box.cpp

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.61 GDALJP2Metadata Class Reference

297

49.61 GDALJP2Metadata Class Reference

Public Member Functions

+ int ReadBoxes (FILE xfpVSIL)

« int ParseJP2GeoTIFF ()

« int ParseMSIG ()

+ int ParseGMLCoverageDesc ()

 int ReadAndParse (const char xpszFilename)

+ void SetProjection (const char xpszWKT)

+ void SetGeoTransform (double x)

+ void SetGCPs (int, const GDAL_GCP x)

+ GDALJP2Box * CreateJP2GeoTIFF ()

+ GDALJP2Box x CreateGMLJP2 (int nXSize, int nYSize)

Public Attributes

+ char *x papszGMLMetadata
+ int bHaveGeoTransform

» double adfGeoTransform [6]
» char x pszProjection

+ int nGCPCount

+ GDAL_GCP * pasGCPList

The documentation for this class was generated from the following files:

+ gdaljp2metadata.h
+ gdaljp2metadata.cpp

49.62 GDALMajorObject Class Reference

Object with metadata.
#include <gdal_priv.h>
Inheritance diagram for GDALMajorObject:

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

298

Class Documentation

GDALDataset [

GDALMajorObject

GDALDriver

GDALDriverManager

GDALRasterBand |

L [GoALGdoRdigDam= | | vmlwa \ [GoALAIVaVakEad]
[coALPogRaeBad]
L [NiReesmd]
Public Member Functions
+ int GetMOFlags ()
+ void SetMOFlags (int nFlags)
« virtual const char « GetDescription () const
Fetch object description.
« virtual void SetDescription (const char x)
Set object description.
+ virtual char ** GetMetadata (const char xpszDomain="")
Fetch metadata.
 virtual CPLErr SetMetadata (char xxpapszMetadata, const char =xpsz-
Domain="")
Set metadata.

virtual const char * GetMetadataltem (const char xpszName, const char xpsz-
Domain="")

Fetch single metadata item.

virtual CPLErr SetMetadataltem (const char xpszName, const char xpszValue,
const char xpszDomain="")

Set single metadata item.

Protected Attributes

49.62.1

int nFlags
CPLString sDescription
GDALMultiDomainMetadata oMDMD

Detailed Description

Object with metadata.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.62 GDALMajorObject Class Reference 299

49.62.2 Member Function Documentation
49.62.2.1 const char « GDALMajorObject::GetDescription ()const [virtual]

Fetch object description.

The semantics of the returned description are specific to the derived type. For GDA-
LDatasets it is the dataset name. For GDALRasterBands it is actually a description (if

supported) or ™.

This method is the same as the C function GDALGetDescription() (p. ??).

Returns

pointer to internal description string.

Referenced by GDALDataset::~GDALDataset(), GDALDataset::MarkAsShared(), G-
DALDataset::GetFileList(), GDALOpen(), GDALOpenShared(), GDALDriver::Create(),
GDALDriver::CreateCopy(), GDALValidateCreationOptions(), GDALDriverManager::-
RegisterDriver(), GDALDriverManager::GetDriverByName(), GDALPamDataset::Get-
Metadataltem(), GDALRasterBand::~GDALRasterBand(), GDALRasterBand::Get-
LockedBlockRef(), and VRTDataset::FlushCache().

49.62.2.2 char x*x GDALMajorObject::GetMetadata (const char « pszDomain ="")
[virtual]
Fetch metadata.

The returned string list is owned by the object, and may change at any time. It is
formated as a "Name=value" list with the last pointer value being NULL. Use the the
CPL StringList functions such as CSLFetchNameValue() to manipulate it.

Note that relatively few formats return any metadata at this time.

This method does the same thing as the C function GDALGetMetadata() (p. ??).

Parameters

\ pszDomain \ the domain of interest. Use "" or NULL for the default domain.

Returns

NULL or a string list.

Reimplemented in VRTDriver (p.??), GDALProxyPoolRasterBand (p.??), VRT-
SourcedRasterBand (p.??), GDALProxyPoolDataset (p.??), GDALPamDataset
(p. ??), GDALProxyRasterBand (p.??), and GDALProxyDataset (p.??).

Referenced by GDALProxyPoolDataset::GetMetadata(), and GDALProxyPoolRaster-
Band::GetMetadata().

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

300 Class Documentation

49.62.2.3 const char + GDALMajorObject::GetMetadataltem (const char « pszName, const char
x pszDomain="") [virtuall]

Fetch single metadata item.

The C function GDALGetMetadataltem() (p. ??) does the same thing as this method.

Parameters

pszName | the key for the metadata item to fetch.

pszDomain | the domain to fetch for, use NULL for the default domain.

Returns

NULL on failure to find the key, or a pointer to an internal copy of the value string
on success.

Reimplemented in GDALProxyPoolRasterBand (p.??), GDALProxyPoolDataset
(p. ??), GDALPamDataset (p.??), GDALProxyRasterBand (p.??), and GDAL-
ProxyDataset (p.??).

Referenced by GDALProxyPoolDataset::GetMetadataltem(), = GDALProxyPool-
RasterBand::GetMetadataltem(), GDALRasterBand::GetMaximum(), GDALRaster-
Band::GetMinimum(), GDALRasterBand::GetHistogram(), GDALRasterBand::Get-
DefaultHistogram(), GDALRasterBand::GetStatistics(), GDALRasterBand::Compute-
Statistics(), GDALProxyRasterBand::ComputeRasterMinMax(), and GDALRasterBand-
::GetMaskBand().

49.62.2.4 void GDALMajorObject::SetDescription (const char x pszNewDesc) [virtual]

Set object description.

The semantics of the description are specific to the derived type. For GDALDatasets it
is the dataset name. For GDALRasterBands it is actually a description (if supported) or

Normally application code should not set the "description" for GDALDatasets. It is han-
dled internally.

This method is the same as the C function GDALSetDescription() (p. ??).
Reimplemented in VRTRasterBand (p. ??).
Referenced by GDALOpen(), GDALDriver::Create(), and GDALDriver::CreateCopy().

49.62.2.5 CPLErr GDALMajorObject::SetMetadata (char *x papszMetadataln, const char
pszDomain="") [virtual]

Set metadata.

The C function GDALSetMetadata() (p. ??) does the same thing as this method.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.63 GDALMultiDomainMetadata Class Reference 301

Parameters

papsz- | the metadata in name=value string list format to apply.
Metadata

pszDomain | the domain of interest. Use "" or NULL for the default domain.

Returns

CE_None on success, CE_Failure on failure and CE_Warning if the metadata has
been accepted, but is likely not maintained persistently by the underlying object
between sessions.

Reimplemented in VRTDriver (p.??), VRTSourcedRasterBand (p.??), GDALPam-
RasterBand (p.??), VRTRasterBand (p.??), GDALPamDataset (p.??), GDAL-
ProxyRasterBand (p. ??), VRTDataset (p.??), and GDALProxyDataset (p.??).

49.62.2.6 CPLErr GDALMajorObject::SetMetadataltem (const char x pszName, const char
pszValue, const char x pszDomain="") [virtuall]

Set single metadata item.

The C function GDALSetMetadataltem() (p. ??) does the same thing as this method.

Parameters

pszName | the key for the metadata item to fetch.

pszValue | the value to assign to the key.

pszDomain | the domain to set within, use NULL for the default domain.

Returns
CE_None on success, or an error code on failure.
Reimplemented in VRTSourcedRasterBand (p. ??), GDALPamRasterBand (p. ??),

VRTRasterBand (p.??), GDALPamDataset (p.??), GDALProxyRasterBand
(p. ??), VRTDataset (p.??), and GDALProxyDataset (p.??).

Referenced by GDALDriverManager::RegisterDriver(), and GDALRasterBand::Set-
Statistics().

The documentation for this class was generated from the following files:

+ gdal_priv.h
» gdalmajorobject.cpp

49.63 GDALMultiDomainMetadata Class Reference

Public Member Functions

« int XMLInit (CPLXMLNode xpsMetadata, int bMerge)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

302 Class Documentation

+ CPLXMLNode * Serialize ()
+ char *x GetDomainList ()

char xx GetMetadata (const char xpszDomain="")

CPLErr SetMetadata (char *xpapszMetadata, const char xpszDomain="")

« const char * GetMetadataltem (const char xpszName, const char xpsz-
Domain="")

CPLErr SetMetadataltem (const char xpszName, const char xpszValue, const
char xpszDomain="")

void Clear ()

The documentation for this class was generated from the following files:

+ gdal_priv.h
+ gdalmultidomainmetadata.cpp

49.64 GDALNoDataMaskBand Class Reference

Inheritance diagram for GDALNoDataMaskBand:

‘ GDALMgjorObject ‘

T

\ GDAL RasterBand \

T

\ GDALNoDataMaskBand \

Public Member Functions

+ GDALNoDataMaskBand (GDALRasterBand x)

Protected Member Functions

« virtual CPLErr IReadBlock (int, int, void)

The documentation for this class was generated from the following files:

+ gdal_priv.h
+ gdalnodatamaskband.cpp

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.65 GDALNoDataValuesMaskBand Class Reference 303

49.65 GDALNoDataValuesMaskBand Class Reference

Inheritance diagram for GDALNoDataValuesMaskBand:

\ GDALMgjorObject \

T

\ GDAL RasterBand \

T

\ GDALNoDataValuesMaskBand \

Public Member Functions

+ GDALNoDataValuesMaskBand (GDALDataset *)

Protected Member Functions

« virtual CPLErr IReadBlock (int, int, void)

The documentation for this class was generated from the following files:

+ gdal_priv.h
+ gdalnodatavaluesmaskband.cpp

49.66 GDALOpeninfo Class Reference

Public Member Functions

+ GDALOpenIinfo (const char xpszFile, GDALAccess eAccessin, char sxxpapsz-
SiblingFiles=NULL)

Public Attributes

* char x pszFilename

+ char «x papszSiblingFiles
+ GDALAccess eAccess

+ int bStatOK

* int blsDirectory

» FILE % fp

 int nHeaderBytes

« GByte x pabyHeader

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

304 Class Documentation

The documentation for this class was generated from the following files:

+ gdal_priv.h
+ gdalopeninfo.cpp

49.67 GDALPamDataset Class Reference

A subclass of GDALDataset (p. ??) which introduces the ability to save and restore
auxilary information (coordinate system, gcps, metadata, etc) not supported by a file
format via an "auxilary metadata" file with the .aux.xml extension.

