
PVS Language Reference
Version 3.0 • February 2003

S. Owre
N. Shankar
J. M. Rushby
D. W. J. Stringer-Calvert
{Owre,Shankar,Rushby,Dave_SC}@csl.sri.com

http://pvs.csl.sri.com/

SRI International
Computer Science Laboratory • 333 Ravenswood Avenue • Menlo Park CA 94025

{Owre,Shankar,Rushby,Dave_SC}@csl.sri.com
http://pvs.csl.sri.com/

The initial development of PVS was funded by SRI International. Subsequent en-
hancements were partially funded by SRI and by NASA Contracts NAS1-18969 and
NAS1-20334, NRL Contract N00014-96-C-2106, NSF Grants CCR-9300044, CCR-
9509931, and CCR-9712383, AFOSR contract F49620-95-C0044, and DARPA Orders
E276, A721, D431, D855, and E301.

Contents

Contents i

1 Introduction 1
1.1 Summary of the PVS Language . 1
1.2 PVS Language Design Principles . 2
1.3 An Example: stacks . 4

2 The Lexical Structure 7

3 Declarations 11
3.1 Type Declarations . 12

3.1.1 Uninterpreted Type Declarations 12
3.1.2 Uninterpreted Subtype Declarations 14
3.1.3 Interpreted Type Declarations 14
3.1.4 Enumeration Type Declarations 14
3.1.5 Empty versus Nonempty Types 15
3.1.6 Checking Nonemptiness . 16

3.2 Variable Declarations . 17
3.3 Constant Declarations . 17
3.4 Recursive Definitions . 19
3.5 Macros . 22
3.6 Inductive and Coinductive Definitions 23
3.7 Formula Declarations . 26
3.8 Judgements . 27

3.8.1 Constant Judgements . 27
3.8.2 Subtype Judgements . 29
3.8.3 Judgement Processing . 29

3.9 Conversions . 30
3.9.1 Conversion Examples . 30
3.9.2 Lambda conversions . 32
3.9.3 Conversions on Type Constructors 33
3.9.4 Conversion Processing . 33
3.9.5 Conversion Control . 34

i

ii CONTENTS

3.10 Library Declarations . 35
3.11 Auto-rewrite Declarations . 35

4 Types 39
4.1 Subtypes . 39
4.2 Function Types . 41
4.3 Tuple Types . 42
4.4 Record Types . 43
4.5 Dependent types . 43
4.6 Cotuple Types . 44

5 Expressions 45
5.1 Boolean Expressions . 46
5.2 IF-THEN-ELSE Expressions . 48
5.3 Numeric Expressions . 49
5.4 Characters and String Expressions . 49
5.5 Applications . 50
5.6 Binding Expressions . 50
5.7 LET and WHERE Expressions . 51
5.8 Set Expressions . 52
5.9 Tuple Expressions . 52
5.10 Projection Expressions . 53
5.11 Record Expressions . 53
5.12 Record Accessors . 54
5.13 Cotuple Expressions . 54
5.14 Override Expressions . 55
5.15 Coercion Expressions . 56
5.16 Tables . 57

5.16.1 COND Expressions . 57
5.16.2 Table Expressions . 59

6 Theories 63
6.1 Theory Identifiers . 65
6.2 Theory Parameters . 65
6.3 Importings and Exportings . 65

6.3.1 The EXPORTING Clause . 65
6.3.2 IMPORTING Clauses . 67

6.4 Assuming Part . 67
6.5 Theory Part . 69

7 Name Resolution 71

CONTENTS iii

8 Abstract Datatypes 75
8.1 A Datatype Example: stack . 76
8.2 Datatype Details . 80
8.3 Datatype Subtypes . 84
8.4 CASES Expressions . 85

A The Grammar 87

Bibliography 97

Index 99

iv CONTENTS

Chapter 1

Introduction

PVS is a Prototype V erification System for the development and analysis of for-
mal specifications. The PVS system primarily consists of a specification language,
a parser, a typechecker, a prover, specification libraries, and various browsing tools.
This document describes the specification language and is meant to be used as a
reference manual. The PVS System Guide [10] is to be consulted for information
on how to use the system to develop specifications and proofs. The PVS Prover
Guide [15] is a reference manual for the commands used to construct proofs. The
web site http://pvs.csl.sri.com provides many useful links, including various tu-
torials and examples.

In this section, we provide a brief summary of the PVS specification language,
enumerate the key design principles behind the language, and discuss a simple stacks
example.

1.1 Summary of the PVS Language

A PVS specification consists of a collection of theories. Each theory consists of a
signature for the type names and constants introduced in the theory, and the ax-
ioms, definitions, and theorems associated with the signature. For example, a typical
specification for a queue would introduce the queue type and the operations of enq,
deq, and front with their associated types. In such a theory, one can either define a
representation for the queue type and its associated operations in terms of some more
primitive types and operations, or merely axiomatize their properties. A theory can
build on other theories: for example, a theory for ordered binary trees could build on
the theory for binary trees. A theory can be parametric in certain specified types and
values: as examples, a theory of queues can be parametric in the maximum queue
length, and a theory of ordered binary trees can be parametric in the element type as
well as the ordering relation. It is possible to place constraints, called assumptions,
on the parameters of a theory so that, for instance, the ordering relation parameter
of an ordered binary tree can be constrained to be a total ordering.

1

http://pvs.csl.sri.com

2 Introduction

The PVS specification language is based on simply typed higher-order logic.
Within a theory, types can be defined starting from base types (Booleans, numbers,
etc.) using type constructors such as function, record, and tuple types. The terms
of the language can be constructed using, for example, function application, lambda
abstraction, and record or tuple constructions.

There are a few significant enhancements to the simply typed language above
that lend considerable power and sophistication to PVS. New uninterpreted base
types may be introduced. One can define a predicate subtype of a given type as the
subset of individuals in a type satisfying a given predicate: the subtype of nonzero
reals is written as {x:real | x /= 0}. One benefit of such subtyping is that when
an operation is not defined on all the elements of a type, the signature can directly
reflect this. For example, the division operation on reals is given a type where the
denominator is constrained to be nonzero. Typechecking then ensures that division is
never applied to a zero denominator. Since the predicate used in defining a predicate
subtype is arbitrary, typechecking is undecidable and may lead to proof obligations
called type correctness conditions (TCCs). The user is expected to discharge these
proof obligations with the assistance of the PVS prover. The PVS type system also
features dependent function, record, and tuple type constructions. There is also a
facility for defining a certain class of abstract datatype (namely well-founded trees)
theories automatically.

1.2 PVS Language Design Principles

There are several basic principles that have motivated the design of PVS which are
explicated in this section.

Specification vs. Programming Languages. A specification represents require-
ments or a design whereas a program text represents an implementation of a design.
A program can be seen as a specification, but a specification need not be a program.
Typically, a specification expresses what is being computed whereas a program ex-
presses how it is computed. A specification can be incomplete and still be meaningful
whereas an incomplete program will typically not be executable. A specification need
not be executable; it may use high-level constructs, quantifiers and the like, that
need have no computational meaning. However, there are a number of aspects of
programming languages that a specification language should include, such as:

• the usual basic types: booleans, integers, and rational numbers

• the familiar datatypes of programming languages such as arrays, records, lists,
sequences, and abstract datatypes

• the higher-order capabilities provided by modern functional programming lan-
guages so that extremely general-purpose operations can be defined

1.2 PVS Language Design Principles 3

• definition by recursion

• support for dividing large specifications into parameterized modules

It is clearly not enough to say that a specification language shares some impor-
tant features of a programming language but need not be executable. Any useful
formal language must have a clearly defined semantics1 and must be capable of being
manipulated in ways that are meaningful relative to the semantics. A programming
language for example can be given a denotational semantics so that the execution of
the program respects its denotational meaning. The reason one writes a specification
in a formal language is typically to ensure that it is sensible, to derive some useful
consequences from it, and to demonstrate that one specification implements another.
All of these activities require the notion of a justification or a proof based on the
specification, a notion that can only be captured meaningfully within the framework
of logic.

Untyped set theory versus higher-order logic Which logic should be chosen?
There is a wide variety of choices: simple propositional logics, which can be clas-
sical or intuitionistic, equational logics, quantificational logics, modal and temporal
logics, set theory, higher-order logic, etc. Some propositional and modal logics are
appropriate for dealing with finite state machines where one is primarily interested
in efficiently deciding certain finite state machine properties. For a general purpose
specification language, however, only a set theory or a higher-order logic would pro-
vide the needed expressiveness. Higher-order logic requires strict typing to avoid
inconsistencies whereas set theory restricts the rules for forming sets. Set theory is
inherently untyped, and grafting a typechecker onto a language based on set the-
ory is likely to be too strict and arbitrary. Typechecking, however, is an extremely
important and easy way of checking whether a specification makes semantic sense
(although for an opposing view, the reader is referred to a report by Lamport and
Paulson [9]). Higher-order logic does admit effective typechecking but at the expense
of an inflexible type system. Recent advances in type theory have made it possible
to design more flexible type systems for higher-order logic without losing the benefits
of typechecking. We have therefore chosen to base PVS on higher-order logic.

Total versus partial functions In the PVS higher-order logic, an individual is
either a function, a tuple, a record, or the member of a base type. Functions are
extremely important in higher-order logic. They are first-class individuals, i.e., vari-
ables can range over functions. In general, functions can represent either total or
partial maps. A total map from domain A to range B maps each element of A to
some element of B, whereas a partial map only maps some of the elements of A to el-
ements of B. Most traditional logics build in the assumption that functions represent

1The PVS semantics are presented in a technical report [11].

4 Introduction

total maps. Partial functions arise quite naturally in specifications. For example, the
division operation is undefined on a zero denominator and the operation of popping
a stack is undefined on an empty stack.

Some recent logics, notably those of VDM [8], LUTINS [5], RAISE [6], Beeson [2]
and Scott [14], admit partial functions. In these logics, some terms may be undefined
by not denoting any individuals. Some of these logics have mechanisms for distin-
guishing defined and undefined terms, while others allow “undefined” to propagate
from terms to expressions and therefore must employ multiple truth values. In all
these cases, the ability to formalize partially defined functions comes at the cost of
complicating the deductive apparatus, even when the specification does not involve
any partial functions. Though logics that allow partial functions are extremely inter-
esting, we have chosen to avoid partial functions in PVS. We have instead employed
the notion of a predicate subtype, a type that consists of those elements of a given
type satisfying a given predicate. Using predicate subtypes, the type of the division
operator, for example, can be constrained to admit only nonzero denominators. Divi-
sion then becomes a total operation on the domain consisting of arbitrary numerators
and nonzero denominators. The domain of a pop operation on stacks can be similarly
restricted to nonempty stacks. PVS thus admits partial functions within the frame-
work of a logic of total functions by enriching the type system to include predicate
subtypes. We find this use of predicate subtypes to be significantly in tune with
conventional mathematical practice of being explicit about the domain over which a
function is defined.

1.3 An Example: stacks

In this section we discuss a specific example, the theory of stacks, in order to give
a feel for the various aspects of the PVS language before going into detail. Apart
from the basic notation for defining a theory, this example illustrates the use of type
parameters at the theory level, the general format of declarations, the use of predicate
subtyping to define the type of nonempty stacks, and the generation of typechecking
obligations.

Figure 1.1 illustrates a theory for stacks of an arbitrary type with correspond-
ing stack operations. Note that this is not the recommended approach to specify-
ing stacks; a more convenient and complete specification is provided in Section 8.1,
page 76.

The first line introduces a theory named stacks that is parameterized by a type
t (the formal parameter of stacks). The keyword TYPE+ indicates that t is a non-
empty type. The uninterpreted (nonempty) type stack is declared, and the con-
stant empty and variable s are declared to be of type stack. The defined predicate
nonemptystack? is then declared on elements of type stack; it is true for a given

1.3 An Example: stacks 5

stacks [t: TYPE+] : THEORY

BEGIN

stack : TYPE+

s : VAR stack

empty : stack

nonemptystack?(s) : bool = s /= empty

push : [t, stack -> (nonemptystack?)]

pop : [(nonemptystack?) -> stack]

top : [(nonemptystack?) -> t]

x, y : VAR t

push_top_pop : AXIOM

nonemptystack?(s) IMPLIES push(top(s), pop(s)) = s

pop_push : AXIOM pop(push(x, s)) = s

top_push : AXIOM top(push(x, s)) = x

pop2push2: THEOREM pop(pop(push(x, push(y, s)))) = s

END stacks

Figure 1.1: Theory stacks

stack element iff2 that element is not equal to empty.3 The functions push, pop, and
top are then declared. Note that the predicate nonemptystack? is being used as a
type in specifying the signatures of these functions; any predicate may be used where
a type is expected simply by putting parentheses around it.

The variables x and y are then declared, followed by the usual axioms for push,
pop, and top, which make push a stack constructor and pop and top stack accessors.
Finally, there is the theorem pop2push2, that can easily be proved by two applications
of the pop push axiom.