#include "gdal_pam.h"

Inheritance diagram for GDALPamDataset:

\ GDALMagjorObject \

T

\ GDAL Dataset \

T

\ GDAL PamDataset \

Public Member Functions

« virtual void FlushCache (void)

Flush all write cached data to disk.
virtual const char * GetProjectionRef (void)

Fetch the projection definition string for this dataset.
virtual CPLErr SetProjection (const char %)

Set the projection reference string for this dataset.
virtual CPLErr GetGeoTransform (double %)

Fetch the affine transformation coefficients.
virtual CPLErr SetGeoTransform (double)

Set the affine transformation coefficients.
+ virtual int GetGCPCount ()
Get number of GCPs.
« virtual const char « GetGCPProjection ()
Get output projection for GCPs.
« virtual const GDAL_GCP *« GetGCPs ()
Fetch GCPs.
« virtual CPLErr SetGCPs (int nGCPCount, const GDAL_GCP xpasGCPList, const
char xpszGCPProjection)
Assign GCPs.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.67 GDALPamDataset Class Reference 305

virtual CPLErr SetMetadata (char =xpapszMetadata, const char sxpsz-
Domain="")

Set metadata.
virtual CPLErr SetMetadataltem (const char xpszName, const char xpszValue,
const char xpszDomain="")

Set single metadata item.
virtual char x* GetMetadata (const char xpszDomain="")

Fetch metadata.
virtual const char * GetMetadataltem (const char xpszName, const char *psz-
Domain="")
Fetch single metadata item.
virtual char ** GetFileList (void)
Fetch files forming dataset.
virtual CPLErr Clonelnfo (GDALDataset «xpoSrcDS, int nClonelnfoFlags)

virtual CPLErr IBuildOverviews (const char xpszResampling, int nOverviews, int
xpanOverviewList, int nListBands, int xpanBandList, GDALProgressFunc pfn-
Progress, void xpProgressData)

void MarkPamDirty ()
GDALDatasetPaminfo x GetPaminfo ()
int GetPamFlags ()

void SetPamFlags (int nValue)

Protected Member Functions

virtual CPLXMLNode * SerializeToXML (const char)
virtual CPLErr XMLInit (CPLXMLNode x, const char)
virtual CPLErr TryLoadXML ()

virtual CPLErr TrySaveXML ()

CPLErr TryLoadAux ()

CPLErr TrySaveAux ()

virtual const char * BuildPamFilename ()

void Paminitialize ()

void PamClear ()

void SetPhysicalFilename (const char x)

const char x GetPhysicalFilename ()

void SetSubdatasetName (const char x)

const char * GetSubdatasetName ()

Protected Attributes

int nPamFlags
GDALDatasetPaminfo « psPam

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

306 Class Documentation

Friends

» class GDALPamRasterBand

49.67.1 Detailed Description

A subclass of GDALDataset (p. ??) which introduces the ability to save and restore
auxilary information (coordinate system, gcps, metadata, etc) not supported by a file
format via an "auxilary metadata" file with the .aux.xml extension.

Enabling PAM

PAM support can be enabled in GDAL by setting the GDAL_PAM_ENABLED config-
uration option (via CPLSetConfigOption() (p. ??), or the environment) to the value of
YES.

PAM Proxy Files

In order to be able to record auxilary information about files on read-only media such
as CDROMs or in directories where the user does not have write permissions, it is
possible to enable the "PAM Proxy Database”. When enabled the .aux.xml files are
kept in a different directory, writable by the user.

To enable this, set the GDAL_PAM_PROXY_DIR configuration open to be the name of
the directory where the proxies should be kept.

Adding PAM to Drivers

Drivers for physical file formats that wish to support persistent auxilary metadata in
addition to that for the format itself should derive their dataset class from GDALPam-
Dataset (p. ??) instead of directly from GDALDataset (p. ??). The raster band classes
should also be derived from GDALPamRasterBand (p. ??).

They should also call something like this near the end of the Open() method:

poDS—->SetDescription(poOpenInfo->pszFilename);
poDS—->TryLoadXML () ;

The SetDescription() (p. ??) is necessary so that the dataset will have a valid filename
set as the description before TryLoadXML() is called. TryLoadXML() will look for an
.aux.xml file with the same basename as the dataset and in the same directory. If found
the contents will be loaded and kept track of in the GDALPamDataset (p. ??) and GD-
ALPamRasterBand (p. ??) objects. When a call like GetProjectionRef() (p. ??) is not
implemented by the format specific class, it will fall through to the PAM implementation
which will return information if it was in the .aux.xml file.

Drivers should also try to call the GDALPamDataset/GDALPamRasterBand methods as
a fallback if their implementation does not find information. This allows using the .aux.-
xml for variations that can’t be stored in the format. For instance, the GeoTIFF driver
GetProjectionRef() (p. ??) looks like this:

if (EQUAL (pszProjection,""))

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.67 GDALPamDataset Class Reference 307

return GDALPamDataset::GetProjectionRef () ;
else
return(pszProjection);

So if the geotiff header is missing, the .aux.xml file will be consulted.

Similarly, if SetProjection() (p. ??) were called with a coordinate system not supported
by GeoTIFF, the SetProjection() (p. ??) method should pass it on to the GDALPam-
Dataset::SetProjection() (p. ??) method after issuing a warning that the information
can’t be represented within the file itself.

Drivers for subdataset based formats will also need to declare the name of the physical
file they are related to, and the name of their subdataset before calling TryLoadXML().

poDS->SetDescription(poOpenInfo->pszFilename);
poDS->SetPhysicalFilename (poDS->pszFilename);
poDS—->SetSubdatasetName (osSubdatasetName) ;

poDS->TryLoadXML () ;

49.67.2 Member Function Documentation
49.67.2.1 void GDALPamDataset::FlushCache (void) [virtual]

Flush all write cached data to disk.

Any raster (or other GDAL) data written via GDAL calls, but buffered internally will be
written to disk.

Using this method does not prevent use from calling GDALClose() (p. ??) to properly
close a dataset and ensure that important data not addressed by FlushCache() (p. ??)
is written in the file.

This method is the same as the C function GDALFlushCache() (p. ??).
Reimplemented from GDALDataset (p.??).

49.67.2.2 char xx GDALPamDataset::GetFileList (void) [virtual]

Fetch files forming dataset.

Returns a list of files believed to be part of this dataset. If it returns an empty list of files
it means there is believed to be no local file system files associated with the dataset (for
instance a virtual dataset). The returned file list is owned by the caller and should be
deallocated with CSLDestroy() (p. ??).

The returned filenames will normally be relative or absolute paths depending on the
path used to originally open the dataset.

This method is the same as the C GDALGetFileList() (p. ??) function.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

308 Class Documentation

Returns

NULL or a NULL terminated array of file names.

Reimplemented from GDALDataset (p.??).
References VSIStatL().

49.67.2.3 int GDALPamDataset::GetGCPCount() [virtuall]

Get number of GCPs.
This method is the same as the C function GDALGetGCPCount() (p. ??).

Returns

number of GCPs for this dataset. Zero if there are none.

Reimplemented from GDALDataset (p.??).

49.67.2.4 const char + GDALPamDataset::GetGCPProjection() [virtuall]

Get output projection for GCPs.
This method is the same as the C function GDALGetGCPProjection() (p. ??).

The projection string follows the normal rules from GetProjectionRef() (p. ?2?).

Returns

internal projection string or "" if there are no GCPs.

Reimplemented from GDALDataset (p.??).

49.67.2.5 const GDAL_GCP x GDALPamDataset::GetGCPs () [virtual]

Fetch GCPs.
This method is the same as the C function GDALGetGCPs() (p. ??).

Returns

pointer to internal GCP structure list. It should not be modified, and may change on
the next GDAL call.

Reimplemented from GDALDataset (p.??).

49.67.2.6 CPLErr GDALPamDataset::GetGeoTransform (double x padfTransform)
[virtual]

Fetch the affine transformation coefficients.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.67 GDALPamDataset Class Reference 309

Fetches the coefficients for transforming between pixel/line (P.L) raster space, and pro-
jection coordinates (Xp,Yp) space.

Xp
Yp

padfTransform[0] + PsxpadfTransform[l] + LxpadfTransform[2];
padfTransform[3] + PxpadfTransform[4] + LxpadfTransform[5];

In a north up image, padfTransform[1] is the pixel width, and padfTransform[5] is the pixel
height. The upper left corner of the upper left pixel is at position (padfTransform[0],padf-
Transform[3]).

The default transform is (0,1,0,0,0,1) and should be returned even when a CE_Failure
error is returned, such as for formats that don’t support transformation to projection
coordinates.

NOTE: GetGeoTransform() (p. ??) isn’t expressive enough to handle the variety of -
OGC Grid Coverages pixel/line to projection transformation schemes. Eventually this
method will be depreciated in favour of a more general scheme.

This method does the same thing as the C GDALGetGeoTransform() (p. ??) function.

Parameters

padf- | an existing six double buffer into which the transformation will be placed.
Transform

Returns

CE_None on success, or CE_Failure if no transform can be fetched.

Reimplemented from GDALDataset (p.??).

49.67.2.7 char xx GDALPamDataset::GetMetadata (const char x pszDomain="")
[Vvirtual]
Fetch metadata.

The returned string list is owned by the object, and may change at any time. It is
formated as a "Name=value" list with the last pointer value being NULL. Use the the
CPL StringList functions such as CSLFetchNameValue() to manipulate it.

Note that relatively few formats return any metadata at this time.

This method does the same thing as the C function GDALGetMetadata() (p. ??).

Parameters

\ pszDomain \ the domain of interest. Use "" or NULL for the default domain.

Returns

NULL or a string list.

Reimplemented from GDALMajorObject (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

310 Class Documentation

49.67.2.8 const char x GDALPamDataset::GetMetadataltem (const char « pszName, const char
x pszDomain="") [virtuall]

Fetch single metadata item.

The C function GDALGetMetadataltem() (p. ??) does the same thing as this method.

Parameters

pszName | the key for the metadata item to fetch.

pszDomain | the domain to fetch for, use NULL for the default domain.

Returns

NULL on failure to find the key, or a pointer to an internal copy of the value string
on success.

Reimplemented from GDALMajorObject (p. ??).

References GDALMajorObject::GetDescription(), SetMetadataltem(), CPLGetPath(),
and CPLFormFilename().

49.67.2.9 const char x GDALPamDataset::GetProjectionRef (void) [virtuall]

Fetch the projection definition string for this dataset.
Same as the C function GDALGetProjectionRef() (p. ??).

The returned string defines the projection coordinate system of the image in OpenGIS
WKT format. It should be suitable for use with the OGRSpatialReference class.

When a projection definition is not available an empty (but not NULL) string is returned.

Returns

a pointer to an internal projection reference string. It should not be altered, freed or
expected to last for long.

See also

http://www.gdal.org/ogr/osr_tutorial.html

Reimplemented from GDALDataset (p.??).

49.67.2.10 CPLErr GDALPamDataset::SetGCPs (int nGCPCount, const GDAL_GCP x
pasGCPList, const char « pszGCPProjection) [virtuall]

Assign GCPs.
This method is the same as the C function GDALSetGCPs() (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.67 GDALPamDataset Class Reference 311

This method assigns the passed set of GCPs to this dataset, as well as setting their
coordinate system. Internally copies are made of the coordinate system and list of
points, so the caller remains resposible for deallocating these arguments if appropriate.

Most formats do not support setting of GCPs, even foramts that can handle GCPs.
These formats will return CE_Failure.

Parameters

nGCPCount | number of GCPs being assigned.

pasGCPList | array of GCP structures being assign (nGCPCount in array).

pszGCP- | the new OGC WKT coordinate system to assign for the GCP output
Projection | coordinates. This parameter should be ™ if no output coordinate system
is known.

Returns

CE_None on success, CE_Failure on failure (including if action is not supported for
this format).

Reimplemented from GDALDataset (p.??).

49.67.2.11 CPLErr GDALPamDataset::SetGeoTransform (double x) [virtual]

Set the affine transformation coefficients.

See GetGeoTransform() (p. ??) for details on the meaning of the padfTransform coeffi-
cients.

This method does the same thing as the C GDALSetGeoTransform() (p. ??) function.

Parameters

padf- | a six double buffer containing the transformation coefficients to be writ-
Transform | ten with the dataset.

Returns

CE_None on success, or CE_Failure if this transform cannot be written.

Reimplemented from GDALDataset (p.??).

49.67.2.12 CPLErr GDALPamDataset::SetMetadata (char s« papszMetadataln, const char x
pszDomain="") [virtual]

Set metadata.

The C function GDALSetMetadata() (p. ??) does the same thing as this method.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

312 Class Documentation

Parameters

papsz- | the metadata in name=value string list format to apply.
Metadata

pszDomain | the domain of interest. Use " or NULL for the default domain.

Returns

CE_None on success, CE_Failure on failure and CE_Warning if the metadata has
been accepted, but is likely not maintained persistently by the underlying object
between sessions.

Reimplemented from GDALMajorObject (p. ??).

49.67.2.13 CPLErr GDALPamDataset::SetMetadataltem (const char « pszName, const char x
pszValue, const char x pszDomain="") [virtual]

Set single metadata item.

The C function GDALSetMetadataltem() (p. ??) does the same thing as this method.

Parameters

pszName | the key for the metadata item to fetch.

pszValue | the value to assign to the key.

pszDomain | the domain to set within, use NULL for the default domain.

Returns

CE_None on success, or an error code on failure.

Reimplemented from GDALMajorObject (p. ??).
Referenced by GetMetadataltem().

49.67.2.14 CPLErr GDALPamDataset::SetProjection (constchar x) [virtual]

Set the projection reference string for this dataset.

The string should be in OGC WKT or PROJ.4 format. An error may occur because of
incorrectly specified projection strings, because the dataset is not writable, or because
the dataset does not support the indicated projection. Many formats do not support
writing projections.

This method is the same as the C GDALSetProjection() (p. ??) function.

Parameters

psz- | projection reference string.
Projection

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.68 GDALPamProxyDB Class Reference 313

Returns

CE_Failure if an error occurs, otherwise CE_None.

Reimplemented from GDALDataset (p.??).

The documentation for this class was generated from the following files:

+ gdal_pam.h
+ gdalpamdataset.cpp

49.68 GDALPamProxyDB Class Reference

Public Member Functions

+ void CheckLoadDB ()
+ void LoadDB ()
+ void SaveDB ()

Public Attributes

+ CPLString osProxyDBDir

+ int nUpdateCounter

« std::vector< CPLString > aosOriginalFiles
« std::vector< CPLString > aosProxyFiles

The documentation for this class was generated from the following file:

 gdalpamproxydb.cpp

49.69 GDALPamRasterBand Class Reference

Inheritance diagram for GDALPamRasterBand:

\ GDALMajorObject \

T

\ GDALRasterBand \

T

\ GDAL PamRasterBand \

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

314

Class Documentation

Public Member Functions

virtual CPLErr SetNoDataValue (double)

Set the no data value for this band.
virtual double GetNoDataValue (int xpbSuccess=NULL)
Fetch the no data value for this band.
virtual CPLErr SetColorTable (GDALColorTable)
Set the raster color table.
virtual GDALColorTable « GetColorTable ()
Fetch the color table associated with band.
virtual CPLErr SetColorinterpretation (GDALColorinterp)
Set color interpretation of a band.
virtual GDALColorInterp GetColorinterpretation ()
How should this band be interpreted as color?
virtual const char x GetUnitType ()
Return raster unit type.
CPLErr SetUnitType (const char)
Set unit type.
virtual char *x GetCategoryNames ()
Fetch the list of category names for this raster.
virtual CPLErr SetCategoryNames (char xx)
Set the category names for this band.
virtual double GetOffset (int xpbSuccess=NULL)
Fetch the raster value offset.
CPLErr SetOffset (double)
Set scaling offset.
virtual double GetScale (int xpbSuccess=NULL)
Fetch the raster value scale.
CPLErr SetScale (double)
Set scaling ratio.
virtual CPLErr GetHistogram (double dfMin, double dfMax, int nBuckets, int
xpanHistogram, int bincludeOutOfRange, int bApproxOK, GDALProgressFunc,
void xpProgressData)
Compute raster histogram.
virtual CPLErr GetDefaultHistogram (double xpdfMin, double xpdfMax, int
+«pnBuckets, int sxppanHistogram, int bForce, GDALProgressFunc, void xp-
ProgressData)
Fetch default raster histogram.
virtual CPLErr SetDefaultHistogram (double dfMin, double dfMax, int nBuckets,
int xpanHistogram)
Set default histogram.
virtual CPLErr SetMetadata (char =xpapszMetadata, const char sxpsz-
Domain="")

Set metadata.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.69 GDALPamRasterBand Class Reference 315

» virtual CPLErr SetMetadataltem (const char xpszName, const char *pszValue,
const char xpszDomain="")

Set single metadata item.
« virtual const GDALRasterAttributeTable « GetDefaultRAT ()

Fetch default Raster Attribute Table.
« virtual CPLErr SetDefaultRAT (const GDALRasterAttributeTable x)

Set default Raster Attribute Table.
+ virtual CPLErr Clonelnfo (GDALRasterBand xpoSrcBand, int nClonelnfoFlags)
+ GDALRasterBandPaminfo x GetPaminfo ()

Protected Member Functions

« virtual CPLXMLNode * SerializeToXML (const char xpszVRTPath)
« virtual CPLErr XMLInit (CPLXMLNode =, const char)

+ void Pamlinitialize ()

+ void PamClear ()

Protected Attributes

+ GDALRasterBandPaminfo x psPam

Friends

« class GDALPamDataset

49.69.1 Member Function Documentation
49.69.1.1 char xx GDALPamRasterBand::GetCategoryNames () [virtual]

Fetch the list of category names for this raster.

The return list is a "StringList" in the sense of the CPL functions. That is a NULL
terminated array of strings. Raster values without associated names will have an empty
string in the returned list. The first entry in the list is for raster values of zero, and so on.

The returned stringlist should not be altered or freed by the application. It may change
on the next GDAL call, so please copy it if it is needed for any period of time.

Returns

list of names, or NULL if none.

Reimplemented from GDALRasterBand (p.??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

316 Class Documentation

49.69.1.2 GDALColorinterp GDALPamRasterBand::GetColorinterpretation ()
[virtual]
How should this band be interpreted as color?

GCIl_Undefined is returned when the format doesn’t know anything about the color in-
terpretation.

This method is the same as the C function GDALGetRasterColorinterpretation()
(p-??).
Returns

color interpretation value for band.

Reimplemented from GDALRasterBand (p. ??).

49.69.1.3 GDALColorTable « GDALPamRasterBand::GetColorTable() [virtual]

Fetch the color table associated with band.

If there is no associated color table, the return result is NULL. The returned color table
remains owned by the GDALRasterBand (p. ??), and can’t be depended on for long,
nor should it ever be modified by the caller.

This method is the same as the C function GDALGetRasterColorTable() (p. ??).

Returns

internal color table, or NULL.

Reimplemented from GDALRasterBand (p. ??).

49.69.1.4 CPLErr GDALPamRasterBand::GetDefaultHistogram (double pdfMin, double
pdfMlax, int « pnBuckets, int xx ppanHistogram, int bForce, GDALProgressFunc
pfnProgress, void x pProgressData) [virtuall]

Fetch default raster histogram.

The default method in GDALRasterBand (p. ??) will compute a default histogram. This
method is overriden by derived classes (such as GDALPamRasterBand (p. ??), VRT-
Dataset (p. ??), HFADataset...) that may be able to fetch efficiently an already stored
histogram.

Parameters
pdfMin | pointer to double value that will contain the lower bound of the his-
togram.
pdfMax | pointer to double value that will contain the upper bound of the his-
togram.
pnBuckets | pointer to int value that will contain the number of buckets in *ppan-
Histogram.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.69 GDALPamRasterBand Class Reference 317

ppan- | pointer to array into which the histogram totals are placed. To be freed
Histogram | with VSIFree
bForce | TRUE to force the computation. If FALSE and no default histogram is
available, the method will return CE_Warning
pfnProgress | function to report progress to completion.
pProgress- | application data to pass to pfnProgress.
Data

Returns

CE_None on success, CE_Failure if something goes wrong, or CE_Warning if no
default histogram is available.

Reimplemented from GDALRasterBand (p.??).

References CPLXMLNode::psChild, CPLXMLNode::psNext, CPLXMLNode::eType, C-
XT_Element, and CPLXMLNode::pszValue.

49.69.1.5 const GDALRasterAttributeTable x GDALPamRasterBand::GetDefaultRAT ()
[virtual]

Fetch default Raster Attribute Table.

A RAT will be returned if there is a default one associated with the band, otherwise
NULL is returned. The returned RAT is owned by the band and should not be deleted,
or altered by the application.

Returns

NULL, or a pointer to an internal RAT owned by the band.

Reimplemented from GDALRasterBand (p. ??).

49.69.1.6 CPLErr GDALPamRasterBand::GetHistogram (double dflin, double dfiax,
int nBuckets, int x panHistogram, int bincludeOutOfRange, int bApproxOK,
GDALProgressFunc pfnProgress, void « pProgressData) [virtual]

Compute raster histogram.
Note that the bucket size is (dfMax-dfMin) / nBuckets.

For example to compute a simple 256 entry histogram of eight bit data, the following
would be suitable. The unusual bounds are to ensure that bucket boundaries don’t fall
right on integer values causing possible errors due to rounding after scaling.

int anHistogram[256];

poBand->GetHistogram(-0.5, 255.5, 256, anHistogram, FALSE, FALSE,
GDALDummyProgress, NULL);

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

318 Class Documentation

Note that setting bApproxOK will generally result in a subsampling of the file, and will
utilize overviews if available. It should generally produce a representative histogram
for the data that is suitable for use in generating histogram based luts for instance.

Generally bApproxOK is much faster than an exactly computed histogram.

Parameters

dfMin

the lower bound of the histogram.

dfMax

the upper bound of the histogram.

nBuckets

the number of buckets in panHistogram.

pan-
Histogram

array into which the histogram totals are placed.

bincludeOut-
OfRange

if TRUE values below the histogram range will mapped into pan-
Histogram[0], and values above will be mapped into panHistogram[n-
Buckets-1] otherwise out of range values are discarded.

bApproxOK

TRUE if an approximate, or incomplete histogram OK.

pfnProgress

function to report progress to completion.

pProgress-

application data to pass to pfnProgress.

Data

Returns

CE_None on success, or CE_Failure if something goes wrong.

Reimplemented from GDALRasterBand (p. ??).

References CXT_Element.

49.69.1.7 double GDALPamRasterBand::GetNoDataValue (int « pbSuccess = NULL)
[virtual]

Fetch the no data value for this band.

If there is no out of data value, an out of range value will generally be returned. The no
data value for a band is generally a special marker value used to mark pixels that are
not valid data. Such pixels should generally not be displayed, nor contribute to analysis
operations.

This method is the same as the C function GDALGetRasterNoDataValue() (p. ??).

Parameters
pbSuccess | pointer to a boolean to use to indicate if a value is actually associated
with this layer. May be NULL (default).
Returns

the nodata value for this band.

Reimplemented from GDALRasterBand (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.69 GDALPamRasterBand Class Reference 319

49.69.1.8 double GDALPamRasterBand::GetOffset (int « pbSuccess = NULL)
[virtual]
Fetch the raster value offset.

This value (in combination with the GetScale() (p. ??) value) is used to transform raw
pixel values into the units returned by GetUnits(). For example this might be used to
store elevations in GUInt16 bands with a precision of 0.1, and starting from -100.

Units value = (raw value * scale) + offset
For file formats that don’t know this intrinsically a value of zero is returned.

This method is the same as the C function GDALGetRasterOffset() (p. ??).

Parameters

pbSuccess | pointer to a boolean to use to indicate if the returned value is meaningful
or not. May be NULL (default).

Returns

the raster offset.

Reimplemented from GDALRasterBand (p.??).

49.69.1.9 double GDALPamRasterBand::GetScale (int x pbSuccess = NULL)
[Vvirtual]
Fetch the raster value scale.

This value (in combination with the GetOffset() (p. ??) value) is used to transform raw
pixel values into the units returned by GetUnits(). For example this might be used to
store elevations in GUInt16 bands with a precision of 0.1, and starting from -100.