This simple theorem has an additional facet that shows up during typechecking.
Note that pop expects an element of type (nonemptystack?) and returns a value
of type stack. This works fine for the inner pop because it is applied to push,
which returns an element of type (nonemptystack?); but the outer occurrence of
pop cannot be seen to be type correct by such syntactic means. In cases like these,
where a subtype is expected but not directly provided, the system generates a type-
correctness condition (TCC). In this case, the TCC is

pop2push2_TCC1: OBLIGATION
FORALL (s: stack, x, y: t): nonemptystack?(pop(push(x, push(y, s))));

and is easily proved using the pop push axiom. The system keeps track of all such
obligations and will flag the unproved ones during proof chain analysis.

Parameterized theories such as stacks introduce theory schemas, where the type
t may be instantiated with any other nonempty type. To use the types, constants,
and formulas of the stacks theory from another theory, the stacks theory must be

2If and only if.
3The bool type and /= operator are declared in the prelude, which is a large body of theories

that are preloaded into PVS. This is described in Appendix /refprelude.

6 Introduction

imported, with actual parameters provided for the corresponding theory parameters.
This is done by means of an IMPORTING clause. For example, consider the theory
ustacks.

ustacks : THEORY
BEGIN
IMPORTING stacks[int], stacks[stack[int]]

si : stack[int]
sos : stack[stack[int]] = push(si, empty)
END ustacks

It imports stacks of integers and stacks of stacks of integers. The constant si is then
declared to be a stack of integers, and the constant sos is a stack of stacks of integers
whose top element is si. Note that the system is able to determine which instance
of push and empty is meant from the type of the first argument. In general, the
typechecker infers the type of an expression from its context.

The following chapters provide more details on the various features of the lan-
guage. The lexical aspects of the language are explained in Chapter 2. Chapter 3
describes declarations, Chapters 4 and 5 describe type expressions and expressions,
and Chapter 6 explains theories, theory parameters, and the importing and exporting
of names. Theory interpretaions and mappings are described in Chapter ??. Chap-
ter 7 describes names and name resolution, and Chapter 8 details the datatype facility
of PVS. Finally, Appendix A provides the grammar of the language and Appendix ??
gives a brief overview of the theories of the PVS prelude.

Chapter 2

The Lexical Structure

PVS specifications are text files, each composed of a sequence of lexical elements which
in turn are made up of characters. The lexical elements of PVS are the identifiers,
reserved words, special symbols, numbers, whitespace characters, and comments.

Identifiers are composed of letters, digits, and the characters or ?; they must
begin with a letter. They may be arbitrarily long, constrained only by the limits
imposed by the underlying Common Lisp system. Identifiers are case-sensitive; FOO,
Foo, and foo are different identifiers. PVS strings contain any ASCII character: to
include a " in the string, use \" and to include a \ use \\.

Ids ::= Id +
,

Id ::= Letter IdChar +

Number ::= Digit +

String ::= " ASCII-character ∗ "

IdChar ::= Letter | Digit | | ?

Letter ::= A | . . . | Z | a | . . . | z

Digit ::= 0 | . . . | 9

Figure 2.1: Lexical Syntax

The reserved words are shown in Figure 2.2. Unlike identifiers, they are not
case-sensitive. In this document, reserved words are always displayed in upper case.
Note that identifiers may have reserved words embedded in them, thus ARRAYALL is
a valid identifier and will not be confused with the two embedded reserved words.
The meaning of the reserved words are given in the appropriate sections; they are
collected here for reference.

The special symbols are listed in Figure 2.3. All of these symbols are separators;
they separate identifiers, numbers, and reserved words.

7

8 The Lexical Structure

AND CODATATYPE ENDTABLE LAW SUBTYPE OF
ANDTHEN COINDUCTIVE EXISTS LEMMA TABLE
ARRAY COND EXPORTING LET THEN
AS CONJECTURE FACT LIBRARY THEOREM
ASSUMING CONTAINING FALSE MACRO THEORY
ASSUMPTION CONVERSION FORALL MEASURE TRUE
AUTO REWRITE CONVERSION+ FORMULA NONEMPTY TYPE TYPE
AUTO REWRITE+ CONVERSION- FROM NOT TYPE+
AUTO REWRITE- CORECURSIVE FUNCTION O VAR
AXIOM COROLLARY HAS TYPE OBLIGATION WHEN
BEGIN DATATYPE IF OF WHERE
BUT ELSE IFF OR WITH
BY ELSIF IMPLIES ORELSE XOR
Bindings END IMPORTING POSTULATE
CASES ENDASSUMING IN PROPOSITION
CHALLENGE ENDCASES INDUCTIVE RECURSIVE
CLAIM ENDCOND JUDGEMENT SUBLEMMA
CLOSURE ENDIF LAMBDA SUBTYPES

Figure 2.2: PVS Reserved Words

** :-> = \ |-
+ :: == \\/ |->
#) ++ ::= =>] |=
#] , := >]| |>
% - :} >= ^ |[
& -> ; >> ^^ |]
&& . < >>= ‘ ||
(.. <: @ { |}
(# / << @@ {: }
(: // <<= [{{ }}
(| /= <= [# {| ~

(||) /\\ <=> [] {||}
) : <> [| |
* :) <| [||] |)

Figure 2.3: PVS Special Symbols

The whitespace characters are space, tab, newline, return, and newpage; they
are used to separate other lexical elements. At least one whitespace character must
separate adjacent identifiers, numbers, and reserved words.

Comments may appear anywhere that a whitespace character is allowed. They
consist of the ‘%’ character followed by any sequence of characters and terminated by
a newline.

The definable symbols are shown in table 2.4. These keywords and symbols may

The Lexical Structure 9

// <| AND ORELSE {||}
& /= = ANDTHEN TRUE |-

(||) /\\ == FALSE WHEN |=
* < => IF XOR |>
** << > IFF [] ~
+ <<= >= IMPLIES [||]
++ <= >> NOT \\/
- <=> >>= O ^
/ <> @@ OR ^^

Figure 2.4: PVS Definable Symbols

be given declarations. Some of them have declarations given in the prelude.1 Any of
these may be (re)declared any number of times, though this may lead to ambiguities.
Such ambiguities may be resolved by including the theory name, actual parameters,
and possibly the type as a coercion.

Symbols that are binary infix (Binop), for example AND and +, may be declared
with any number of arguments. If they are declared with two arguments then they
may subsequently be used in prefix or infix form. Otherwise they may only be used in
prefix form. Similarly for unary operators, and the IF operator, which may be used
in IF-THEN-ELSE-ENDIF form if declared with three arguments.

Note that when typing the operators / or outside of a specification, the backslash
may need to be doubled (or in rare cases, quadrupled). This is because it is com-
monly used as an “escape” character, and the character following may be interpreted
specially.

The symbol pairs [| and |], (| and |), and {| and |} are available as outfix
operators. They are declared using [||], (||), and {||}, respectively. For example,
with the declaration [||]: [bool, int -> int] the outfix term [| TRUE, 0 |] is
equivalent to the prefix form [||](TRUE, 0).

1In particular, &, *, +, -, /, /=, <, <<, <=, <=>, =, =>, >, >=, AND, IFF, IMPLIES, NOT, O, OR, WHEN,
XOR, ^, and ~ are declared there. Note that many of these are overloaded, for example, ^ has three
different definitions.

10 The Lexical Structure

Chapter 3

Declarations

Entities of PVS are introduced by means of declarations, which are the main con-
stituents of PVS specifications. Declarations are used to introduce types, variables,
constants, formulas, judgements, conversions, and other entities. Most declarations
have an identifier and belong to a unique theory. Declarations also have a body which
indicates the kind of the declaration and may provide a signature or definition for the
entity. Top-level declarations occur in the formal parameters, the assertion section
and the body of a theory. Local declarations for variables may be given, in associa-
tion with constant and recursive declarations and binding expressions (e.g., involving
FORALL or LAMBDA). Declarations are ordered within a theory; earlier declarations may
not reference later ones.1

Declarations introduced in one theory may be referenced in another by means of
the IMPORTING and EXPORTING clauses. The EXPORTING clause of a theory indicates
those entities that may be referenced from outside the theory. There is only one
such clause for a given theory. The IMPORTING clauses provide access to the entities
exported by another theory. There can be many IMPORTING clauses in a theory; in
general they may appear anywhere a top-level declaration is allowed. See Section 6.3
for more details.

PVS allows the overloading of declaration identifiers. Thus a theory named foo

may declare a constant foo and a formula foo. To support this ad hoc overloading,
declarations are classified according to kind; in PVS the primary kinds are type, prop,
expr , and theory . Type declarations are of kind type, and may be referenced in type
declarations, actual parameters, signatures, and expressions. Formula declarations
are of kind prop, and may be referenced in auto-rewrite declarations (Section 3.11) or
proofs (see the PVS Prover Guide [15]). Variable, constant, and recursive definition
declarations are of kind expr ; these may be referenced in expressions and actual
parameters. Newly introduced names need only be unique within a kind, as there is

1Thus mutual recursion is not directly supported. The effect can be achieved with a single
recursive function that has an argument that serves as a switch for selecting between two or more
subexpressions.

11

12 Declarations

no way, for example, to use an expression where a type is expected.2

Declarations generally consist of an identifier , an optional list of bindings , and
a body . The body determines the kind of the declaration, and the bindings and the
body together determine the signature and definition of the declared entity. Multiple
declarations may be given in compressed form in which a common body is specified
for multiple identifiers; for example
x, y, z: VAR int

In every case this is treated the same as the expanded form, thus the above is equiv-
alent to:
x: VAR int
y: VAR int
z: VAR int

In the rest of this chapter we describe declarations for types, variables, constants,
recursive definitions, macros, inductive and coinductive definitions, formulas, judge-
ments, conversions, libraries, and auto-rewrites. The declarations for theory param-
eters, importings, exportings, and theory abbreviations are given in Chapter 6. Fig-
ure 3.1 gives the syntax for declarations.

3.1 Type Declarations

Type declarations are used to introduce new type names to the context. There are
four kinds of type declaration:

• uninterpreted type declaration: T: TYPE

• uninterpreted subtype declaration: S: TYPE FROM T

• interpreted type declaration: T: TYPE = int

• enumeration type declarations : T: TYPE = {r, g, b}

These type declarations introduce type names that may be referenced in type
expressions (see Section 4). They are introduced using one of the keywords TYPE,
NONEMPTY TYPE, or TYPE+.

3.1.1 Uninterpreted Type Declarations

Uninterpreted types support abstraction by providing a means of introducing a type
with a minimum of assumptions on the type. An uninterpreted type imposes almost
no constraints on an implementation of the specification. The only assumption made
on an uninterpreted type T is that it is disjoint from all other types, except for
subtypes of T. For example,
T1, T2, T3: TYPE

2There are a few exceptions, for example the actual parameters of theories, since theories may
be instantiated with types or expressions.

3.1 Type Declarations 13

LibDecl ::= Ids : LIBRARY [=] String

TheoryDecl ::= Ids : THEORY = TheoryDeclName

TypeDecl ::= Id [{, Ids} | Bindings] :
{TYPE | NONEMPTY TYPE | TYPE+}
[{ = | FROM } TypeExpr [CONTAINING Expr]]

VarDecl ::= IdOps : VAR TypeExpr

ConstDecl ::= IdOp [{, IdOps } | Bindings +] : TypeExpr [= Expr]

RecursiveDecl ::= IdOp [{, IdOps } | Bindings +] : RECURSIVE
TypeExpr = Expr MEASURE Expr [BY Expr]

MacroDecl ::= IdOp [{, IdOps } | Bindings +] : MACRO
TypeExpr = Expr

InductiveDecl ::= IdOp [{, IdOps } | Bindings +] : INDUCTIVE
TypeExpr = Expr

CoInductiveDecl ::= IdOp [{, IdOps } | Bindings +] : COINDUCTIVE
TypeExpr = Expr

FormulaDecl ::= Ids : FormulaName Expr

Judgement ::= SubtypeJudgement | ConstantJudgement

SubtypeJudgement ::= [IdOp :] JUDGEMENT TypeExpr +
, SUBTYPE OF TypeExpr

ConstantJudgement ::= [IdOp :] JUDGEMENT ConstantReference +
,

HAS TYPE TypeExpr

ConstantReference ::= Name Bindings ∗

Conversion ::= { CONVERSION | CONVERSION+ | CONVERSION- } Expr +
,

AutoRewriteDecl ::= { AUTO REWRITE | AUTO REWRITE+ | AUTO REWRITE- }
RewriteName +

,

RewriteName ::= Name [! [!]] [: {TypeExpr | FormulaName }]

Bindings ::= (Binding +
,)

Binding ::= TypedId | { (TypedIds) }

TypedIds ::= IdOps [: TypeExpr] [| Expr]

TypedId ::= IdOp [: TypeExpr] [| Expr]

Figure 3.1: Declarations Syntax

introduces three new pairwise disjoint types. If desired, further constraints may be
put on these types by means of axioms or assumptions (see Section 3.7 on page 26).

14 Declarations

It should be emphasized that uninterpreted types are important in providing the
right level of abstraction in a specification. Specifying the type body may have
the undesired effect of restricting the possible implementations, and cluttering the
specification with needless detail.

3.1.2 Uninterpreted Subtype Declarations

Uninterpreted subtype declarations are of the form
s: TYPE FROM t

This introduces an uninterpreted subtype s of the supertype t. This has the same
meaning as
s_pred: [t -> bool]
s: TYPE = (s_pred)

in which a new predicate is introduced in the first line and the type s is declared as a
predicate subtype in the second line3. No assumptions are made about uninterpreted
subtypes; in particular, they may or may not be empty, and two different uninter-
preted subtypes of the same supertype may or may not be disjoint. Of course, if the
supertypes themselves are disjoint, then the uninterpreted subtypes are as well.

3.1.3 Interpreted Type Declarations

Interpreted type declarations are primarily a means for providing names for type
expressions. For example,
intfun: TYPE = [int -> int]

introduces the type name intfun as an abbreviation for the type of functions with
integer domain and range. Because PVS uses structural equivalence instead of name
equivalence, any type expression T involving intfun is equivalent to the type ex-
pression obtained by substituting [int -> int] for intfun in T. The available type
expressions are described in Chapter 4 on page 39.

Interpreted type declarations may be given parameters. For example, the type of
integer subranges may be given as
subrange(m, n: int): TYPE = {i:int | m <= i AND i <= n}

and subrange with two integer parameters may subsequently be used wherever a type
is expected. Any use of a parameterized type must include all of the parameters, so
currying of the parameters is not allowed. Note that subrange may be overloaded
to declare a different type in the same theory without any ambiguity, as long as the
number or type of parameters is different.

3.1.4 Enumeration Type Declarations

Enumeration type declarations are of the form
enum: TYPE = {e_1,..., e_n}

where the e i are distinct identifiers which are taken to completely enumerate the
type. This is actually a shorthand for the datatype specification

3This is described in Section 4.1 (page 39).

3.1 Type Declarations 15

enum: DATATYPE
e_1: e_1?

...
e_n: e_n?

END enum

explained in Chapter 8. Because of this, enumeration types may only be given as
top-level declarations, and are not type expressions. The advantage of treating them
as datatypes is that the necessary axioms are automatically generated, and the prover
has built-in facilities for handling datatypes.

3.1.5 Empty versus Nonempty Types

As noted before, PVS allows empty types, and the term type refers to either empty
or nonempty types. Constants declared to be of a given type provide elements of
the type, so the type must be nonempty or there is an inconsistency. Thus whenever
a constant is declared, the system checks whether the type is nonempty, and if it
cannot decide that it is nonempty it generates an existence TCC. This is the simple
explanation, but it is made somewhat complicated by the considerations of formal
parameters, uninterpreted versus interpreted type declarations, explicit declarations
of nonemptiness, and CONTAINING clauses on type declarationss, as well as a desire to
keep the number of TCCs generated to a minimum, while guaranteeing soundness.
The details are provided below.

First note that having variables range over an empty type causes no difficulties,4

so variable declarations and variable bindings never trigger the nonemptiness check.
During typechecking, type declarations may indicate that the type is nonempty,

and constant declarations of a given type require that the type be nonempty. When
a type is determined to be nonempty, it is marked as such so that future checks of
constants do not trigger more TCCs. Below we describe how type declarations are
handled first for declarations in the body of a theory, and then for type declarations
that appear in the formal parameters, as they require special handling.

Theory Body Type Declarations

• Uninterpreted type or subtype declarations introduced with the keyword TYPE

may be empty. Declaring a constant of that type will lead to a TCC that is
unprovable without further axioms.

• Uninterpreted type declarations introduced with the keyword NONEMPTY TYPE or
TYPE+ are assumed to be nonempty. Thus the type is marked nonempty.

4If the type T is empty, then the following two equivalences hold:
(FORALL (x: T): p(x)) IFF TRUE and (EXISTS (x: T): p(x)) IFF FALSE

16 Declarations

• Uninterpreted subtype declarations introduced with the keyword NONEMPTY TYPE

or TYPE+ are assumed to be nonempty, as long as the supertype is nonempty.
Thus the supertype is checked, and an existence TCC is generated if the super-
type is not known to be nonempty. Then the subtype is marked nonempty.

• The type of an interpreted constant is nonempty, as the definition provides a
witness.

• Interpreted type declarations introduced with the keyword TYPE may be non-
empty, depending on the type definition.

• Any interpreted type declaration with a CONTAINING clause is marked nonempty,
and the CONTAINING expression is typechecked against the specified type. In this
case no existence TCC is generated, since the CONTAINING expression is a witness
to the type. Of course, other TCCs may be generated as a result of typechecking
the CONTAINING expression.

Formal Type Declarations Only uninterpreted (sub)type declarations may ap-
pear in the formal parameters list.

• Formal type declarations introduced with the TYPE keyword may be empty.
This is handled according to the occurrences of constant declarations involving
the type.

• If there is a constant declaration of that type in the formal parameter list, then
no TCCs are generated, since any instance of the theory will need to provide
both the type and a witness. The type is marked nonempty in this case.

• If the type declaration is a formal parameter and a constant is declared whose
type involves the type, but is not the type itself (for example, if the formal theory
parameters are [t: TYPE, f: [t -> t]]), then a TCC may be generated, and
a comment is added to the TCC indicating that an assuming clause may be
needed in order to discharge the TCC. This TCC will be generated only if
an earlier constant declaration hasn’t already forced the type to be marked
nonempty. Note that there are circumstances in which the formal type may
be empty but the type expression involving that type is nonempty. This is
discussed further below.

3.1.6 Checking Nonemptiness

The typechecker knows a type to be nonempty under the following circumstances:

• The type was declared to be nonempty, using either the NONEMPTY TYPE or the
synonymous TYPE+ keyword. If the type is uninterpreted, this amounts to an

3.2 Variable Declarations 17

assumption that the type is nonempty. If the type has a definition, then an
existence TCC is generated unless the defining type expression is known to be
nonempty.

• The type was declared to have an element using a CONTAINING expression.

• A constant was declared for the type. In this case an existence TCC is generated
for the first such constant, after which the type is marked as nonempty.

• It was marked as nonempty from an earlier check.

Once an unmarked type is determined to be nonempty, it is marked by the type-
checker so that later checks will not generate existence TCCs. In addition, the type
components are marked as nonempty. Thus the types that make up a tuple type, the
field types of a record type, and the supertype of a subtype are all marked.

It is possible for two equivalent types to be marked differently, for example:
t1: TYPE = {x: int | x > 2}
t2: TYPE = {x: int | x > 2}
c1: t1

only marks the first type (t1). Hence, it is best to name your types and to use those
names uniformly.

3.2 Variable Declarations

Variable declarations introduce new variables and associate a type with them. These
are logical variables, not program variables; they have nothing to do with state—they
simply provide a name and associated type so that binding expressions and formulas
can be succinct. Variables may not be exported. Variable declarations also appear
in binding expressions such as FORALL and LAMBDA. Such local declarations “shadow”
any earlier declarations. For example, in
x: VAR bool
f: FORMULA (FORALL (x: int): (EXISTS (x: nat): p(x)) AND q(x))

The occurrence of x as an argument to p is of type nat, shadowing the one of type
int. Similarly, the occurrence of x as an argument to q is of type int, shadowing the
one of type bool.

3.3 Constant Declarations

Constant declarations introduce new constants, specifying their type and optionally
providing a value. Since PVS is a higher order logic, the term constant refers to
functions and relations, as well as the usual (0-ary) constants. As with types, there
are both uninterpreted and interpreted constants. Uninterpreted constants make no
assumptions, although they require that the type be nonempty (see Section 3.1.6,
page 16). Here are some examples of constant declarations:

18 Declarations

n: int
c: int = 3
f: [int -> int] = (lambda (x: int): x + 1)
g(x: int): int = x + 1

The declaration for n simply introduces a new integer constant. Nothing is known
about this constant other than its type, unless further properties are provided by
AXIOMs. The other three constants are interpreted. Each is equivalent to specifying
two declarations: e.g., the third line is equivalent to
f: [int -> int]
f: AXIOM f = (LAMBDA (x: int): x + 1)

except that the definition is guaranteed to form a conservative extension of the theory.
Thus the theory remains consistent after the declaration is given if it was consistent
before.

The declarations for f and g above are two different ways to declare the same
function. This extends to more complex arguments, for example
f: [int -> [int, nat -> [int -> int]]] =

(LAMBDA (x: int): (LAMBDA (y: int), (z: nat): (LAMBDA (w: int):
x * (y + w) - z)))

is equivalent to
f(x: int)(y: int, z: nat)(w: int): int = x * (y + w) - z

This can be shortened even further if the variables are declared first:
x, y, w: VAR int
z: VAR nat
f(x)(y,z)(w): int = x * (y + w) - z

Finally, a mix of predeclared and locally declared variables is possible:
x, y: VAR int
f(x)(y,(z: nat))(w: int): int = x * (y + w) - z

Note the parentheses around z: nat; without these, y would also be treated as if it
were declared to be of type nat.

A construct that is frequently encountered when subtypes are involved is shown
by this example
f(x: {x: int | p(x)}): int = x + 1

There are two useful abbreviations for this expression. In the first, we use the fact
that the type {x: int | p(x)} is equivalent to the type expression (p) when p has
type [int -> bool], and we can write
f(x: (p)): int = x + 1

The second form of abbreviation basically removes the set braces and the redundant
references to the variable, though extra parentheses are required:
f((x: int | p(x))): int = x + 1

Which of these forms to use is mostly a matter of taste; in general, choose the form
that is clearest to read for a given declaration.

Note that functions with range type bool are generally referred to as predicates,
and can also be regarded as relations or sets. For example, the set of positive odd
numbers can be characterized by a predicate as follows:
odd: [nat -> bool] = (LAMBDA (n: nat): EXISTS (m: nat): n = 2 * m + 1)

PVS allows an alternate syntax for predicates that encourages a set-theoretic inter-
pretation:
odd: [nat -> bool] = {n: nat | EXISTS (m: nat): n = 2 * m + 1}

3.4 Recursive Definitions 19

3.4 Recursive Definitions

Recursive definitions are treated as constant declarations, except that the defining
expression is required, and a measure must be provided, along with an optional well-
founded order relation. The same syntax for arguments is available as for constant
declarations; see the preceding section.

PVS allows a restricted form of recursive definition; mutual recursion is not al-
lowed, and the function must be total, so that the function is defined for every value
of its domain. In order to ensure this, recursive functions must be specified with a
measure, which is a function whose signature matches that of the recursive function,
but with range type the domain of the order relation, which defaults to < on nat

or ordinal. If the order relation is provided, then it must be a binary relation on
the range type of the measure, and it must be well-founded; a well-founded TCC is
generated if the order is not declared to be well-founded.

Here is the classic example of the factorial function:
factorial(x: nat): RECURSIVE nat =
IF x = 0 THEN 1 ELSE x * factorial(x - 1) ENDIF
MEASURE (LAMBDA (x: nat): x)

The measure is the expression following the MEASURE keyword (the optional order
relation follows a BY keyword after the measure). This definition generates a termi-
nation TCC ; a proof obligation which must be discharged in order that the function
be well-defined. In this case the obligation is
factorial_TCC2: OBLIGATION
FORALL (x: nat): NOT x = 0 IMPLIES x - 1 < x

It is possible to abbreviate the given MEASURE function by leaving out the LAMBDA
binding. For example, the measure function of the factorial definition may be abbre-
viated to:
MEASURE x

The typechecker will automatically insert a lambda binding corresponding to the
arguments to the recursive function if the measure is not already of the correct type,
and will generate a typecheck error if this process cannot determine an appropriate
function from what has been specified.

A termination TCC is generated for each recursive occurrence of the defined entity
within the body of the definition.5 It is obtained in one of two ways. If a given
recursive reference has at least as many arguments provided as needed by the measure,
then the TCC is generated by applying the measure to the arguments of the recursive
call and comparing that to the measure applied to the original arguments using the
order relation. The factorial TCC is of this form. The context of the occurrence
is included in the TCC; in this case the occurrence is within the ELSE part of an
IF-THEN-ELSE so the negated condition is an antecedent to the proof obligation.

If the reference does not have enough arguments available, then the reference is
actually given a recursive signature derived from the recursive function as described

5Some of these may be subsumed by earlier TCCs, and hence will not be displayed with the M-x
show-tccs command.

20 Declarations

below. This type constrains the domain to satisfy the measure, and the termination
TCC is generated as a termination-subtype TCC. Termination-subtype TCCs are rec-
ognized as such by the occurrence of the order in the goal of the TCC. For example,
we could define a substitution function for terms as follows.

term: DATATYPE
BEGIN
mk_var(index: nat): var?
mk_const(index: nat): const?
mk_apply(fun: term, args: list[term]): apply?