Units value = (raw value * scale) + offset
For file formats that don’t know this intrinsically a value of one is returned.

This method is the same as the C function GDALGetRasterScale() (p. ??).

Parameters

pbSuccess | pointer to a boolean to use to indicate if the returned value is meaningful
or not. May be NULL (default).

Returns

the raster scale.

Reimplemented from GDALRasterBand (p.??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

320 Class Documentation

49.69.1.10 const char « GDALPamRasterBand::GetUnitType () [virtual]

Return raster unit type.

Return a name for the units of this raster's values. For instance, it might be "m" for
an elevation model in meters, or "ft" for feet. If no units are available, a value of ™
will be returned. The returned string should not be modified, nor freed by the calling
application.

This method is the same as the C function GDALGetRasterUnitType() (p. ??).

Returns

unit name string.

Reimplemented from GDALRasterBand (p. ??).

49.69.1.11 CPLErr GDALPamRasterBand::SetCategoryNames (char +x) [virtual]

Set the category names for this band.

See the GetCategoryNames() (p. ??) method for more on the interpretation of category
names.

This method is the same as the C function GDALSetRasterCategoryNames() (p. ??).

Parameters

papsz- | the NULL terminated StringList of category names. May be NULL to
Names | just clear the existing list.

Returns

CE_None on success of CE_Failure on failure. If unsupported by the driver CE_-
Failure is returned, but no error message is reported.

Reimplemented from GDALRasterBand (p. ??).

49.69.1.12 CPLErr GDALPamRasterBand::SetColorinterpretation (GDALColorinterp
eColorinterp) [virtuall]

Set color interpretation of a band.

Parameters

\ eColorinterp \ the new color interpretation to apply to this band.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.69 GDALPamRasterBand Class Reference 321

Returns

CE_None on success or CE_Failure if method is unsupported by format.

Reimplemented from GDALRasterBand (p.??).

49.69.1.13 CPLErr GDALPamRasterBand::SetColorTable (GDALColorTable * poCT)
[virtual]
Set the raster color table.

The driver will make a copy of all desired data in the colortable. It remains owned by the
caller after the call.

This method is the same as the C function GDALSetRasterColorTable() (p. ??).

Parameters

poCT | the color table to apply. This may be NULL to clear the color table
(where supported).

Returns

CE_None on success, or CE_Failure on failure. If the action is unsupported by the
driver, a value of CE_Failure is returned, but no error is issued.

Reimplemented from GDALRasterBand (p.??).
References GDALColorTable::Clone(), and GCI_PaletteIndex.

49.69.1.14 CPLErr GDALPamRasterBand::SetDefaultRAT (const
GDALRasterAttributeTable « poRAT) [virtual]
Set default Raster Attribute Table.

Associates a default RAT with the band. If not implemented for the format a CPLE_-
NotSupported error will be issued. If successful a copy of the RAT is made, the original
remains owned by the caller.

Parameters

\ PoRAT | the RAT to assign to the band.

Returns

CE_None on success or CE_Failure if unsupported or otherwise failing.

Reimplemented from GDALRasterBand (p. ??).
References GDALRasterAttribute Table::Clone().

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

322 Class Documentation

49.69.1.15 CPLErr GDALPamRasterBand::SetMetadata (char s papszlMetadataln, const char x
pszDomain="") [virtual]

Set metadata.

The C function GDALSetMetadata() (p. ??) does the same thing as this method.

Parameters

papsz- | the metadata in name=value string list format to apply.
Metadata

pszDomain | the domain of interest. Use "™ or NULL for the default domain.

Returns

CE_None on success, CE_Failure on failure and CE_Warning if the metadata has
been accepted, but is likely not maintained persistently by the underlying object
between sessions.

Reimplemented from GDALMajorObject (p. ??).

49.69.1.16 CPLErr GDALPamRasterBand::SetMetadataltem (const char « pszName, const char
x pszValue, const char x pszDomain="") [virtual]

Set single metadata item.

The C function GDALSetMetadataltem() (p. ??) does the same thing as this method.

Parameters

pszName | the key for the metadata item to fetch.

pszValue | the value to assign to the key.

pszDomain | the domain to set within, use NULL for the default domain.

Returns

CE_None on success, or an error code on failure.

Reimplemented from GDALMajorObject (p. ??).

49.69.1.17 CPLErr GDALPamRasterBand::SetNoDataValue (double) [virtual]

Set the no data value for this band.

To clear the nodata value, just set it with an "out of range" value. Complex band no data
values must have an imagery component of zero.

This method is the same as the C function GDALSetRasterNoDataValue() (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.69 GDALPamRasterBand Class Reference 323

Parameters

| dfNoData | the value to set.

Returns

CE_None on success, or CE_Failure on failure. If unsupported by the driver, CE_-
Failure is returned by no error message will have been emitted.

Reimplemented from GDALRasterBand (p.??).

49.69.1.18 CPLErr GDALPamRasterBand::SetOffset (double dfNewOffset) [virtual]

Set scaling offset.

Very few formats implement this method. When not implemented it will issue a CPLE_-
NotSupported error and return CE_Failure.

Parameters

| dfNewOffset | the new offset.

Returns

CE_None or success or CE_Failure on failure.

Reimplemented from GDALRasterBand (p. ??).

49.69.1.19 CPLErr GDALPamRasterBand::SetScale (double dfNewScale) [virtual]

Set scaling ratio.

Very few formats implement this method. When not implemented it will issue a CPLE_-
NotSupported error and return CE_Failure.

Parameters

| dfNewScale | the new scale.

Returns

CE_None or success or CE_Failure on failure.

Reimplemented from GDALRasterBand (p. ??).

49.69.1.20 CPLErr GDALPamRasterBand::SetUnitType (const char x pszNewValue)
[virtual]

Set unit type.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

324 Class Documentation

Set the unit type for a raster band. Values should be one of "™ (the default indicating
it is unknown), "m" indicating meters, or "ft" indicating feet, though other nonstandard
values are allowed.

Parameters

pszNew- | the new unit type value.
Value

Returns

CE_None on success or CE_Failure if not succuessful, or unsupported.

Reimplemented from GDALRasterBand (p. ??).

The documentation for this class was generated from the following files:

» gdal_pam.h
+ gdalpamrasterband.cpp

49.70 GDALProxyDataset Class Reference

Inheritance diagram for GDALProxyDataset:

| GDALMagjorObject |

|

| GDAL Dataset |

|

| GDALProxyDataset |

| GDAL ProxyPool Dataset |

Public Member Functions

« virtual char ** GetMetadata (const char xpszDomain)
Fetch metadata.
« virtual CPLErr SetMetadata (char *xxpapszMetadata, const char xpszDomain)
Set metadata.
« virtual const char *x GetMetadataltem (const char xpszName, const char xpsz-
Domain)
Fetch single metadata item.

« virtual CPLErr SetMetadataltem (const char *«pszName, const char xpszValue,
const char xpszDomain)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.70 GDALProxyDataset Class Reference 325

Set single metadata item.
« virtual void FlushCache (void)
Flush all write cached data to disk.

« virtual const char x GetProjectionRef (void)

Fetch the projection definition string for this dataset.

« virtual CPLErr SetProjection (const char x)

Set the projection reference string for this dataset.

« virtual CPLErr GetGeoTransform (double x)

Fetch the affine transformation coefficients.
« virtual CPLErr SetGeoTransform (double)
Set the affine transformation coefficients.
« virtual void x GetlnternalHandle (const char x)
Fetch a format specific internally meaningful handle.
« virtual GDALDriver x GetDriver (void)
Fetch the driver to which this dataset relates.
« virtual char x* GetFileList (void)
Fetch files forming dataset.
« virtual int GetGCPCount ()
Get number of GCPs.
« virtual const char x GetGCPProjection ()
Get output projection for GCPs.
« virtual const GDAL_GCP *« GetGCPs ()
Fetch GCPs.

« virtual CPLErr SetGCPs (int nGCPCount, const GDAL_GCP xpasGCPList, const

char xpszGCPProjection)
Assign GCPs.

« virtual CPLErr AdviseRead (int nXOff, int nYOff, int nXSize, int nYSize, int nBuf-
XSize, int nBufYSize, GDALDataType eDT, int nBandCount, int xpanBandList,
char xxpapszOptions)

Adavise driver of upcoming read requests.
« virtual CPLErr CreateMaskBand (int nFlags)

Adds a mask band to the dataset.

Protected Member Functions

« virtual GDALDataset « RefUnderlyingDataset ()=0

« virtual void UnrefUnderlyingDataset (GDALDataset «poUnderlyingDataset)

« virtual CPLErr IBuildOverviews (const char x, int, int *, int, int *, GDAL-
ProgressFunc, void *)

« virtual CPLErr IRasterlO (GDALRWFlag, int, int, int, int, void *, int, int, GDAL-
DataType, int, int %, int, int, int)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

326 Class Documentation

49.70.1 Member Function Documentation

49.70.1.1 virtual CPLErr GDALProxyDataset::AdviseRead (int nXOff, int nYOff, int nXSize, int
nYSize, int nBufXSize, int nBufYSize, GDALDataType eDT, int nBandCount, int x
panBandMap, char xx papszOptions) [virtuall]

Advise driver of upcoming read requests.

Some GDAL drivers operate more efficiently if they know in advance what set of upcom-
ing read requests will be made. The AdviseRead() (p. ??) method allows an application
to notify the driver of the region and bands of interest, and at what resolution the region
will be read.

Many drivers just ignore the AdviseRead() (p. ??) call, but it can dramatically accelerate
access via some drivers.

Parameters

nXOff| The pixel offset to the top left corner of the region of the band to be
accessed. This would be zero to start from the left side.

nYOff| The line offset to the top left corner of the region of the band to be
accessed. This would be zero to start from the top.

nXSize | The width of the region of the band to be accessed in pixels.

nYSize | The height of the region of the band to be accessed in lines.

nBufXSize | the width of the buffer image into which the desired region is to be read,
or from which it is to be written.

nBufYSize | the height of the buffer image into which the desired region is to be
read, or from which it is to be written.

eBufType | the type of the pixel values in the pData data buffer. The pixel values
will automatically be translated to/from the GDALRasterBand (p. ??)
data type as needed.

nBandCount | the number of bands being read or written.

panBand- | the list of nBandCount band numbers being read/written. Note band
Map | numbers are 1 based. This may be NULL to select the first nBandCount
bands.

papsz- | a list of name=value strings with special control options. Normally this
Options | is NULL.

Returns

CE_Failure if the request is invalid and CE_None if it works or is ignored.

Reimplemented from GDALDataset (p.??).

49.70.1.2 virtual CPLErr GDALProxyDataset::CreateMaskBand (int nFlags) [virtual]

Adds a mask band to the dataset.

The default implementation of the CreateMaskBand() (p. ??) method is implemented
based on similar rules to the .ovr handling implemented using the GDALDefault-
Overviews (p. ??) object. A TIFF file with the extension .msk will be created with the

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.70 GDALProxyDataset Class Reference 327

same basename as the original file, and it will have one band. The mask images will
be deflate compressed tiled images with the same block size as the original image if
possible.

Since

GDAL 1.5.0

Parameters

\ nFlags | ignored. GMF_PER_DATASET will be assumed.

Returns

CE_None on success or CE_Failure on an error.

See also

http://trac.osgeo.org/gdal/wiki/rfcl5_nodatabitmask

Reimplemented from GDALDataset (p.??).

49.70.1.3 const char int int int int GDALProgressFunc void pProgressData void
GDALProxyDataset::FlushCache (void) [virtual]
Flush all write cached data to disk.

Any raster (or other GDAL) data written via GDAL calls, but buffered internally will be
written to disk.

Using this method does not prevent use from calling GDALClose() (p. ??) to properly
close a dataset and ensure that important data not addressed by FlushCache() (p. ??)
is written in the file.

This method is the same as the C function GDALFlushCache() (p. ??).
Reimplemented from GDALDataset (p.??).
References GDALDataset::FlushCache().

49.70.1.4 virtual GDALDriverx GDALProxyDataset::GetDriver (void) [virtual]

Fetch the driver to which this dataset relates.

This method is the same as the C GDALGetDatasetDriver() (p. ??) function.

Returns

the driver on which the dataset was created with GDALOpen() (p. ??) or GDAL-
Create() (p. ?7?).

Reimplemented from GDALDataset (p.??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

328 Class Documentation

49.70.1.5 virtual chars GDALProxyDataset::GetFileList (void) [virtuall]

Fetch files forming dataset.

Returns a list of files believed to be part of this dataset. If it returns an empty list of files
it means there is believed to be no local file system files associated with the dataset (for
instance a virtual dataset). The returned file list is owned by the caller and should be
deallocated with CSLDestroy() (p. ??).

The returned filenames will normally be relative or absolute paths depending on the
path used to originally open the dataset.

This method is the same as the C GDALGetFileList() (p. ??) function.

Returns

NULL or a NULL terminated array of file names.

Reimplemented from GDALDataset (p.?7?).

49.70.1.6 virtual int GDALProxyDataset::GetGCPCount() [virtual]

Get number of GCPs.
This method is the same as the C function GDALGetGCPCount() (p. ??).

Returns

number of GCPs for this dataset. Zero if there are none.

Reimplemented from GDALDataset (p.??).

49.70.1.7 virtual const char+ GDALProxyDataset::GetGCPProjection() [virtual]

Get output projection for GCPs.
This method is the same as the C function GDALGetGCPProjection() (p. ??).

The projection string follows the normal rules from GetProjectionRef() (p. ??).

Returns

internal projection string or "" if there are no GCPs.

Reimplemented from GDALDataset (p.??).
Reimplemented in GDALProxyPoolDataset (p.??).
49.70.1.8 virtual const GDAL_GCP: GDALProxyDataset::GetGCPs () [virtuall]

Fetch GCPs.
This method is the same as the C function GDALGetGCPs() (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.70 GDALProxyDataset Class Reference 329

Returns

pointer to internal GCP structure list. It should not be modified, and may change on
the next GDAL call.

Reimplemented from GDALDataset (p.??).
Reimplemented in GDALProxyPoolDataset (p. ??).

49.70.1.9 virtual CPLErr GDALProxyDataset::GetGeoTransform (double * padfTransform)
[virtual]

Fetch the affine transformation coefficients.

Fetches the coefficients for transforming between pixel/line (PL) raster space, and pro-

jection coordinates (Xp,Yp) space.

padfTransform[0] + PxpadfTransform[l] + LxpadfTransform[2];
padfTransform[3] + PxpadfTransform[4] + LxpadfTransform[5];

Xp
Yp

In a north up image, padfTransform[1] is the pixel width, and padfTransform[5] is the pixel
height. The upper left corner of the upper left pixel is at position (padfTransform[0],padf-
Transform[3]).

The default transform is (0,1,0,0,0,1) and should be returned even when a CE_Failure
error is returned, such as for formats that don’t support transformation to projection
coordinates.

NOTE: GetGeoTransform() (p. ??) isn’t expressive enough to handle the variety of -
OGC Grid Coverages pixel/line to projection transformation schemes. Eventually this
method will be depreciated in favour of a more general scheme.

This method does the same thing as the C GDALGetGeoTransform() (p. ??) function.

Parameters

padf- | an existing six double buffer into which the transformation will be placed.
Transform

Returns

CE_None on success, or CE_Failure if no transform can be fetched.

Reimplemented from GDALDataset (p.??).
Reimplemented in GDALProxyPoolDataset (p.??).

49.70.1.10 virtual void+ GDALProxyDataset::GetInternalHandle (const char «)
[virtual]

Fetch a format specific internally meaningful handle.

This method is the same as the C GDALGetInternalHandle() (p. ??) method.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

330 Class Documentation

Parameters

pszHandle- | the handle name desired. The meaningful names will be specific to the
Name | file format.

Returns

the desired handle value, or NULL if not recognised/supported.

Reimplemented from GDALDataset (p.??).
Reimplemented in GDALProxyPoolDataset (p.??).

49.70.1.11 virtual charx+ GDALProxyDataset::GetMetadata (const char x pszDomain)
[virtual]

Fetch metadata.

The returned string list is owned by the object, and may change at any time. It is
formated as a "Name=value" list with the last pointer value being NULL. Use the the
CPL StringList functions such as CSLFetchNameValue() to manipulate it.

Note that relatively few formats return any metadata at this time.

This method does the same thing as the C function GDALGetMetadata() (p. ??).

Parameters

\ pszDomain \ the domain of interest. Use "" or NULL for the default domain.

Returns

NULL or a string list.

Reimplemented from GDALMajorObject (p. ??).
Reimplemented in GDALProxyPoolDataset (p.??).

49.70.1.12 virtual const charx GDALProxyDataset::GetMetadataltem (const char * pszName,
const char x pszDomain) [virtual]

Fetch single metadata item.

The C function GDALGetMetadataltem() (p. ??) does the same thing as this method.

Parameters

pszName | the key for the metadata item to fetch.

pszDomain | the domain to fetch for, use NULL for the default domain.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.70 GDALProxyDataset Class Reference 331

Returns

NULL on failure to find the key, or a pointer to an internal copy of the value string
on success.

Reimplemented from GDALMajorObject (p. ??).
Reimplemented in GDALProxyPoolDataset (p. ??).

49.70.1.13 virtual const char+x GDALProxyDataset::GetProjectionRef (void) [virtual]

Fetch the projection definition string for this dataset.
Same as the C function GDALGetProjectionRef() (p. ??).

The returned string defines the projection coordinate system of the image in OpenGIS
WKT format. It should be suitable for use with the OGRSpatialReference class.

When a projection definition is not available an empty (but not NULL) string is returned.

Returns

a pointer to an internal projection reference string. It should not be altered, freed or
expected to last for long.

See also

http://www.gdal.org/ogr/osr_tutorial.html

Reimplemented from GDALDataset (p.??).
Reimplemented in GDALProxyPoolDataset (p.??).

49.70.1.14 virtual CPLErr GDALProxyDataset::SetGCPs (int nGCPCount, const GDAL_GCP
+ pasGCPList, const char x pszGCPProjection) [virtual]

Assign GCPs.
This method is the same as the C function GDALSetGCPs() (p. ??).

This method assigns the passed set of GCPs to this dataset, as well as setting their
coordinate system. Internally copies are made of the coordinate system and list of
points, so the caller remains resposible for deallocating these arguments if appropriate.

Most formats do not support setting of GCPs, even foramts that can handle GCPs.
These formats will return CE_Failure.

Parameters

nGCPCount | number of GCPs being assigned.

pasGCPList | array of GCP structures being assign (nGCPCount in array).

pszGCP- | the new OGC WKT coordinate system to assign for the GCP output
Projection | coordinates. This parameter should be "" if no output coordinate system
is known.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

332 Class Documentation

Returns

CE_None on success, CE_Failure on failure (including if action is not supported for
this format).

Reimplemented from GDALDataset (p.??).

49.70.1.15 virtual CPLErr GDALProxyDataset::SetGeoTransform (double «) [virtual]

Set the affine transformation coefficients.

See GetGeoTransform() (p. ??) for details on the meaning of the padfTransform coeffi-
cients.

This method does the same thing as the C GDALSetGeoTransform() (p. ??) function.

Parameters

padf- | a six double buffer containing the transformation coefficients to be writ-
Transform | ten with the dataset.

Returns

CE_None on success, or CE_Failure if this transform cannot be written.

Reimplemented from GDALDataset (p.??).
Reimplemented in GDALProxyPoolDataset (p.??).

49.70.1.16 virtual CPLErr GDALProxyDataset::SetMetadata (char *x papszMetadataln, const
char x pszDomain) [virtual]

Set metadata.

The C function GDALSetMetadata() (p. ??) does the same thing as this method.

Parameters

papsz- | the metadata in name=value string list format to apply.
Metadata

pszDomain | the domain of interest. Use "" or NULL for the default domain.

Returns

CE_None on success, CE_Failure on failure and CE_Warning if the metadata has
been accepted, but is likely not maintained persistently by the underlying object
between sessions.

Reimplemented from GDALMajorObject (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.71 GDALProxyPoolDataset Class Reference 333

49.70.1.17 virtual CPLErr GDALProxyDataset::SetMetadataltem (const char + pszName, const
char x pszValue, const char x pszDomain) [virtual]

Set single metadata item.

The C function GDALSetMetadataltem() (p. ??) does the same thing as this method.

Parameters

pszName | the key for the metadata item to fetch.

pszValue | the value to assign to the key.

pszDomain | the domain to set within, use NULL for the default domain.

Returns

CE_None on success, or an error code on failure.

Reimplemented from GDALMajorObject (p. ??).

49.70.1.18 virtual CPLErr GDALProxyDataset::SetProjection (constchar«) [virtual]

Set the projection reference string for this dataset.

The string should be in OGC WKT or PROJ.4 format. An error may occur because of
incorrectly specified projection strings, because the dataset is not writable, or because
the dataset does not support the indicated projection. Many formats do not support
writing projections.

This method is the same as the C GDALSetProjection() (p. ??) function.

Parameters

psz- | projection reference string.
Projection

Returns

CE_Failure if an error occurs, otherwise CE_None.

Reimplemented from GDALDataset (p.??).
Reimplemented in GDALProxyPoolDataset (p.??).

The documentation for this class was generated from the following files:

« gdal_proxy.h
+ gdalproxydataset.cpp

49.71 GDALProxyPoolDataset Class Reference

Inheritance diagram for GDALProxyPoolDataset:

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

334

Class Documentation

| GDALMgjorObject |

|

| GDAL Dataset |

|

| GDALProxyDataset |

| GDAL ProxyPool Dataset |

Public Member Functions

+ GDALProxyPoolDataset (const char xpszSourceDatasetDescription, int n-
RasterXSize, int nRasterYSize, GDALAccess eAccess=GA_ReadOnly, int
bShared=FALSE, const char xpszProjectionRef=NULL, double xpadfGeo-
Transform=NULL)

+ void AddSrcBandDescription (GDALDataType eDataType, int nBlockXSize, int

nBlockYSize)

virtual const char x GetProjectionRef (void)

Fetch the projection definition string for this dataset.
virtual CPLErr SetProjection (const char x)

Set the projection reference string for this dataset.
virtual CPLErr GetGeoTransform (double x)

Fetch the affine transformation coefficients.
virtual CPLErr SetGeoTransform (double)

Set the affine transformation coefficients.
virtual char x+ GetMetadata (const char xpszDomain)

Fetch metadata.

virtual const char * GetMetadataltem (const char xpszName, const char *psz-
Domain)

Fetch single metadata item.
virtual void * GetlnternalHandle (const char xpszRequest)

Fetch a format specific internally meaningful handle.
virtual const char + GetGCPProjection ()

Get output projection for GCPs.
virtual const GDAL_GCP *« GetGCPs ()

Fetch GCPs.

Protected Member Functions

« virtual GDALDataset « RefUnderlyingDataset ()
« virtual void UnrefUnderlyingDataset (GDALDataset «poUnderlyingDataset)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.71 GDALProxyPoolDataset Class Reference 335

Friends

« class GDALProxyPoolRasterBand

49.71.1 Member Function Documentation
49.71.1.1 const char « GDALProxyPoolDataset::GetGCPProjection () [virtual]

Get output projection for GCPs.
This method is the same as the C function GDALGetGCPProjection() (p. ??).