END term

subst(x: (var?), y: term)(s: term): RECURSIVE term =
(CASES s OF
mk_var(i): (IF index(x) = i THEN y ELSE s ENDIF),
mk_const(i): s,
mk_apply(t, ss): mk_apply(subst(x, y)(t), map(subst(x, y))(ss))

ENDCASES)
MEASURE s BY <<

Now the first recursive occurrence of subst has all arguments provided, so the termi-
nation TCC is as expected. The second occurrence does not have enough arguments.
The recursive signature of that occurrence is
[[(var?), term] -> [{z1: term | z1 << s} -> term]]

Hence the signature of subst(x, y) is [{z1: term | z1 << s}-> term], and map
is instantiated to map[{z1: term | z1 << s}, term], which leads to the TCC
subst_TCC2: OBLIGATION
FORALL (ss: list[term], t: term, s: term, x: (var?)):
s = mk_apply(t, ss) IMPLIES every[term](LAMBDA (z: term): z << s)(ss);

Note that this map instance could be given directly, just don’t make the mistake of
providing map[term, term], as this leads to a TCC that says every term is << s.
For the same reason, if the uncurried form of this definition is given, then a lambda
expression will have to be provided and the type will have to include the measure,
for example,

subst(x: (var?), y, s: term): RECURSIVE term =
(CASES s OF
mk_var(i): (IF index(x) = i THEN y ELSE s ENDIF),
mk_const(i): s,
mk_apply(t, ss): mk_apply(subst(x, y, t),

map(LAMBDA (s1: {z: term|z<<s}):
subst(x, y, s1))(ss))

ENDCASES)
MEASURE s BY <<

The recursive signature is generated based on the type of the recursive function
and the measure. For curried functions, it may be that the measure does not have the
entire domain of the recursive function, but only the first few. For example, consider
the measure for the function f.

3.4 Recursive Definitions 21

f(r: real)(x, y: nat)(b: boolean): RECURSIVE boolean
= ...
MEASURE LAMBDA (r: real): LAMBDA (x, y: nat): x

The type of the measure function is [real -> [nat, nat -> nat]], which is a prefix
of the function type. In deriving the recursive signature, the last domain type of the
measure is constrained (using a subtype) in the corresponding position of the recursive
function type. In this case the recursive signature is
[real -> [{z: [nat, nat] | z‘1 < x} -> [boolean -> boolean]]]

Note that the recursive signature is a dependent type that depends on the arguments
of the recursive function (x in this case), and hence only applies within the body of
the recursive definition.

The formal argument that typechecking the body of a recursive function using the
recursive signature is sound will appear in a future version of the semantics manual,
for now note that simple attempts to subvert this mechanism do not work, as the
following example illustrates.
fbad: RECURSIVE [nat -> nat] = fbad
MEASURE lambda (n: nat): n

This leads an unprovable TCC.
fbad_TCC1: OBLIGATION FORALL (x1: nat, x: nat): x < x1;

The TCC results from the comaprison of the expected type [nat -> nat] to the de-
rived type [{z: nat | z < x1}-> nat]. Remember that in PVS domains of func-
tion types must be equal in order for the function types to satisfy the subtype relation,
and this is exactly what the TCC states.

f91: THEORY

BEGIN

i: VAR nat

f91(i):

RECURSIVE {j: nat | IF i > 100 THEN j = i - 10 ELSE j = 91 ENDIF} =

(IF i > 100 THEN i - 10 ELSE f91(f91(i + 11)) ENDIF)

MEASURE (LAMBDA i: (IF i > 101 THEN 0 ELSE 101 - i ENDIF))

END f91

Figure 3.2: Theory f91

When a doubly recursive call is found, the inner recursive calls are replaced by
variables in the termination TCCs generated for the outer calls. For example, the
theory of Figure 3.2 generates the termination TCC of Figure 3.3

where the inner calls to f91 have been replaced by the higher-order variable v,
with the recursive signature as shown. Since the obligation forces us to prove the
termination condition for all functions whose type is that of f91, it will also hold for
f91. This example also illustrates the use of dependent types, discussed in Section 4.5.

In some cases the natural numbers are not a convenient measure; PVS also pro-
vides the ordinals, which allow recursion with measures up to ε0. This is primarily
useful in handling lexicographical orderings. For example, in the definition of the
Ackerman function in Figure 3.4,6 there are two termination TCCs generated (along

6There are ways of specifying ackerman using higher-order functionals, in which case the measure
is again on the natural numbers.

22 Declarations

f91_TCC5: OBLIGATION
FORALL (i: nat,

v: [i1:
{z: nat |

(IF z > 101 THEN 0 ELSE 101 - z ENDIF) <
(IF i > 101 THEN 0 ELSE 101 - i ENDIF)} ->

{j: nat | IF i1 > 100 THEN j = i1 - 10 ELSE j = 91 ENDIF}]):
NOT i > 100 IMPLIES
IF i > 100 THEN v(v(i + 11)) = i - 10 ELSE v(v(i + 11)) = 91 ENDIF;

Figure 3.3: Termination TCC for f91

ackerman: THEORY

BEGIN

m, n: VAR nat

ackmeas(m, n): ordinal =

(IF m = 0 THEN zero

ELSIF n = 0 THEN add(m, add(1, zero, zero), zero)

ELSE add(m, add(1, zero, zero), add(n, zero, zero))

ENDIF)

ack(m, n): RECURSIVE nat =

(IF m = 0 THEN n + 1

ELSIF n = 0 THEN ack(m - 1, 1)

ELSE ack(m - 1, ack(m, n - 1))

ENDIF)

MEASURE ackmeas

END ackerman

Figure 3.4: Theory ackerman

with a number of subtype TCCs). The first termination TCC is
ack_TCC2:
OBLIGATION
(FORALL m, n:
NOT m = 0 AND n = 0 IMPLIES ackmeas(m - 1, 1) < ackmeas(m, n))

and corresponds to the first recursive call of ack in the body of ack. In this occurrence,
it is known that m 6= 0 and n = 0. The remaining expression says that the measure
applied to the arguments of the recursive call to ack is less than the measure applied to
the initial arguments of ack. Note that the < in this expression is over the ordinals,
not the reals.

3.5 Macros

There are some definitions that are convenient to use, but it’s preferable to have them
expanded whenever they are referenced. To some extent this can be accomplished
using auto-rewrites in the prover, but rewriting is restricted. In particular terms

3.6 Inductive and Coinductive Definitions 23

in types or actual parameters are not rewritten; typepred and same-name must be
used. These both require the terms to be given as arguments, making it difficult to
automate proofs.

The MACRO declaration is used to indicate definitions that are expanded at type-
check time. Macro declarations are normal constant declarations, with the MACRO
keyword preceding the type.7 For example, after the declaration
N: MACRO nat = 100

any reference to N is now automatically replaced by 100, including such forms as
below[N].

Macros are not expanded until they have been typechecked. This is because the
name overloading allowed by PVS precludes expanding during parsing. TCCs are
generated before the definition is expanded.

3.6 Inductive and Coinductive Definitions

Inductive definitions [1] are used frequently in mathematics. In general, some rules are
given that generate elements of a set, and the inductively defined set is the smallest
set that contains those elements. The obvious example of an inductive definition is
the natural numbers, where the rules are given by Peano’s axioms, with the induction
scheme ensuring that the natural numbers are the smallest set containing 1 and the
successor of any natural number. Language definitions are another example. Most
logics have a notion of formulas, and these are usually defined inductively.

Paulson [13] notes that this is simply a least fixedpoint with respect to a given
domain of elements and a set of rules, which is well-defined if the rules are mono-
tonic, by the well known Knaster-Tarski theorem. From this perspective, the greatest
fixedpoint also exists and corresponds to coinductive definitions. Inductive and coin-
ductive definitions are similar to recursive definitions, in that they have induction
principles, and both must satisfy additional constraints to guarantee that they are
well defined.

We will describe inductive definitions first, as they are more familiar. The even
integers provide a simple example of an inductive definition:8

even(n: int): INDUCTIVE bool = n = 0 OR even(n - 2) OR even(n + 2)

With this definition, it is easy to prove, for example, that 0 or 1000 are even, simply
by expanding the definition enough times.9 More is needed, however, in proving
general facts, such as if n is even, then n+ 1 is not even. To deal with these, we need
a means of stating that an integer is even iff it is so as a result of this definition. In
PVS, this is accomplished by the automatic creation of two induction schemas, that
may be viewed using the M-x prettyprint-expanded command:

7This is similar to the == form of Ehdm.
8This is an alternative to the more traditional definition of even? in the prelude.
9In the latter case, (apply (repeat (then (expand "even") (flatten) (assert)))) is a

good strategy to use, though it should be used with care since it does not terminate on even
applied to anything other than an even numeral.

24 Declarations

even_weak_induction: AXIOM
FORALL (P: [int -> boolean]):
(FORALL (n: int): n = 0 OR P(n - 2) OR P(n + 2) IMPLIES P(n)) IMPLIES
(FORALL (n: int): even(n) IMPLIES P(n));

even_induction: AXIOM
FORALL (P: [int -> boolean]):
(FORALL (n: int):

n = 0 OR even(n - 2) AND P(n - 2) OR even(n + 2) AND P(n + 2)
IMPLIES P(n))

IMPLIES (FORALL (n: int): even(n) IMPLIES P(n));

The weak induction axiom states that if P is another predicate that satisfies the even

form, then any even number satisfies P. Thus even is the smallest such P. The second
(strong) axiom allows the even predicate to be carried along, which can make proofs
easier. These axioms are used by the rule-induct strategy described in the Prover
Guide [15].

Inductive definitions are predicates, hence must be functions with eventual range
type boolean. For example, in

f1(n,m:int) INDUCTIVE int = n
f2(n,m:int)(x,y:int)(z:int): INDUCTIVE [int,int,int -> bool] =

LAMBDA (a,b,c:int): n = m IMPLIES f2(n,m)(x,y)(z)(a,b,c)

f1 is illegal, while f2 returns a boolean value if applied to enough arguments, hence
is valid.

To be monotonic, every occurrence of the definition within the defining body
must be positive. For this we need to define the parity of an occurrence of a term
in an expression A: If a term occurs in A with a given parity, then the occurrence
retains its parity in A AND B, A OR B, B IMPLIES A, FORALL y:A, EXISTS y:A,
and reverses it in A IMPLIES B and NOT A. Any other occurrence is of unknown
parity.

The parity of the inductive definition in the definition body is checked, and if some
occurrence of the definition is negative, a type error is generated. If some occurrence
is of unknown parity, then a monotonicity TCC is generated. For example, given the
declarations

f: [nat, bool -> bool]
G(n:nat): INDUCTIVE bool =
n = 0 OR f(n, G(n-1))

the monotonicity TCC has the form

(FORALL (P1: [nat -> boolean], P2: [nat -> boolean]):
(FORALL (x: nat): P1(x) IMPLIES P2(x))

IMPLIES
(FORALL (x: nat):

x = 0 OR f(x, P1(x - 1)) IMPLIES x = 0 OR f(x, P2(x - 1))));

3.6 Inductive and Coinductive Definitions 25

Inductive definitions act as constants for the most part, so they may be expanded
or used as rewrite rules in proofs. However, they are not usable as auto-rewrite rules,
as there is no easy way to determine when to stop rewriting.

To provide induction schemes in the most usable form, they are generated as
follows. First, the variables in the definition are partitioned into fixed and non-fixed
variables. For example, in the transitive-reflexive closure
TC(R)(x, y) : INDUCTIVE bool =

R(x, y) OR (EXISTS z: TC(R)(x, z) AND TC(R)(z, y))

R is fixed since every occurrence of TC has R as an argument in exactly the same
position, whereas x and y are not fixed. The induction is then over predicates P that
take the non-fixed variables as arguments. If the inductive definition is defined for
variable V partitioned into fixed variables F , and non-fixed variables N , the general
form of the (weak) induction scheme is

FORALL (F, P):
(FORALL (N):
inductive_body (N)[P/def] IMPLIES P(N))
IMPLIES

(FORALL (N): def (V) IMPLIES P(N))

In the case of TC, this becomes

TC_weak_induction: AXIOM
(FORALL (R: relation, P: [[T, T] -> boolean]):

(FORALL (x: T, y: T):
R(x, y) OR (EXISTS z: (P(x, z) AND P(z, y))) IMPLIES P(x, y))
IMPLIES (FORALL (x: T, y: T): TC(R)(x, y) IMPLIES P(x, y)));

Coinductive definitions have the same form as inductive definitions, but are in-
troduced with the keyword COINDUCTIVE, and generate the greatest fix point, rather
than the least fix point. The monotonicity conditions are the same, but the coinduc-
tion axioms reverse some of the implications. Thus the general form of the (weak)
coinduction scheme is

FORALL (F, P):
(FORALL (N):
P(N) IMPLIES coinductive_body (N)[P/def])
IMPLIES

(FORALL (N): P(N) IMPLIES def (V))

As noted earlier, inductive and coinductive definitions are really fixedpoint def-
initions. For example, the theory in Figure 3.5 shows that an inductive definition
is a least fixedpoint, a coinductive definition is a greatest fixpoint, an inductively
defined set is a subset of a coindutively defined set, and, if the universe contains a
non-wellfounded element, then the coinductively defined set is strictly larger. These
results all build on the definitions in the mucalculus theory of the prelude.