The projection string follows the normal rules from GetProjectionRef() (p. ??).

Returns

internal projection string or "" if there are no GCPs.

Reimplemented from GDALProxyDataset (p.??).
References GDALDataset::GetGCPProjection().

49.71.1.2 const GDAL_GCP :« GDALProxyPoolDataset::GetGCPs () [virtual]

Fetch GCPs.
This method is the same as the C function GDALGetGCPs() (p. ??).

Returns

pointer to internal GCP structure list. It should not be modified, and may change on
the next GDAL call.

Reimplemented from GDALProxyDataset (p.??).
References GDALDataset::GetGCPs(), and GDALDataset::GetGCPCount().

49.71.1.3 CPLErr GDALProxyPoolDataset::GetGeoTransform (double « padfTransform)
[virtual]

Fetch the affine transformation coefficients.

Fetches the coefficients for transforming between pixel/line (P.L) raster space, and pro-

jection coordinates (Xp,Yp) space.

padfTransform[0] + PxpadfTransform[l] + LxpadfTransform[2];
padfTransform([3] + PxpadfTransform[4] + LxpadfTransform[5];

Xp
Yp

In a north up image, padfTransform[1] is the pixel width, and padfTransform[5] is the pixel
height. The upper left corner of the upper left pixel is at position (padfTransform[0],padf-
Transform[3]).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

336 Class Documentation

The default transform is (0,1,0,0,0,1) and should be returned even when a CE_Failure
error is returned, such as for formats that don’t support transformation to projection
coordinates.

NOTE: GetGeoTransform() (p. ??) isn’t expressive enough to handle the variety of -
OGC Grid Coverages pixel/line to projection transformation schemes. Eventually this
method will be depreciated in favour of a more general scheme.

This method does the same thing as the C GDALGetGeoTransform() (p. ??) function.

Parameters

padf- | an existing six double buffer into which the transformation will be placed.
Transform

Returns

CE_None on success, or CE_Failure if no transform can be fetched.

Reimplemented from GDALProxyDataset (p.??).

49.71.1.4 void = GDALProxyPoolDataset::GetInternalHandle (constcharx) [virtual]

Fetch a format specific internally meaningful handle.

This method is the same as the C GDALGetInternalHandle() (p. ??) method.

Parameters

pszHandle- | the handle name desired. The meaningful names will be specific to the
Name | file format.

Returns

the desired handle value, or NULL if not recognised/supported.

Reimplemented from GDALProxyDataset (p.??).

49.71.1.5 char x*x GDALProxyPoolDataset::GetMetadata (const char * pszDomain)
[virtual]
Fetch metadata.

The returned string list is owned by the object, and may change at any time. It is
formated as a "Name=value" list with the last pointer value being NULL. Use the the
CPL StringList functions such as CSLFetchNameValue() to manipulate it.

Note that relatively few formats return any metadata at this time.

This method does the same thing as the C function GDALGetMetadata() (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.71 GDALProxyPoolDataset Class Reference 337

Parameters

\ pszDomain \ the domain of interest. Use "" or NULL for the default domain.

Returns

NULL or a string list.

Reimplemented from GDALProxyDataset (p.??).
References GDALMajorObject::GetMetadatay).

49.71.1.6 const char « GDALProxyPoolDataset::GetMetadataltem (const char « pszName,
const char x pszDomain) [virtual]

Fetch single metadata item.

The C function GDALGetMetadataltem() (p. ??) does the same thing as this method.

Parameters

pszName | the key for the metadata item to fetch.

pszDomain | the domain to fetch for, use NULL for the default domain.

Returns

NULL on failure to find the key, or a pointer to an internal copy of the value string
on success.

Reimplemented from GDALProxyDataset (p. ??).
References GDALMajorObject::GetMetadataltem().

49.71.1.7 const char + GDALProxyPoolDataset::GetProjectionRef (void) [virtual]

Fetch the projection definition string for this dataset.
Same as the C function GDALGetProjectionRef() (p. ??).

The returned string defines the projection coordinate system of the image in OpenGIS
WKT format. It should be suitable for use with the OGRSpatialReference class.

When a projection definition is not available an empty (but not NULL) string is returned.
Returns

a pointer to an internal projection reference string. It should not be altered, freed or
expected to last for long.

See also

http://www.gdal.org/ogr/osr_tutorial.html

Reimplemented from GDALProxyDataset (p.??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

338 Class Documentation

49.71.1.8 CPLErr GDALProxyPoolDataset::SetGeoTransform (double x) [virtual]

Set the affine transformation coefficients.

See GetGeoTransform() (p. ??) for details on the meaning of the padfTransform coeffi-
cients.

This method does the same thing as the C GDALSetGeoTransform() (p. ??) function.

Parameters

padf- | a six double buffer containing the transformation coefficients to be writ-
Transform | ten with the dataset.

Returns

CE_None on success, or CE_Failure if this transform cannot be written.

Reimplemented from GDALProxyDataset (p.??).

49.71.1.9 CPLErr GDALProxyPoolDataset::SetProjection (constchar x) [virtual]

Set the projection reference string for this dataset.

The string should be in OGC WKT or PROJ.4 format. An error may occur because of
incorrectly specified projection strings, because the dataset is not writable, or because
the dataset does not support the indicated projection. Many formats do not support
writing projections.

This method is the same as the C GDALSetProjection() (p. ??) function.

Parameters

psz- | projection reference string.
Projection

Returns

CE_Failure if an error occurs, otherwise CE_None.

Reimplemented from GDALProxyDataset (p.??).

The documentation for this class was generated from the following files:

+ gdal_proxy.h
+ gdalproxypool.cpp

49.72 GDALProxyPoolMaskBand Class Reference

Inheritance diagram for GDALProxyPoolMaskBand:

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.73 GDALProxyPoolOverviewRasterBand Class Reference 339

| GDALMajorObject |

T

| GDAL RasterBand |

T

| GDALProxyRasterBand |

| GDAL ProxyPool RasterBand |

| GDAL ProxyPoolMaskBand |

Public Member Functions
+ GDALProxyPoolMaskBand (GDALProxyPoolDataset xpoDS, GDALRaster-
Band xpoUnderlyingMaskBand, GDALProxyPoolRasterBand xpoMainBand)
Protected Member Functions
+ virtual GDALRasterBand x RefUnderlyingRasterBand ()

« virtual void UnrefUnderlyingRasterBand (GDALRasterBand xpoUnderlying-
RasterBand)

The documentation for this class was generated from the following files:

+ gdal_proxy.h
+ gdalproxypool.cpp

49.73 GDALProxyPoolOverviewRasterBand Class Reference

Inheritance diagram for GDALProxyPoolOverviewRasterBand:

| GDALMajorObject |

T

| GDALRasterBand |

T

| GDAL ProxyRasterBand |

T

| GDA L ProxyPool RasterBand |

T

| GDAL ProxyPool OverviewRasterBand |

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

340 Class Documentation

Public Member Functions
+ GDALProxyPoolOverviewRasterBand (GDALProxyPoolDataset xpoDS, G-
DALRasterBand xpoUnderlyingOverviewBand, GDALProxyPoolRasterBand
*poMainBand, int nOverviewBand)
Protected Member Functions
« virtual GDALRasterBand « RefUnderlyingRasterBand ()

« virtual void UnrefUnderlyingRasterBand (GDALRasterBand xpoUnderlying-
RasterBand)

The documentation for this class was generated from the following files:

+ gdal_proxy.h
+ gdalproxypool.cpp

49.74 GDALProxyPoolRasterBand Class Reference

Inheritance diagram for GDALProxyPoolRasterBand:

| GDALMajorObject |

T

| GDAL RasterBand |

T

| GDAL ProxyRasterBand |

T

| GDAL ProxyPool RasterBand |

t
[|

GDAL ProxyPoolMaskBand | | GDAL ProxyPool OverviewRasterBand

Public Member Functions

+ GDALProxyPoolRasterBand (GDALProxyPoolDataset «poDS, int nBand, GD-
ALDataType eDataType, int nBlockXSize, int nBlockYSize)

+ GDALProxyPoolRasterBand (GDALProxyPoolDataset «poDS, GDALRaster-
Band xpoUnderlyingRasterBand)

« virtual char xx GetMetadata (const char xpszDomain)

Fetch metadata.

« virtual const char *x GetMetadataltem (const char xpszName, const char *psz-
Domain)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.74 GDALProxyPoolRasterBand Class Reference 341

Fetch single metadata item.
« virtual char x* GetCategoryNames ()

Fetch the list of category names for this raster.
« virtual const char x GetUnitType ()

Return raster unit type.
« virtual GDALColorTable x GetColorTable ()

Fetch the color table associated with band.
+ virtual GDALRasterBand x GetOverview (int)

Fetch overview raster band object.
» virtual GDALRasterBand x GetRasterSampleOverview (int nDesired-
Samples)

Fetch best sampling overview.
« virtual GDALRasterBand « GetMaskBand ()

Return the mask band associated with the band.

Protected Member Functions

+ virtual GDALRasterBand x RefUnderlyingRasterBand ()

« virtual void UnrefUnderlyingRasterBand (GDALRasterBand xpoUnderlying-
RasterBand)

Friends

+ class GDALProxyPoolOverviewRasterBand
+ class GDALProxyPoolMaskBand

49.74.1 Member Function Documentation
49.74.1.1 char xx GDALProxyPoolRasterBand::GetCategoryNames () [virtual]

Fetch the list of category names for this raster.

The return list is a "StringList" in the sense of the CPL functions. That is a NULL
terminated array of strings. Raster values without associated names will have an empty
string in the returned list. The first entry in the list is for raster values of zero, and so on.

The returned stringlist should not be altered or freed by the application. It may change
on the next GDAL call, so please copy it if it is needed for any period of time.
Returns

list of names, or NULL if none.

Reimplemented from GDALProxyRasterBand (p.??).
References GDALRasterBand::GetCategoryNames().

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

342 Class Documentation

49.741.2 GDALColorTable « GDALProxyPoolRasterBand::GetColorTable ()
[virtual]

Fetch the color table associated with band.

If there is no associated color table, the return result is NULL. The returned color table
remains owned by the GDALRasterBand (p. ??), and can’t be depended on for long,
nor should it ever be modified by the caller.

This method is the same as the C function GDALGetRasterColorTable() (p. ??).

Returns

internal color table, or NULL.

Reimplemented from GDALProxyRasterBand (p. ??).
References GDALRasterBand::GetColorTable(), and GDALColorTable::Clone().

49.741.3 GDALRasterBand « GDALProxyPoolRasterBand::GetMaskBand ()
[virtual]
Return the mask band associated with the band.

The GDALRasterBand (p. ??) class includes a default implementation of GetMask-
Band() (p. ??) that returns one of four default implementations :

« If a corresponding .msk file exists it will be used for the mask band.

« If the dataset has a NODATA_VALUES metadata item, an instance of the new
GDALNoDataValuesMaskBand (p. ??) class will be returned. GetMaskFlags()
(p-??) will return GMF_NODATA | GMF_PER_DATASET.

Since

GDAL 1.6.0

If the band has a nodata value set, an instance of the new GDALNodataMask-
RasterBand class will be returned. GetMaskFlags() (p. ??) will return GMF_NO-
DATA.

If there is no nodata value, but the dataset has an alpha band that seems to apply
to this band (specific rules yet to be determined) and that is of type GDT_Byte
then that alpha band will be returned, and the flags GMF_PER_DATASET and
GMF_ALPHA will be returned in the flags.

If neither of the above apply, an instance of the new GDALAIIValidRasterBand
class will be returned that has 255 values for all pixels. The null flags will return
GMF_ALL_VALID.

Note that the GetMaskBand() (p. ??) should always return a GDALRasterBand (p. ??)
mask, even if it is only an all 255 mask with the flags indicating GMF_ALL_VALID.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.74 GDALProxyPoolRasterBand Class Reference 343

Returns

a valid mask band.

Since

GDAL 1.5.0

See also

http://trac.osgeo.org/gdal/wiki/rfcl5_nodatabitmask

Reimplemented from GDALProxyRasterBand (p.??).
References GDALRasterBand::GetMaskBand().

49.74.1.4 char xx GDALProxyPoolRasterBand::GetMetadata (const char x pszDomain)
[virtual]

Fetch metadata.

The returned string list is owned by the object, and may change at any time. It is
formated as a "Name=value" list with the last pointer value being NULL. Use the the
CPL StringList functions such as CSLFetchNameValue() to manipulate it.

Note that relatively few formats return any metadata at this time.

This method does the same thing as the C function GDALGetMetadata() (p. ??).

Parameters

\ pszDomain \ the domain of interest. Use "" or NULL for the default domain.

Returns

NULL or a string list.

Reimplemented from GDALProxyRasterBand (p.??).
References GDALMajorObject::GetMetadata().

49.74.1.5 const char « GDALProxyPoolRasterBand::GetMetadataltem (const char « pszName,
const char x pszDomain) [virtual]

Fetch single metadata item.

The C function GDALGetMetadataltem() (p. ??) does the same thing as this method.

Parameters

pszName | the key for the metadata item to fetch.

pszDomain | the domain to fetch for, use NULL for the default domain.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

344 Class Documentation

Returns

NULL on failure to find the key, or a pointer to an internal copy of the value string
on success.

Reimplemented from GDALProxyRasterBand (p. ??).
References GDALMajorObject::GetMetadataltem().

49.74.1.6 GDALRasterBand + GDALProxyPoolRasterBand::GetOverview (int/)
[virtual]

Fetch overview raster band object.

This method is the same as the C function GDALGetOverview() (p. ??).

Parameters

i \ overview index between 0 and GetOverviewCount() (p. ??)-1.

Returns

overview GDALRasterBand (p. ??).

Reimplemented from GDALProxyRasterBand (p. ??).

References GDALRasterBand::GetOverview().

49.74.1.7 GDALRasterBand GDALProxyPoolRasterBand::GetRasterSampleOverview (int
nDesiredSamples) [virtual]

Fetch best sampling overview.

Returns the most reduced overview of the given band that still satisfies the desired
number of samples. This function can be used with zero as the number of desired
samples to fetch the most reduced overview. The same band as was passed in will be
returned if it has not overviews, or if none of the overviews have enough samples.

This method is the same as the C function GDALGetRasterSampleOverview() (p. ??).

Parameters

nDesired- | the returned band will have at least this many pixels.
Samples

Returns

optimal overview or the band itself.

Reimplemented from GDALProxyRasterBand (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.75 GDALProxyRasterBand Class Reference 345

49.74.1.8 const char + GDALProxyPoolRasterBand::GetUnitType () [virtuall]

Return raster unit type.

Return a name for the units of this raster’s values. For instance, it might be "m" for
an elevation model in meters, or "ft" for feet. If no units are available, a value of "
will be returned. The returned string should not be modified, nor freed by the calling
application.

This method is the same as the C function GDALGetRasterUnitType() (p. ??).

Returns

unit name string.

Reimplemented from GDALProxyRasterBand (p. ??).
References GDALRasterBand::GetUnitType().

The documentation for this class was generated from the following files:

+ gdal_proxy.h
+ gdalproxypool.cpp

49.75 GDALProxyRasterBand Class Reference

Inheritance diagram for GDALProxyRasterBand:

| GDALMajorObject |

T

| GDAL RasterBand |

T

| GDALProxyRasterBand |

T

| GDAL ProxyPool RasterBand |
| i
GDALProxyPoolMaskBand | | GDAL ProxyPool OverviewRasterBand

Public Member Functions

« virtual char x* GetMetadata (const char xpszDomain)

Fetch metadata.
« virtual CPLErr SetMetadata (char xxpapszMetadata, const char xpszDomain)

Set metadata.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

346

Class Documentation

virtual const char * GetMetadataltem (const char xpszName, const char xpsz-
Domain)
Fetch single metadata item.
virtual CPLErr SetMetadataltem (const char xpszName, const char xpszValue,
const char xpszDomain)
Set single metadata item.
virtual CPLErr FlushCache ()
Flush raster data cache.
virtual char xx GetCategoryNames ()
Fetch the list of category names for this raster.
virtual double GetNoDataValue (int xpbSuccess=NULL)
Fetch the no data value for this band.
virtual double GetMinimum (int xpbSuccess=NULL)
Fetch the minimum value for this band.
virtual double GetMaximum (int xpbSuccess=NULL)
Fetch the maximum value for this band.
virtual double GetOffset (int xpbSuccess=NULL)
Fetch the raster value offset.
virtual double GetScale (int xpbSuccess=NULL)
Fetch the raster value scale.
virtual const char x GetUnitType ()
Return raster unit type.
virtual GDALColorInterp GetColorinterpretation ()
How should this band be interpreted as color?
virtual GDALColorTable + GetColorTable ()
Fetch the color table associated with band.
virtual CPLErr Fill (double dfRealValue, double dfimaginaryValue=0)
Fill this band with a constant value.
virtual CPLErr SetCategoryNames (char xx)
Set the category names for this band.
virtual CPLErr SetNoDataValue (double)
Set the no data value for this band.
virtual CPLErr SetColorTable (GDALColorTable)
Set the raster color table.
virtual CPLErr SetColorinterpretation (GDALColorinterp)
Set color interpretation of a band.
virtual CPLErr SetOffset (double)
Set scaling offset.
virtual CPLErr SetScale (double)
Set scaling ratio.
virtual CPLErr SetUnitType (const char x)
Set unit type.

virtual CPLErr GetStatistics (int bApproxOK, int bForce, double xpdfMin, double
xpdfMax, double xpdfMean, double xpadfStdDev)

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.75 GDALProxyRasterBand Class Reference 347

Fetch image statistics.

« virtual CPLErr ComputeStatistics (int bApproxOK, double xpdfMin, double *pdf-
Max, double xpdfMean, double *pdfStdDev, GDALProgressFunc, void xp-
ProgressData)

Compute image statistics.

« virtual CPLErr SetStatistics (double dfMin, double dfMax, double dfMean, double

dfStdDev)
Set statistics on band.
« virtual CPLErr ComputeRasterMinMax (int, double)

Compute the min/max values for a band.
« virtual int HasArbitraryOverviews ()
Check for arbitrary overviews.
« virtual int GetOverviewCount ()

Return the number of overview layers available.
« virtual GDALRasterBand « GetOverview (int)

Fetch overview raster band object.
« virtual GDALRasterBand « GetRasterSampleOverview (int)

Fetch best sampling overview.

« virtual CPLErr BuildOverviews (const char , int, int *, GDALProgressFunc,
void)

Build raster overview(s)

« virtual CPLErr AdviseRead (int nXOff, int nYOff, int nXSize, int nYSize, int nBuf-
XSize, int nBufYSize, GDALDataType eDT, char *xpapszOptions)

Aavise driver of upcoming read requests.

« virtual CPLErr GetHistogram (double dfMin, double dfMax, int nBuckets, int
xpanHistogram, int bincludeOutOfRange, int bApproxOK, GDALProgressFunc,
void xpProgressData)

Compute raster histogram.

« virtual CPLErr GetDefaultHistogram (double xpdfMin, double xpdfMax, int
xpnBuckets, int xxppanHistogram, int bForce, GDALProgressFunc, void xp-
ProgressData)

Fetch default raster histogram.

« virtual CPLErr SetDefaultHistogram (double dfMin, double dfMax, int nBuckets,

int xpanHistogram)
Set default histogram.
« virtual const GDALRasterAttributeTable « GetDefaultRAT ()

Fetch default Raster Attribute Table.
« virtual CPLErr SetDefaultRAT (const GDALRasterAttributeTable)

Set default Raster Attribute Table.
« virtual GDALRasterBand « GetMaskBand ()

Return the mask band associated with the band.
« virtual int GetMaskFlags ()

Return the status flags of the mask band associated with the band.
« virtual CPLErr CreateMaskBand (int nFlags)

Adds a mask band to the current band.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

348

Class Documentation

Protected Member Functions

virtual GDALRasterBand + RefUnderlyingRasterBand ()=0
virtual void UnrefUnderlyingRasterBand (GDALRasterBand xpoUnderlying-

RasterBand)

virtual CPLErr IReadBlock (int, int, void)
virtual CPLErr IWriteBlock (int, int, void)
virtual CPLErr IRasterlO (GDALRWFlag, int, int, int, int, void *, int, int, GDAL-

DataType, int, int)

49.75.1 Member Function Documentation

49.75.1.1 virtual CPLErr GDALProxyRasterBand::AdviseRead (int nXOff, int nYOff, int
nXSize, int nYSize, int nBufXSize, int nBufYSize, GDALDataType eDT, char s
papszOptions) [virtual]

Advise driver of upcoming read requests.

Some GDAL drivers operate more efficiently if they know in advance what set of upcom-
ing read requests will be made. The AdviseRead() (p. ??) method allows an application
to notify the driver of the region of interest, and at what resolution the region will be read.

Many drivers just ignore the AdviseRead() (p. ??) call, but it can dramatically accelerate
access via some drivers.

Parameters
nXOff| The pixel offset to the top left corner of the region of the band to be
accessed. This would be zero to start from the left side.
nYOff| The line offset to the top left corner of the region of the band to be
accessed. This would be zero to start from the top.
nXSize | The width of the region of the band to be accessed in pixels.
nYSize | The height of the region of the band to be accessed in lines.
nBufXSize | the width of the buffer image into which the desired region is to be read,
or from which it is to be written.
nBufYSize | the height of the buffer image into which the desired region is to be
read, or from which it is to be written.
eBufType | the type of the pixel values in the pData data buffer. The pixel values
will automatically be translated to/from the GDALRasterBand (p. ??)
data type as needed.
papsz- | a list of name=value strings with special control options. Normally this
Options | is NULL.
Returns

CE_Failure if the request is invalid and CE_None if it works or is ignored.

Reimplemented from GDALRasterBand (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.75 GDALProxyRasterBand Class Reference 349

49.75.1.2 virtual CPLErr GDALProxyRasterBand::BuildOverviews (const char « pszResampling,
int nOverviews, int + panOverviewList, GDALProgressFunc pfnProgress, void
pProgressData) [virtuall]

Build raster overview(s)

If the operation is unsupported for the indicated dataset, then CE_Failure is returned,
and CPLGetLastErrorNo() (p. ??) will return CPLE_NotSupported.

WARNING: It is not possible to build overviews for a single band in TIFF format, and thus
this method does not work for TIFF format, or any formats that use the default overview
building in TIFF format. Instead it is necessary to build overviews on the dataset as a
whole using GDALDataset::BuildOverviews() (p. ??). That makes this method pretty
useless from a practical point of view.

Parameters

psz- | one of "NEAREST", "GAUSS", "CUBIC", "AVERAGE", "MODE", "AVE-
Resampling | RAGE_MAGPHASE" or "NONE" controlling the downsampling method
applied.

nOverviews | number of overviews to build.

pan- | the list of overview decimation factors to build.
OverviewList

pfnProgress | a function to call to report progress, or NULL.

pProgress- | application data to pass to the progress function.
Data

Returns

CE_None on success or CE_Failure if the operation doesn’t work.

Reimplemented from GDALRasterBand (p.??).