26 Declarations

inductive_fixpoint: THEORY

BEGIN

N: TYPE+

n, m: VAR N

0: N

S: [N -> N]

Sax1: AXIOM 0 /= S(n)

Sax2: AXIOM S(m) = S(n) => m = n

% Assume a non-wellfounded element

nwf_exists: AXIOM EXISTS n: n = S(n)

Nind(n): INDUCTIVE bool = n = 0 OR EXISTS m: n = S(m) & Nind(m)

Ncoind(n): COINDUCTIVE bool = n = 0 OR EXISTS m: n = S(m) & Ncoind(m)

% NN is the predicate transformer corresponding to the (co)inductive defs

NN(p: pred[N])(n): bool = n = 0 OR EXISTS m: n = S(m) & p(m)

% These use the lfp and gfp defs from the prelude mucalculus theory

ind_lfp: FORMULA Nind = lfp(NN)

coind_gfp: FORMULA Ncoind = gfp(NN)

% Repeat Nind_weak_induction, which is proved from lfp_induction

Nind_weak_induction_repeated: FORMULA

FORALL (P: [N -> boolean]):

(FORALL (n): (n = 0 OR (EXISTS m: n = S(m) & P(m))) IMPLIES P(n))

IMPLIES (FORALL (n): Nind(n) IMPLIES P(n));

% Inductive definitions are a subset of coinductive

ind_sub_co: FORMULA Nind(n) => Ncoind(n)

% Because there is a non-wellfounded element, we can show that

% the coinductive set is larger.

co_has_more: FORMULA EXISTS n: Ncoind(n) & NOT Nind(n)

END inductive_fixpoint

Figure 3.5: Inductive definitions and fixpoints

3.7 Formula Declarations

Formula declarations introduce axioms , assumptions , theorems , and obligations . The
identifier associated with the declaration may be referenced in auto-rewrite declara-
tions (see Section 3.11 and in proofs (see the lemma command in the PVS Prover
Guide [15]). The expression that makes up the body of the formula is a boolean
expression. Axioms, assumptions, and obligations are introduced with the keywords
AXIOM, ASSUMPTION, and OBLIGATION, respectively. Axioms may also be introduced
using the keyword POSTULATE. In the prelude postulates are used to indicate axioms
that are provable by the decision procedures, but not from other axioms. Theo-
rems may be introduced with any of the keywords CHALLENGE, CLAIM, CONJECTURE,
COROLLARY, FACT, FORMULA, LAW, LEMMA, PROPOSITION, SUBLEMMA, or THEOREM.

Assumptions are only allowed in assuming clauses (see Section 6.4). Obligations
are generated by the system for TCCs, and cannot be specified by the user. Axioms
are treated specially when a proof is analyzed, in that they are not expected to have an
associated proof. Otherwise they are treated exactly like theorems. All the keywords
associated with theorems have the same semantics, they are there simply to allow for

3.8 Judgements 27

greater diversity in classifying formulas.
Formula declarations may contain free variables, in which case they are equivalent

to the universal closure of the formula.10 In fact, the prover actually uses the universal
closure when it introduces a formula to a proof. Formula declarations are the only
declarations in which free variables are allowed.

3.8 Judgements

The facility for defining predicate subtypes is one of the most useful features provided
by PVS, but it can lead to a lot of redundant TCCs. Judgements11 provide a means for
controlling this by allowing properties of operators on subtypes to be made available
to the typechecker. There are two kinds of judgements available in PVS. The constant
judgement states that a particular constant (or number) has a type more specific than
its declared type. The subtype judgement states that one type is a subtype of another.

3.8.1 Constant Judgements

There are two kinds of constant judgements. The simpler kind states that a constant
or number belongs to a type different than its declared type.12 For example, the
constant judgement declaration
JUDGEMENT c, 17 HAS_TYPE (prime?)

simply states that the constant c and the number 17 are both prime numbers. This
declaration leads to the TCC formulas prime?(c) and prime?(17), but in any context
in which this declaration is visible, the use of c or 17 where a prime is expected will
not generate TCCs. Thus no TCCs are generated for the formula F in

RP: [(prime?), (prime?) -> bool]
F: FORMULA RP(c, 17) IMPLIES RP(17, c)

The second kind of constant judgement is for functions; argument types are pro-
vided and the judgement states that when the function is applied to arguments of
the given types, then the result has the type following the HAS TYPE keyword. Here
is an example that illustrates the need for this kind of judgement:
x, y: VAR real
f(x,y): real = x*x - y*y
n: int = IF f(1,2) > 0 THEN f(4,3) ELSE f(3,2) ENDIF

This leads to two TCCs:
n_TCC1: OBLIGATION
f(1, 2) > 0 IMPLIES
rational_pred(f(4, 3)) AND integer_pred(f(4, 3))

n_TCC2: OBLIGATION
NOT f(1, 2) > 0 IMPLIES
rational_pred(f(3, 2)) AND integer_pred(f(3, 2))

10The universal closure of a formula is obtained by surrounding the formula with a FORALL binding
operator whose bindings are the free variables of the formula. For example, the universal closure of
p(x,y) => q(z) is (FORALL x,y,z: p(x,y) => q(z)) (assuming x, y and z resolve to variables).

11We prefer this spelling, though many spell checkers do not.
12Remember that all numbers are implicitly declared to be of type real.

28 Declarations

The problem here is that although we know that f is closed under the integers,
the typechecker does not. If f is heavily used, dealing with these TCCs becomes
cumbersome. We can try the ad hoc solution of adding new overloaded declarations
for f:
i, j: VAR nat
f(i, j): int = f(i, j)

But now proofs require an extra definition expansion, and such overloading leads to
confusion.13 A more elegant solution is to use a judgement declaration:
f_int_is_int: JUDGEMENT f(i, j: int) HAS TYPE int

This generates the TCC
f_int_is_int: FORALL (x:int, y:int):

rational_pred(f(x, y)) AND integer_pred(f(x, y))
But now the declaration of n given above generates no TCCs, as the typechecker
“knows” that f is closed on the integers. Note that this is different than the simple
judgement
f_int: JUDGEMENT f HAS TYPE [int, int -> int]

In this case, the TCC generated is unprovable:
f_int: OBLIGATION
((FORALL (x: real): rational_pred(x) AND integer_pred(x)) AND
(FORALL (x: real): rational_pred(x) AND integer_pred(x)))
AND
(FORALL (x1: [real, real]):

rational_pred(f(x1)) AND integer_pred(f(x1)));
A warning is generated when simple constant judgements are declared to be of a
function type.14 In addition, this judgement will not help with the declaration n
above; it can only be used in higher-order functions, for example:
F: [[int, int -> int] -> bool]
FF: FORMULA F(f)

The arguments for a function judgement follow the syntax for function declara-
tions; so a curried function may be given multiple judgements:
f(x, y: real)(z: real): real
f_closed: JUDGEMENT f(x, y: nat)(z: int) HAS TYPE int
f2_closed: JUDGEMENT f(x, y: int) HAS TYPE [real -> int]

If a constant judgement declaration specifies a name, it must refer to a unique
constant and its type must be compatible with the type expression following the
HAS TYPE keyword. If it is a number, then its type must be compatible with the
number type.

Constant judgements generally lead to TCCs. If no TCC is generated, then the
judgement is not actually needed, and a warning to this effect is produced. Simple
(non-functional) constant judgements generate TCCs indicating that the constant
belongs to the specified type. Constant function judgements generate TCCs that
reflect closure conditions.

The judgement facility cannot be used to remove all redundant TCCs; the vari-
ables used for arguments must be unique, and full expressions may not be included.
Hence the following are not legal:

13This is one of the motivations for providing the M-x show-expanded-sequent command.
14Earlier versions of PVS simply interpreted this form as a closure condition, but this is less

flexible.

3.8 Judgements 29

x: VAR real
x_times_x_is_nonneg: JUDGEMENT *(x, x) HAS TYPE nonneg_real
c: real
x_times_c_is_even: JUDGEMENT *(x, c) HAS TYPE (even?)

3.8.2 Subtype Judgements

The subtype judgement is used to fill in edges of the subtype graph that otherwise
are unknown to the typechecker. For example, consider the following declarations:
nonzero_real: NONEMPTY_TYPE = {r: real | r /= 0} CONTAINING 1
rational: NONEMPTY_TYPE FROM real
nonneg_rat: NONEMPTY_TYPE = {r: rational | r >= 0} CONTAINING 0
posrat: NONEMPTY_TYPE = {r: nonneg_rat | r > 0} CONTAINING 1
/: [real, nonzero_real -> real]

For r of type real and q of type posrat, the expression r/q leads to the TCC q
/= 0. One solution, if q is a constant, is to use a constant judgement as described
above. But if there are many constants involving the type posrat, this requires a
lot of judgement declarations, and does not help at all for variables or compound
expressions. The subtype judgement solves this by stating that posrat is a subtype
of nzrat. Another subtype judgement states that nzrat is a subtype of nzreal:
JUDGEMENT posrat SUBTYPE_OF nzrat
JUDGEMENT nzrat SUBTYPE_OF nzreal

With these judgements, TCCs will not be generated for any denominator that is of
type posrat. With the (prelude) judgement declarations
nnrat_plus_posrat_is_posrat: JUDGEMENT +(nnx, py) HAS_TYPE posrat
posrat_times_posrat_is_posrat: JUDGEMENT *(px, py) HAS_TYPE posrat

not only are there no TCCs generated for r/q, but none are generated for r/(q +

2), r/((q + 2) * q), etc.
Given a subtype judgement declaration of the form

JUDGEMENT S SUBTYPE_OF T
it is an error if S is already known to be a subtype of T, or if they are not compatible.
Otherwise, T must be of the form {x: ST | p(x)}, where ST is the least compatible
type of S and T, and a TCC will be generated of the form FORALL (x:S): p(x).
Remember that subtyping on functions only works on range types, so the subtype
judgement
JUDGEMENT [nat -> nat] SUBTYPE_OF [int -> int]

leads to the unprovable TCC
FORALL (x1:nat, y1:int): y1 >= 0 AND TRUE

3.8.3 Judgement Processing

When a judgement declaration is typechecked, TCCs are generated as explained above
and the judgement is added to the current context for use in typechecking expressions.
The typechecker typechecks expressions in two passes; in the first pass it simply
collects possible types for subexpressions, and in the second pass it recursively tries to
determine a unique type based on the expected type, and generates TCCs accordingly;
this is where judgements are used. If the expression is a constant (name or number),

30 Declarations

then all non-functional judgements are collected for that constant and used to generate
a minimal TCC relative to the expected type.

If it is an application whose operator is a name, then functional judgements of the
corresponding arity are collected for the operator, and those judgements for which the
application arguments are all known to be of the corresponding judgement argument
types are extracted, and a minimal TCC is generated from these.

In addition to inhibiting the generation of TCCs during typechecking, judgements
are also important to the prover; they are used explicitly in the typepred command,
and implicitly in assert, where the judgement type information is provided to the
ground decision procedures.

Subtype judgements are used in determining when one type is a subtype of an-
other, which is tested frequently during typechecking and proving, including in the
test on argument types described above.

3.9 Conversions

Conversions are functions that the typechecker can insert automatically whenever
there is a type mismatch. They are similar to the implicit coercions for convert-
ing integers to floating point used in many programming languages. PVS provides
some builtin conversions in the prelude, but conversions may also be provided by the
user using conversion declarations. A conversion declaration consists of the keyword
CONVERSION, optionally followed by ‘+’ or ‘-’ and an expression. CONVERSION+ is
equivalent to CONVERSION. The expression must be of type a (subtype of) a function
type, where the domain and range are not compatible. This is because conversions
are only triggered when there would otherwise be a type error, and compatible types
may lead to unproveable TCCs, but not to type errors. Judgements are the proper
way to control the generation of TCCs, see Section 3.8 for details.

3.9.1 Conversion Examples

Here is a simple example.
c: [int -> bool]
CONVERSION c
two: FORMULA 2

Here, since formulas must be of type boolean, the typechecker automatically invokes
the conversion and changes the formula to c(2). This is done internally, and is only
visible to the user on explicit command15 and in the proof checker.

A more complex conversion is illustrated in the following example.
g: [int -> int]
F: [[nat -> int] -> bool]
F_app: FORMULA F(g)

15The M-x prettyprint-expanded command.