49.75.1.3 CPLErr GDALRasterBand::ComputeRasterMinMax (int, double x) [virtual]

Compute the min/max values for a band.

If approximate is OK, then the band’s GetMinimum() (p. ??)/GetMaximum() will be
trusted. If it doesn’t work, a subsample of blocks will be read to get an approximate
min/max. If the band has a nodata value it will be excluded from the minimum and
maximum.

If bApprox is FALSE, then all pixels will be read and used to compute an exact range.

This method is the same as the C function GDALComputeRasterMinMax() (p. ??).

Parameters

bApproxOK | TRUE if an approximate (faster) answer is OK, otherwise FALSE.

adfMinMax | the array in which the minimum (adfMinMax[0]) and the maximum (adf-
MinMax[1]) are returned.

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

350 Class Documentation

Returns

CE_None on success or CE_Failure on failure.

Reimplemented from GDALRasterBand (p. ??).

References GDALRasterBand::GetMinimum(), GDALRasterBand::GetMaximum(), GD-
ALRasterBand::GetOverviewCount(), GDALRasterBand::HasArbitraryOverviews(), G-
DALRasterBand::GetRasterSampleOverview(), GDALRasterBand::GetNoDataValue(),
GDALMajorObject::GetMetadataltem(), GDALGetDataTypeSize(), GF_Read, GDT_-
Byte, GDT_UInt16, GDT_Int16, GDT_UInt32, GDT_Int32, GDT_Float32, GDT_Float64,
GDT_Cint16, GDT_CInt32, GDT_CFloat32, GDT_CFloat64, GDALRasterBand::Get-
LockedBlockRef(), GDALRasterBand::GetXSize(), and GDALRasterBand::GetYSize().

49.75.1.4 virtual CPLErr GDALProxyRasterBand::ComputeStatistics (int bApproxOK,
double x pdfMin, double = pdfMax, double = pdfMean, double x pdfStdDev,
GDALProgressFunc pfnProgress, void « pProgressData) [virtual]

Compute image statistics.

Returns the minimum, maximum, mean and standard deviation of all pixel values in
this band. If approximate statistics are sufficient, the bApproxOK flag can be set to
true in which case overviews, or a subset of image tiles may be used in computing the
statistics.

Once computed, the statistics will generally be "set" back on the raster band using Set-
Statistics() (p. ??).

This method is the same as the C function GDALComputeRasterStatistics() (p. ??).

Parameters

bApproxOK | If TRUE statistics may be computed based on overviews or a subset of
all tiles.

pdfMin | Location into which to load image minimum (may be NULL).

pdfMax | Location into which to load image maximum (may be NULL).-

pdfMean | Location into which to load image mean (may be NULL).

pdfStdDev | Location into which to load image standard deviation (may be NULL).

pfnProgress | a function to call to report progress, or NULL.

pProgress- | application data to pass to the progress function.
Data

Returns

CE_None on success, or CE_Failure if an error occurs or processing is terminated
by the user.

Reimplemented from GDALRasterBand (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.75 GDALProxyRasterBand Class Reference 351

49.75.1.5 virtual CPLErr GDALProxyRasterBand::CreateMaskBand (int nFlags)
[virtual]
Adds a mask band to the current band.

The default implementation of the CreateMaskBand() (p. ??) method is implemented
based on similar rules to the .ovr handling implemented using the GDALDefault-
Overviews (p. ??) object. A TIFF file with the extension .msk will be created with the
same basename as the original file, and it will have as many bands as the original image
(or just one for GMF_PER_DATASET). The mask images will be deflate compressed
tiled images with the same block size as the original image if possible.

Since

GDAL 1.5.0

Returns

CE_None on success or CE_Failure on an error.

See also

http://trac.osgeo.org/gdal/wiki/rfcl5_nodatabitmask

Reimplemented from GDALRasterBand (p.??).

49.75.1.6 virtual CPLErr GDALProxyRasterBand::Fill (double dfRealValue, double
dflmaginaryValue=0) [virtual]

Fill this band with a constant value.

GDAL makes no guarantees about what values pixels in newly created files are set to,
so this method can be used to clear a band to a specified "default" value. The fill value
is passed in as a double but this will be converted to the underlying type before writing
to the file. An optional second argument allows the imaginary component of a complex
constant value to be specified.

Parameters

dfRealvalue | Real component of fill value

dflmaginary- | Imaginary component of fill value, defaults to zero
Value

Returns

CE_Failure if the write fails, otherwise CE_None

Reimplemented from GDALRasterBand (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

352 Class Documentation

49.75.1.7 virtual CPLErr GDALProxyRasterBand::FlushCache (void) [virtual]

Flush raster data cache.

This call will recover memory used to cache data blocks for this raster band, and ensure
that new requests are referred to the underlying driver.

This method is the same as the C function GDALFlushRasterCache() (p. ??).

Returns

CE_None on success.

Reimplemented from GDALRasterBand (p. ??).

49.75.1.8 virtual charxx GDALProxyRasterBand::GetCategoryNames () [virtual]

Fetch the list of category names for this raster.

The return list is a "StringList" in the sense of the CPL functions. That is a NULL
terminated array of strings. Raster values without associated names will have an empty
string in the returned list. The first entry in the list is for raster values of zero, and so on.

The returned stringlist should not be altered or freed by the application. It may change
on the next GDAL call, so please copy it if it is needed for any period of time.

Returns

list of names, or NULL if none.

Reimplemented from GDALRasterBand (p. ??).
Reimplemented in GDALProxyPoolRasterBand (p. ??).

49.75.1.9 virtual GDALColorInterp GDALProxyRasterBand::GetColorinterpretation ()
[virtual]

How should this band be interpreted as color?

GCIl_Undefined is returned when the format doesn’t know anything about the color in-
terpretation.

This method is the same as the C function GDALGetRasterColorinterpretation()
(p-??).

Returns

color interpretation value for band.

Reimplemented from GDALRasterBand (p. ??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.75 GDALProxyRasterBand Class Reference 353

49.75.1.10 virtual GDALColorTablex GDALProxyRasterBand::GetColorTable ()
[virtual]

Fetch the color table associated with band.

If there is no associated color table, the return result is NULL. The returned color table
remains owned by the GDALRasterBand (p. ??), and can’'t be depended on for long,
nor should it ever be modified by the caller.

This method is the same as the C function GDALGetRasterColorTable() (p. ??).

Returns

internal color table, or NULL.

Reimplemented from GDALRasterBand (p.??).
Reimplemented in GDALProxyPoolRasterBand (p. ??).

49.75.1.11 virtual CPLErr GDALProxyRasterBand::GetDefaultHistogram (double
pdfMin, double x pdfllax, int x pnBuckets, int xx ppanHistogram, int bForce,
GDALProgressFunc pfnProgress, void « pProgressData) [virtual]

Fetch default raster histogram.

The default method in GDALRasterBand (p. ??) will compute a default histogram. This
method is overriden by derived classes (such as GDALPamRasterBand (p. ??), VRT-
Dataset (p. ??), HFADataset...) that may be able to fetch efficiently an already stored
histogram.

Parameters
pdfMin | pointer to double value that will contain the lower bound of the his-
togram.
pdfMax | pointer to double value that will contain the upper bound of the his-
togram.
pnBuckets | pointer to int value that will contain the number of buckets in xppan-
Histogram.

ppan- | pointer to array into which the histogram totals are placed. To be freed
Histogram | with VSIFree

bForce | TRUE to force the computation. If FALSE and no default histogram is
available, the method will return CE_Warning

pfnProgress | function to report progress to completion.

pProgress- | application data to pass to pfnProgress.
Data

Returns

CE_None on success, CE_Failure if something goes wrong, or CE_Warning if no
default histogram is available.

Reimplemented from GDALRasterBand (p.??).

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

354 Class Documentation

49.75.1.12 virtual const GDALRasterAttributeTablex GDALProxyRasterBand::GetDefaultR-
AT() [virtual]
Fetch default Raster Attribute Table.

A RAT will be returned if there is a default one associated with the band, otherwise
NULL is returned. The returned RAT is owned by the band and should not be deleted,
or altered by the application.

Returns

NULL, or a pointer to an internal RAT owned by the band.

Reimplemented from GDALRasterBand (p. ??).

49.75.1.13 virtual CPLErr GDALProxyRasterBand::GetHistogram (double dfMin, double dflax,
int nBuckets, int x panHistogram, int bincludeOutOfRange, int bApproxOK,
GDALProgressFunc pfnProgress, void « pProgressData) [virtual]

Compute raster histogram.
Note that the bucket size is (dfMax-dfMin) / nBuckets.

For example to compute a simple 256 entry histogram of eight bit data, the following
would be suitable. The unusual bounds are to ensure that bucket boundaries don't fall
right on integer values causing possible errors due to rounding after scaling.

int anHistogram[256];

poBand->GetHistogram(-0.5, 255.5, 256, anHistogram, FALSE, FALSE,
GDALDummyProgress, NULL);

Note that setting bApproxOK will generally result in a subsampling of the file, and will
utilize overviews if available. It should generally produce a representative histogram
for the data that is suitable for use in generating histogram based luts for instance.
Generally bApproxOK is much faster than an exactly computed histogram.

Parameters

dfMin | the lower bound of the histogram.
dfMax | the upper bound of the histogram.
nBuckets | the number of buckets in panHistogram.
pan- | array into which the histogram totals are placed.
Histogram
bincludeOut- | if TRUE values below the histogram range will mapped into pan-
OfRange | Histogram[0], and values above will be mapped into panHistogram[n-
Buckets-1] otherwise out of range values are discarded.
bApproxOK | TRUE if an approximate, or incomplete histogram OK.
pfnProgress | function to report progress to completion.
pProgress- | application data to pass to pfnProgress.
Data

Generated on Wed Jan 23 2013 20:43:37 for GDAL by Doxygen

49.75 GDALProxyRasterBand Class Reference 355

Returns

CE_None on success, or CE_Failure if something goes wrong.

Reimplemented from GDALRasterBand (p.??).

49.75.1.14 virtual GDALRasterBand:+ GDALProxyRasterBand::GetMaskBand ()
[virtual]
Return the mask band associated with the band.
The GDALRasterBand (p. ??) class includes a default implementation of GetMask-
Band() (p. ??) that returns one of four default implementations :
« If a corresponding .msk file exists it will be used for the mask band.

« If the dataset has a NODATA VALUES metadata item, an instance of the new
GDALNoDataValuesMaskBand (p. ??) class will be returned. GetMaskFlags()
(p-??) will return GMF_NODATA | GMF_PER_DATASET.

Since
GDAL 1.6.0

« If the band has a nodata value set, an instance of the new GDALNodataMask-
RasterBand class will be returned. GetMaskFlags() (p. ??) will return GMF_NO-
DATA.

« If there is no nodata value, but the dataset has an alpha band that seems to apply
to this band (specific rules yet to be determined) and that is of type GDT_Byte
then that alpha band will be returned, and the flags GMF_PER_DATASET and
GMF_ALPHA will be returned in the flags.

« If neither of the above apply, an instance of the new GDALAIIValidRasterBand
class will be returned that has 255 values for all pixels. The null flags will return
GMF_ALL_VALID.

Note that the GetMaskBand() (p. ??) should always return a GDALRasterBand (p. ??)
mask, even if it is only an all 255 mask with the flags indicating GMF_ALL_VALID.

Returns

a valid mask band.

Since

GDAL 1.5.0

See also

http://trac.osgeo.org/gdal/wiki/rfcl5_nodatabitmask

Reimplemented from GDALRasterBand (p.??).
Reimplemented in GDALProxyPoolRasterBand (p. ??).

Generated on Wed Jan 23 2013 20:43:37