3.9 Conversions 31

As this stands, F app is not type-correct, because a function of type [int -> int] is
supplied where one of type [nat -> int] is required, and PVS requires equality on
domain types for function types to be compatible. However it is clear that g naturally
induces a function from nat to int by simply restricting its domain. Such a domain
restriction is achieved by the restrict conversion that is defined in the PVS prelude
as follows:

restrict [T: TYPE, S: TYPE FROM T, R: TYPE]: THEORY
BEGIN
f: VAR [T -> R]
s: VAR S
restrict(f)(s): R = f(s)
CONVERSION restrict
END restrict

The construction S: TYPE FROM T specifies that the actual parameter supplied for S
must be a subtype of the one supplied for T. The specification states that restrict(f)
is a function from S to R whose values agree with f (which is defined on the larger
domain T). Using this approach, a type correct version of F app can be written as
F(restrict[int,nat,int](g)). This provides the convenience of contravariant sub-
typing, but without the inherent complexity (in particular, with contravariant sub-
typing the type of equality must be correct in substituting equals for equals, making
proofs less perspicuous).

It is not so obvious how to expand the domain of a function in the general case, so
this approach does not work automatically in the other direction. It does, however,
work well for the important special case of sets (or, equivalently, predicates): a set
on some type S can be extended naturally to one on a supertype T by assuming that
the members of the type-extended set are just those of the original set. Thus, if
extend(s) is the type-extended version of the original set s, we have extend(s)(x)

= s(x) if x is in the subtype S, and extend(s)(x) = false otherwise. We can say
that false is the “default” value for the type-extended function. Building on this
idea, we arrive at the following specification for a general type-extension function.

extend [T: TYPE, S: TYPE FROM T, R: TYPE, d: R]: THEORY
BEGIN
f: VAR [S -> R]
t: VAR T
extend(f)(t): R = IF S_pred(t) THEN f(t) ELSE d ENDIF
END extend

The function extend(f) has type [T -> R] and is constructed from the function f of
type [S -> R] (where S is a subtype of T) by supplying the default value d whenever
its argument is not in S (S pred is the recognizer predicate for S). Because of the
need to supply the default d, this construction cannot be applied automatically as a
conversion. However, as noted above, false is a natural default for functions with
range type bool (i.e., sets and predicates), and the following theory establishes the
corresponding conversion.

32 Declarations

extend_bool [T: TYPE, S: TYPE FROM T]: THEORY
BEGIN
CONVERSION extend[T, S, bool, false]
END extend_bool

In the presence of this conversion, the type-incorrect formula B app in the following
specification
b: [nat -> bool]
B: [[int -> bool] -> bool]
B_app: FORMULA B(b)

is automatically transformed to B(extend[int,nat,bool,false](b)).

3.9.2 Lambda conversions

Conversions are also useful (for example, in semantic encodings of dynamic or tempo-
ral logics) in “lifting” operations to apply pointwise to sequences over their argument
types. Here is an example, where state is an uninterpreted (nonempty) type, and a
state variable v of type real is represented as a constant of type [state -> real].

th: THEORY
BEGIN
CONVERSION+ K_conversion
state: TYPE+
l: [state -> list[int]]
x: [state -> real]
b: [state -> bool]
bv: VAR [state -> bool]
s: VAR state
box(bv): bool = FORALL s: bv(s)
F1: FORMULA box(x > 1)
F2: FORMULA box(b IMPLIES length(l) + 3 > x)
END th

In this example, the formulas F1 and F2 are not type correct as they stand, but with a
lambda conversion, triggered by the K conversion in the PVS prelude, these formulas
are converted to the forms

F1: FORMULA box(LAMBDA (x1: state): x(x1) > 1)

F2: FORMULA
box(LAMBDA (x3: state):

b(x3) IMPLIES
(LAMBDA (x2: state):

(LAMBDA (x1: state):
(LAMBDA (x: state): length(l(x)))(x1) + 3)
(x2)

> x(x2))(x3))

3.9 Conversions 33

3.9.3 Conversions on Type Constructors

Conversions for record, tuple, and function types may be found componentwise, with-
out having to create the corresponding conversion declaration. Here is an example.

bi: [bool -> int]
ib: [int -> bool]
CONVERSION+ bi, ib
t: [int, int, int] = (true, false, 3)
r: [# a, b: int #] = (# a := true, b := false #)
f: [int, int -> int] = AND

With conversions displayed, this becomes the following.

t: [int, int, int] = (b2n(TRUE), b2n(FALSE), 3)

r: [# a: int, b: int #] =
(LAMBDA (x: [# a: bool, b: bool #]): (# a := bi(x‘a), b := bi(x‘b) #))

((# a := TRUE, b := FALSE #))

f: [int, int -> int] =
(LAMBDA (f: [[bool, bool] -> bool]):

LAMBDA (x: [int, int]): bi(f(ib(x‘1), ib(x‘2))))
(AND)

Note that for f, both a tuple conversion and a function conversion are used.

3.9.4 Conversion Processing

In general, conversions are applied by the typechecker whenever it would otherwise
emit a type error. In the simplest case, if an expression e of type T1 occurs where an
incompatible type T2 is expected, the most recent compatible conversion C is found
in the context and the occurrence of e is replaced by C(e). C is compatible if its type
is [D -> R], where D is compatible with T1 and R is compatible with T2.

Conversions are ordered in the context; if multiple compatible conversions are
available, the most recently declared conversion is used. Hence, in
CONVERSION c1
· · ·
IMPORTING th1, th2
· · ·
CONVERSION c2
· · ·
F: FORMULA 2

For formula F, c2 is the most recent conversion, followed by the conversions in
theory th2, those in th1, and finally c1. Note that the relative order of the constant
declarations (e.g., c1 and c2 above) doesn’t matter, only the CONVERSION declarations.

When conversions are available on either the argument(s) or the operator of an
application, the arguments get precedence.

34 Declarations

For an application e(x1, ..., xn) the possible types of the operator e, and
the arguments xi are determined, and for each operator type [D1, ..., Dn -> R]

and argument type Ti, if Di is not compatible with Ti, conversions of type [Ti ->

Di] are collected. If such conversions are found for every argument that doesn’t
have a compatible type, then those conversions are applied. Otherwise an operator
conversion is looked for.

Note that compositions of conversion are never searched for, as this would slow
down processing too much. If you want to use a composition, include a conversion
declaration for it. Here is an example:

T1, T2, T3: TYPE+
f1: [T1 -> T2]
f2: [T2 -> T3]
x: T1
g: [T3 -> bool]
CONVERSION f1, f2
F1: FORMULA g(x)
CONVERSION f2 o f1
F2: FORMULA g(x)

In this example, F1 leads to a type error, but when we make the composition a
conversion, the same expression in F2 applies the conversion rather than give a type
error.

3.9.5 Conversion Control

As stated above, conversions are only applied when typechecking otherwise fails. In
some cases, a conversion can allow a specification to typecheck, but the meaning is
different than what was intended. This is most likely for the K conversion, which
was introduced when the mucalculus theory was added to the prelude in support
of the model checker. When a conversion is applied that fact is noted as a message,
and may be viewed using the show-theory-messages command. However, these
messages are easily overlooked, so instead PVS allows finer control over conversions.

Thus in addition to the CONVERSION form, the CONVERSION- form is available
allowing conversions to be turned off. For uniformity, the CONVERSION+ form is also
available as an alias for CONVERSION. CONVERSION- disables conversions.

The following theory illustrates the idea:

t1: THEORY
BEGIN
c: [int -> bool]
CONVERSION+ c
f1: FORMULA 3
CONVERSION- c
f2: FORMULA 3

END t1

3.10 Library Declarations 35

Here f2 leads to a type error.
Another example is provided by the definition of the CTL temporal operators in

the prelude theory ctlops, which are surrounded by CONVERSION+ and CONVERSION-

declarations that first enable the K conversion then disable it at the end of the
theory. All other conversions declared in the prelude remain enabled. They may be
disabled within any theory by using the CONVERSION- form.

When theories containing conversion declarations are imported, the conversions
are imported as well. Thus if t2 enables the c declaration without subsequently
disabling it, then IMPORTING t1, t2 would enable the conversion, but IMPORTING

t2, t1 would leave it disabled.
Conversion declarations may be generic or instantiated. This allows, for example,

enabling the generic form of a conversion while disabling particular instances.

3.10 Library Declarations

Library declarations are used to introduce a new PVS context into a specification.
Thus a specification may be developed in one context, and used in many other con-
texts. This provides more flexibility, at the cost of less portability. Any PVS context
other than the current one may be considered a library. An example of a library
declaration is
lib: LIBRARY = "~/pvs/protocols"

When encountered, the system verifies that the directory specified within the quo-
tation marks exists, and that it has a PVS context file (.pvscontext). The library
declaration is made use of by including the library id in an importing name:
IMPORTING lib@sliding_window[n]

This has the effect of bringing in the sliding window theory, exactly as if the theory
belonged to the current context.

There are several libraries distributed with PVS, in the directory lib. It is not
necessary to give a library declaration for libraries in this directory, as it will be
automatically searched for library importings. Also, as described in the PVS System
Guide, any libraries found on the environment variable PVS LIBRARY PATH do not
need library declarations. For example, to import the finite sets library over the
natural numbers:
IMPORTING finite sets@finite sets[nat]

An alternative approach (described in the PVS User Guide[10]) is to use the M-x

load-prelude-library, which augments the PVS prelude with the the theories from
a given context.

3.11 Auto-rewrite Declarations

One of the problems with writing useful theories or libraries is that there is no easy way
to convey how the theory is to be used, other than in comments or documentation. In
particular, the specifier of a theory usually knows which lemmas should always be used
as rewrites, and which should never appear as rewrites. Auto-rewrite declarations

36 Declarations

allow for both forms of control. Those that should always be used as rewrites are
declared with the AUTO REWRITE+ or AUTO REWRITE keyword, and those that should
not are declared with AUTO REWRITE-. These will be referred to as auto-rewrites and
stop-auto-rewrites below.

When a proof is initiated for a given formula, all of the auto-rewrite names in
the current context that haven’t subsequently been removed by stop-auto-rewrite
declarations are collected and added to the initial proof state. The stop-auto-rewrite
declaration, in addition to removing auto-rewrite names, also affects the following
commands described in the Prover manual.

• auto-rewrite-theory,
• auto-rewrite-theories,
• auto-rewrite-theory-with-importings,
• simplify-with-rewrites,
• autorewrite-defs,
• install-rewrites,
• auto-rewrite-explicit,
• grind,
• inductand-simplify,
• measure-induct-and-simplify, and
• model-check

These commands collect all definitions and formulas except those that appear in
AUTO REWRITE- declarations. Thus suppose a theory T contains the lemmas lem1,
lem2, and lem3 and the declarations

AUTO_REWRITE+ lem1

AUTO_REWRITE- lem3

Then in proving a formula of a theory that imports T, lem1 is initially an auto-rewrite,
and the command (auto-rewrite-theory "T") will additionally install lem2. To
auto-rewrite with lem3, simply use (auto-rewrite "lem3"). To exclude lem1, use
(stop-auto-rewrite "lem1") or (auto-rewrite-theory "T" :exclude "lem1").

The autorewrites theory shows a simple example.

autorewrites: THEORY
BEGIN
AUTO_REWRITE+ zero_times3
a, b: real
f1: FORMULA a * b = 0 AND a /= 0 IMPLIES b = 0
AUTO_REWRITE- zero_times3
f2: FORMULA a * b = 0 AND a /= 0 IMPLIES b = 0
END autorewrites

3.11 Auto-rewrite Declarations 37

Here f1 may be proved using only assert, but f2 requires more.
Rewrite names may have suffixes, for example, foo! or foo!!. Without the suffix,

the rewrite is lazy, meaning that the rewrite will only take place if conditions and
TCCs simplify to true. A condition in this case is a top-level IF or CASES expression.
With a single exclamation point the auto-rewrite is eager, in which case the conditions
are irrelevant, though if it is a function definition it must have all arguments sup-
plied. With two exclamation points it is a macro rewrite, and terms will be rewritten
even if not all arguments are provided. See the prover guide for more details; the
notation is derived from the prover commands auto-rewrite, auto-rewrite!, and
auto-rewrite!!.

In addition, a rewrite name may be disambiguated by stating that it is a formula,
or giving its type if it is a constant. Without this any definition or lemma in the
context with the same name will be installed as an auto-rewrite.

In order to be more uniform, these new forms of name are also available for the
auto-rewrite prover commands. Thus the command

(auto-rewrite "A" ("B" "-2") "C" (("1" "D")))

may now be given instead as

(auto-rewrite "A" "B!" "-2!" "C" "1!!" "D!!")

The older form is still allowed, but is deprecated, and may not be mixed with the new
form. Notice that in the auto-rewrite commands formula numbers may also be used,
and these may be followed by exclamation points, but not by a formula keyword or
type.

38 Declarations

Chapter 4

Types

PVS specifications are strongly typed, meaning that every expression has an asso-
ciated type (although it need not be unique, more on this later). The PVS type
system is based on structural equivalence instead of name equivalence, so types are
closely related to sets, in that two types are equal iff they have the same elements.
Section 3.1 describes the introduction of type names, which are the simplest type
expressions. More complex type expressions are built from these using type construc-
tors . There are type constructors for subtypes , function types , tuple types , cotuple
types , and record types . Function, record, and tuple types may also be dependent . A
form of type application is provided that makes it more convenient to specify param-
eterized subtypes. There are also provisions for creating abstract datatypes, described
in Chapter 8.

Type expressions occur throughout a specification; in particular, they may appear
in theory parameters, type declarations, variable declarations, constant declarations,
recursive and inductive definitions, conversions, and judgements. In addition, they
may appear in certain expressions (coercions and local bindings, see pages 56 and 50,
respectively), and as actual parameters in names (page 71). In the many examples
which follow, type expressions will be presented in the context of type declarations;
but it must be remembered that they can appear in any of the above places.

4.1 Subtypes

Any collection of elements of a given type itself forms a type, called a subtype. The
type from which the elements are taken is called the supertype. The elements which
form the subtype are determined by a subtype predicate on the supertype.

Subtypes in PVS provide much of the expressive power of the language, at the
cost of making typechecking undecidable. There are two forms of subtypes. The first
is similar to the notation used to define a set:
t: TYPE = {x: s | p(x)}

39

40 Types

TypeExpr ::= Name
| EnumerationType
| Subtype
| TypeApplication
| FunctionType
| TupleType
| CotupleType
| RecordType

EnumerationType ::= { IdOps }

Subtype ::= { SetBindings | Expr }
| (Expr)

TypeApplication ::= Name Arguments

FunctionType ::= [FUNCTION | ARRAY]
[– [IdOp :] TypeExpr ˝ +

, -> TypeExpr]

TupleType ::= [– [IdOp :] TypeExpr ˝ +
,]

CotupleType ::= [– [IdOp :] TypeExpr ˝ +
+]

RecordType ::= [# FieldDecls +
, #]

FieldDecls ::= Ids : TypeExpr

Figure 4.1: Type Expression Syntax

where p is a predicate on the type s.1 This has the usual set-theoretical meaning, since
types in PVS are modeled as sets. Subtypes may also be presented in an abbreviated
form, by giving a predicate surrounded by parentheses:
t: TYPE = (p)

This is equivalent to the form above.
Note that if the predicate p is everywhere false, then the type is empty. PVS

supports empty types, and the term type is used to refer to any type, including the
empty type. This is discussed in Section 3.1 (page 12).

Subtypes tend to make specifications more succinct and easier to read. For exam-
ple, in a specification such as
FORALL (i:int):
(i >= 0 IMPLIES (EXISTS (j:int): j >= 0 AND j > i))

it is much more difficult to see what is being stated than in the equivalent
FORALL (i:nat): (EXISTS (j:nat): j > i))

where nat is defined in the prelude as
naturalnumber: NONEMPTY TYPE = {i:integer | i >= 0} CONTAINING 0
nat: NONEMPTY TYPE = naturalnumber

Subtype constructors consist of a supertype and a subtype predicate on the super-
type. The primary property of a subtype is that any element which belongs to the

1If x has been previously declared as a variable of type s, then the “: s” may be omitted.

4.2 Function Types 41

subtype automatically belongs to the supertype. In addition, functions defined on a
type automatically apply to the subtype.

There are two type-correctness conditions (TCCs) associated with subtypes. The
first concerns empty types as described in section 3.1.5. The second TCC associated
with subtypes is the subtype TCC,, which comes about from the use of operations
defined on subtypes that are applied to elements of the supertype. By this means
partial functions may be handled directly, without recourse to a partial term logic or
some form of multi-valued logic. For instance, division in PVS is a total function,
with signature [real, nonzero real -> real]. So given the formula
div_form: FORMULA (FORALL (x, y: int):

x /= y IMPLIES (x - y)/(y - x) = -1)
the denominator is of type integer, but the signature for / demands a nonzero real.
The typechecker thus generates a subtype TCC whose conclusion is (y - x) /= 0.
The premises of the TCC are obtained from the expressions context—the conditions
which lead to the / operator—in this case x /= y.2 The TCC is then

div_form_TCC1: OBLIGATION
(FORALL (x,y: int): x /= y IMPLIES (y - x) /= 0)

which is easily discharged by the prover. In general, the context of an expression is
obtained from expressions involving IF-THEN-ELSE, AND, OR, and IMPLIES by trans-
lating to the IF-THEN-ELSE form. Specifically,

Expression Context for e
IF a THEN e ELSE c ENDIF a
IF a THEN b ELSE e ENDIF NOT a
a AND e a
a OR e NOT a
a IMPLIES e a

Note that only these operators are treated this way; if, for example, IMPLIES is
overloaded it will not include the left-hand side in the context for typechecking the
right-hand side. The TCCs generated from the context of expression involving a
subtype are sufficient, but not necessary conditions that ensure that the value of the
expression does not depend on the value of functions applied outside their domain.

Subtype TCCs may occur anywhere there is a mismatch between the type of a
term and the use of it, not just in function applications. For example, the following
use of record types leads to an unprovable subtype TCC.

r: [# a, b: nzint #] = (# a := 0, b := 0 #)

4.2 Function Types

Function types have three equivalent forms:

• [t1, ..., tn -> t]

2As described in the Formal Semantics [11], the context containing declarations is extended to
allow boolean expressions.

42 Types

• FUNCTION[t1, ..., tn -> t]

• ARRAY[t1, ..., tn -> t]

where each ti is a type expression. An element of this type is simply a function whose
domain is the sequence of types t1, . . . , tn, and whose range is t. A function type is
empty if the range is empty and the domain is not. There is no difference in meaning
between these three forms; they are provided to support different intensional uses of
the type, and may suggest how to handle the given type when an implementation is
created for the specification.

The two forms pred[t] and setof[t] are both provided in the prelude as short-
hand for [t -> bool]. There is no difference in semantics, as sets in PVS are rep-
resented as predicates. The different keywords are provided to support different
intentions; pred focuses on properties while setof tends to emphasize elements.

A function type [t1,...,tn -> t] is a subtype of [s1,...,sm -> s] iff s is
a subtype of t, n = m, and si = ti for 1 ≤ i ≤ n. This leads to subtype TCCs
(called domain mismatch TCCs) that state the equivalence of the domain types. For
example, given
p, q: pred[int]
f: [{x: int | p(x)} -> int]
g: [{x: int | q(x)} -> int]
h: [int -> int]
eq1: FORMULA f = g
eq2: FORMULA f = h

The following TCCs are generated:
eq1_TCC1: OBLIGATION
(FORALL (x1: {x : int | q(x)}, y1 : {x : int | p(x)}) :

q(y1) AND p(x1))

eq2_TCC1: OBLIGATION
(FORALL (x1: int, y1 : {x : int | p(x)}) :

TRUE AND p(x1))

Section 3.9.1 on page 30 explains how the restrict conversion may be automat-
ically applied in some cases to eliminate the production of these TCCs.

4.3 Tuple Types

Tuple types (also called product types) have the form [t1, ..., tn], where the
ti are type expressions. Note that the 0-ary tuple type is not allowed. Elements
of this type are tuples whose components are elements of the corresponding type.
For example, (1, TRUE, (LAMBDA (x:int): x + 1)) is an expression of type [int,
bool, [int -> int]]. Order is important. Associated with every n-tuple type
is a set of projection functions: ‘1, ‘2, . . . , (or proj 1, proj 2, . . .) where the
ith projection is of type [[t1, ..., tn] -> ti]. A tuple type is empty if any of
its component types is empty. Function type domains and tuple types are closely

4.4 Record Types 43

related, as the types [t1,..., tn -> t] and [[t1,..., tn] -> t] are equivalent;
see Section 5.9 for more details.

4.4 Record Types

Record types are of the form [# a1:t1, ..., an:tn #]. The ai are called record
accessors or fields and the ti are types. Record types are similar to tuple types,
except that the order is unimportant and accessors are used instead of projections.
Record types are empty if any of the component types is empty.

Note that the fields of a record type must be applied, they are not understood as
functions. See Section 5.11.

4.5 Dependent types

Function, tuple, and record types may be dependent; in other words, some of the
type components may depend on earlier components. Here are some examples:
rem: [nat, d: {n: nat | n /= 0} -> {r: nat | r < d}]
pfn: [d:pred[dom], [(d) -> ran]]
stack: [# size: nat, elements: [{n:nat | n < size} -> t] #]

The declaration for rem indicates explicitly the range of the remainder function, which
depends on the second argument. Function types may also have dependencies within
the domain types; e.g., the second domain type may depend on the first. Note that
for function and tuple dependent types, local identifiers need to be given only for
those types on which later types depend.

The tuple type pfn encodes partial functions as pairs consisting of a predicate on
the domain type and a function from the subtype defined by that predicate to the
range ran. If the second component were given instead as a function of type [dom
-> ran], then equality no longer works as intended. For example, the absolute value
function abs and the identity function id are the same on the domain nat, so we
would like to have
((LAMBDA (x:int):x >= 0),abs) = ((LAMBDA (x:int):x >= 0),id)

but without the dependency this would be equivalent to abs = id.
stack encodes a stack as a pair consisting of a size and an array mapping initial

segments of the natural numbers to t. This is similar to the pfn example—in fact, if
we were willing to use a tuple instead of a record encoding, stack could be declared
as an instance of the type of pfn.

Another example, presented in [4] as a “challenge” to specification languages with-
out partial functions, is easily handled with dependent types as shown below.
subp(i:int,(j:int | i >= j)): RECURSIVE int =

(IF (i=j) THEN 0 ELSE (subp(i, j+1)+1) ENDIF)
MEASURE i - j

However, some formulas that are valid with partial functions are not even well-formed
in PVS:
subp_lemma: LEMMA subp(i, 0) = i OR subp(0, i) = i

44 Types

This generates unprovable TCCs. In practice this is rarely a problem.

4.6 Cotuple Types

Cotuple types (also called coproduct or sum types) provide a way to form the disjoint
union of types. The syntax is similar to that for tuple types, but with ‘+’ in place
of ‘,’, so have the form [t1 + ...+ tn]. Elements of this type are essentially pairs
consisting of an index and a value for the type corresponding to the index. In PVS the
syntax for this is IN i(e), where e is an expression of type ti. For example, IN 2(3)

is an expression of type [bool + int + [int -> int]], or any other cotuple type
whose second component type contains 3. A cotuple type is empty iff all its component
types are empty.

Chapter 5

Expressions

The PVS language offers the usual panoply of expression constructs, including logi-
cal and arithmetic operators, quantifiers, lambda abstractions, function application,
tuples, a polymorphic IF-THEN-ELSE, and function and record overrides. Expres-
sions may appear in the body of a formula or constant declaration, as the predicate
of a subtype, or as an actual parameter of a theory instance. The syntax for PVS
expressions is shown in Figures 5.1 and 5.2.

The language has a number of predefined operators (although not all of these
have a predefined meaning). These are given in Figure 5.3 below, along with their
relative precedence from lowest to highest. Most of these operators are described
in the following sections. IN is a part of LET expressions, WITH goes with override
expressions, and the double colon (::) is for coercion expressions. The o operator is
defined in the prelude as the function composition operator. Note that most operators
may be overloaded, see Chapter 2 (page 7) for details.

Many of the operators may be overloaded by the user and retain their precedence
and form (e.g., infix). All of the infix operators may also be given in prefix form;
x + 1 and +(x,1) are semantically equivalent. Care must be taken in redefining
these operators—if the preceding declaration ends in an expression there could be an
ambiguity. To handle this situation the language allows declarations to be terminated
with a ’;’. For example,
AND: [state, state -> state] = (LAMBDA a,b: (LAMBDA t: a(t) AND b(t)));
OR: [state, state -> state] = (LAMBDA a,b: (LAMBDA t: a(t) OR b(t)));

without the semicolon the second declaration would be seen as an infix OR and the
result would be a parse error.

Another common mistake when overloading operators with predefined meanings
is the assumption that overloading, for example, IMPLIES automatically provides an
overloading for =>. This is not the case—they are distinct operators (which happen
to have the same meaning by default) and not syntactic sugar.

45

46 Expressions

Expr ::= Number
| String
| Name
| Id ! Number
| Expr Arguments
| Expr Binop Expr
| Unaryop Expr
| Expr ‘ –Id | Number ˝
| (Expr +

,)
| (: Expr ∗

, :)
| [| Expr ∗

, |]
| (| Expr ∗

, |)
| {| Expr ∗

, |}
| (# Assignment +

, #)
| Expr :: TypeExpr
| IfExpr
| BindingExpr
| { SetBindings | Expr }
| LET LetBinding +

, IN Expr
| Expr WHERE LetBinding +

,
| Expr WITH [Assignment +

,]
| CASES Expr OF Selection +

, [ELSE Expr] ENDCASES
| COND {Expr -> Expr } +

, [, ELSE -> Expr] ENDCOND
| TableExpr

Figure 5.1: Expression syntax

5.1 Boolean Expressions

The Boolean expressions include the constants TRUE and FALSE, the unary operator
NOT, and the binary operators AND (also written &), OR, IMPLIES (=>), WHEN, and
IFF (<=>). The declarations for these are in the booleans prelude theory. All of
these have their standard meaning, except for WHEN, which is the converse of IMPLIES
(i.e., A WHEN B ≡ B IMPLIES A).

Equality (=) and disequality (/=) are declared in the prelude theories equalities
and notequal. They are both polymorphic, the type depending on the types of
the left- and right-hand sides. If the types are compatible, meaning that there is
a common supertype, then the (dis)equality is of the greatest common supertype.
Otherwise it is a type error. For example,
S,T: TYPE
s: VAR S
t: VAR T
eq1: FORMULA s = t
i: VAR {x: int | x < 10}
j: VAR {x: int | x > 100}
eq2: FORMULA i = j

5.1 Boolean Expressions 47

IfExpr ::= IF Expr THEN Expr
{ ELSIF Expr THEN Expr } ∗ ELSE Expr ENDIF

BindingExpr ::= BindingOp LambdaBindings : Expr

BindingOp ::= LAMBDA | FORALL | EXISTS | { IdOp ! }

LambdaBindings ::= LambdaBinding [[,] LambdaBindings]

LambdaBinding ::= IdOp | Bindings

SetBindings ::= SetBinding [[,] SetBindings]

SetBinding ::= {IdOp [: TypeExpr] } | Bindings

Assignment ::= AssignArgs { := | |-> } Expr

AssignArgs ::= Id [! Number]
| Number
| AssignArg +

AssignArg ::= (Expr +
,)

| ‘ Id
| ‘ Number

Selection ::= IdOp [(IdOps)] : Expr

TableExpr ::= TABLE [Expr] [, Expr]
[ColHeading]
TableEntry + ENDTABLE

ColHeading ::= |[Expr { | {Expr | ELSE } } +]|

TableEntry ::= { | [Expr | ELSE] } + ||

LetBinding ::= {LetBind | (LetBind +
,) } = Expr

LetBind ::= IdOp Bindings ∗ [: TypeExpr]

Arguments ::= (Expr +
,)

Figure 5.2: Expression syntax (continued)

eq1 will cause a type error—remember that S and T are assumed to be disjoint. eq2
is perfectly typesafe because they have a common supertype int even though the
subtypes have no elements in common; the equality simply has the value FALSE.

When the equality is between terms of type bool, the semantics are the same as
for IFF. There is a pragmatic difference in the way the PVS prover processes these
operators. Equalities may be used for rewriting, which makes for efficient proofs but
is incomplete, i.e., the prover may fail to find the proof of a true formula. On the
other hand the IFF form is complete, but may lead to a large number of cases. When

48 Expressions

Operators Associativity
FORALL, EXISTS, LAMBDA, IN None
| Left
|-, |= Right
IFF, <=> Right
IMPLIES, =>, WHEN Right
OR, \/, XOR, ORELSE Right
AND, &, &&, /\, ANDTHEN Right
NOT, ~ None
=, /=, ==, <, <=, >, >=, <<, >>, <<=, >>=, <|, |> Left
WITH Left
WHERE Left
@, # Left
@@, ##, || Left
+, -, ++, Left
, /, **, // Left
- None
o Left
:, ::, HAS TYPE Left
[], <> None
^, ^^ Left
‘ Left

Figure 5.3: Precedence Table

in doubt, use equality as the prover provides commands that turn an equality into an
IFF.

5.2 IF-THEN-ELSE Expressions

The IF-THEN-ELSE expression IF cond THEN expr1 ELSE expr2 ENDIF is polymorphic;
its type is the common type of expr1 and expr2 . The cond must be of type boolean.
Note that the ELSE part is not optional as this is an expression, not an operational
statement. The declaration for IF is in the if def prelude theory. IF-THEN-ELSE

may be redeclared by the user in the same way as AND, OR, etc. Note that only IF

is explicitly redeclared, the THEN and ELSE are implicit.
Any number of ELSIF clauses may be present; they are translated into nested

IF-THEN-ELSE expressions. Thus the expression
IF A THEN B
ELSIF C THEN D
ELSE E
ENDIF

translates to

5.3 Numeric Expressions 49

IF A THEN B
ELSE (IF C THEN D

ELSE E
ENDIF)

ENDIF

5.3 Numeric Expressions

The numeric expressions include the numerals (0, 1, 2, . . .), the unary operator -,
and the binary infix operators ^, +, -, *, and /. The numerals are all of type real.
The typechecker has implicit judgements on numbers; 0 is known to be real, rat, int
and nat; all others are known to be non zero and greater than zero. The relational
operators on numeric types are <, <=, >, and >=. The numeric operators and axioms
are all defined in the prelude. As with the boolean operators, all of these operators
may be defined on new types and retain their original precedences.

The numerals may also be treated as names, and overloaded. This is particularly
useful for defining algebraic structures such as groups and rings, where it is natural
to overload ‘0’ and ‘1’. Note that such use may include actual parameters, just as for
names. Thus groups[int].0 or 0[int] might refer to the group zero instantiated
with the integer carrier set.

5.4 Characters and String Expressions

String expressions are expressions enclosed in double quotes ‘"’, for example,
"This is a string"

Strings consist of eight bit ASCII characters. To include control characters or char-
acters above the usual seven bits, use a back slash ‘\’, as described in the following
table.

\a ^G (BEL)
\b ^H (backspace)
\f ^L (form feed)
\n ^J (new line)
\r ^M (carriage return)
\t ^I (horizontal tab)
\v ^K (vertical tab)
\" double quote
\\ backslash
\xNN byte with hexadecimal value NN (2 digits)
\NNN byte with decimal value NNN (3 digits)
\0NNN byte with octal value NNN (3 digits)

Strings are finite sequences of characters, which in turn are represented by a
datatype.

50 Expressions

character: DATATYPE
BEGIN
char(code:below[256]):char?
END character

When a string is parsed, it is internally converted to a conversion of a list of characters
to a finite sequence. The following lemm is thus trivially true, because both sides are
actually the same term.
string_rep: LEMMA
"foo" = list2finseq(cons(char(102),

cons(char(111),
cons(char(111), null))))

Note that there is no special notation for characters; this is because the extract1
conversion will automatically convert a string of length one to a character. Note also
that because of the finseq appl conversion, a specific character may be extracted
from a string simply by applying it. For example the following will typecheck
f: character = "f"
char_test: LEMMA "foo"(0) = f

5.5 Applications

Function application is specified as in ordinary mathematics; thus the application of
function f to expression x is denoted f(x). Those operator symbols that are binary
functions, and their applications, may be written in prefix or the usual infix notation.
For example, (3 + 5) = (2 * 4) may be written as =(+(3,5), *(2,4)).

PVS supports higher-order types, so that functions may yield functions as values or
be curried. For example, given f of type [int -> [int, int -> int]], f(0)(2,3)
yields an int.

If the application involves a dependent function type then the result type of the
application is substituted for accordingly. For example,
f: [a:int, b:{x:int | a < x} -> {y:int | a < y & y <= b}]

the application f(2,3) is of type {y:int | 2 < y & y <= 3}. This application will
also lead to the subtype TCC 2 < 3.

Application and tuple expressions have a special relation, due to the type equiv-
alence of [t1,...,tn -> t] and [[t1,...,tn] -> t], see Section 5.9 for details.

5.6 Binding Expressions

The binding expressions are those which create a local scope for variables, including
the quantified expressions and λ-expressions. Binding expressions consist of an opera-
tor, a list of bindings, and an expression. The operator is one of the keywords FORALL,
EXISTS, or LAMBDA.1 The bindings specify the variables bound by the operator; each
variable has an id and may also include a type or a constraint. Here is a contrived
example:

1Set expressions are also binding expressions; see Section 5.8 (page 52).

5.7 LET and WHERE Expressions 51

x,y,z,d,e: VAR real
ex1: AXIOM FORALL x,y,z: (x + y) + z = x + (y + z)
ex2: AXIOM FORALL (x,y,z: nat): x * (y + z) = (x * y) + (x * z)
ex3: AXIOM FORALL (n: num | n /= 0): EXISTS (x | x /= 0): x = 1/n

In ex1, variables x, y, and z are all of type real. In ex2 these same variables are of
type nat, shadowing the global declarations. ex3 illustrates the use of constraints;
this is equivalent to the declaration
ex3: AXIOM FORALL (n: {n: num | n /= 0}):

EXISTS (x: {x | x /= 0}): x = 1/n

Quantified expressions are introduced with the keywords FORALL and EXISTS.
These expressions are of type boolean.

Lambda expressions denote unnamed functions. For example, the function which
adds 3 to an integer may be written

(LAMBDA (x: int): x + 3)

The type of this expression is the function type [int -> numfield].2 In addition,
when the range is bool, a lambda expression may be represented as a set expression;
see Section 5.8.

All of the binding expressions may involve dependent types in the bindings, e.g.,
FORALL (x: int), (y: {z: int | x < z}): p(x,y)

Note that in the instantiation of such an expression during a proof will generally lead
to a subtype TCC. For example, substituting e1 for x and e2 for y will lead to the
TCC e1 < e2.3

Constant names may be treated as binding expressions by using a ! suffix. For
example,
foo! (x : int) : e
is equivalent to
foo(LAMBDA (x : int) : e)

5.7 LET and WHERE Expressions

LET and WHERE expressions are provided for convenience, making some forms easier
to read. Both of these forms provide local bindings for variables that may then be
referenced in the body of the expression, thus reducing redundancy and allowing
names to be provided for common subterms. Here are two examples:
LET x:int = 2, y:int = x * x IN x + y
x + y WHERE x:int = 2, y:int = x * x

The value of each of these expressions is 6.
LET and WHERE expressions are internally translated to applications of lambda

expressions; in this case both expressions translate to
(LAMBDA (x:int) : (LAMBDA (y:int) : x + y)(x * x))(2)

2numfield sits between number and real, and is where the field operators are introduced. See
Section prelude-numbers.

3Such TCCs may never be seen, as they tend to be proved automatically during a proof; more
complicated examples may be given, for which the prover would need help from the user. In addition,
a false TCC can show up, e.g., substituting 2 for x and 1 for y. This means that the corresponding
expression is not type correct.

52 Expressions

These translations should be kept in mind when the semantics of these expressions is
in question.

The type declaration is optional, so the above could be written as
LET x = 2, y = x * x IN x + y
x + y WHERE x = 2, y = x * x

In this case the typechecking of these expressions depends on whether x and/or y

have been previously declared as variables. If they have, then those delarations are
used to determine the type. Otherwise, the right-hand side of the = is typechecked,
and if it is unambiguous is used to determine the type of the variable. This is one way
in which these expressions differ from their translation. It is usually better to either
reference a variable or give the type, as the typechecker uses the “natural” type of
the expression as the type of the variable, which can lead to extra TCCs.

The LET expression has a limited form of pattern matching over tuples. An ex-
ample is
p: VAR [int, int]
+(p): int = LET (m, n) = p IN m + n

which is shorter than the equivalent
p: VAR [int, int]
+(p): int = LET m = p‘1, n = p‘2 IN m + n

5.8 Set Expressions

In PVS, sets of elements of a type t are represented as predicates, i.e., functions from
t to bool. The type of a set may be given as [t -> bool], pred[t], or setof[t],
which are all type equivalent.4 The choice depends wholly on the intended use of
the type. Similarly, a set may be given in the form (LAMBDA (x: t): p(x)) or {x:

t | p(x)}; these are equivalent expressions.5 Note that the latter form may also
represent a type—this usually causes no confusion as the context generally makes it
clear which is expected. The usual functions and properties of sets are provided in
the prelude theory sets.

5.9 Tuple Expressions

A tuple expression of the type [t1,...,tn] has the form (e1,...,en). For example,
(2, TRUE, (LAMBDA x: x + 1)) is of type [nat, bool, [nat -> nat]]. 0-tuples
are not allowed, and 1-tuples are treated simply as parenthesized expressions. The
following relation holds between function types and tuple types:
[[t1,...,tn] -> t] ≡ [t1,...,tn -> t]

This equivalence is most important in theory parameters; it allows one theory to
take the place of many. For example the functions theory from the prelude may be

4The prelude theory defined types also defines PRED, predicate, PREDICATE, and SETOF as
alternate equivalents.

5In fact, internally they are represented by the same abstract syntax, they simply print differently.

5.10 Projection Expressions 53

instantiated by the reference injective?[[int,int,int],int]. Applications of an
element f of this type include f(1,2,3), f((1,2,3)), and f(e), where e is of type
[int,int,int].

5.10 Projection Expressions

The components of an expression whose type is a tuple can be accessed using the
projection operators ‘1, ‘2, . . . or PROJ 1, PROJ 2, The former are preferred. Like
reserved words, projection expressions are case insensitive and may not be redeclared.
For the most part, projection expressions are analogous to field accessors for record
types. For example,
t: [int, bool, [int -> int]]
ft: FORMULA t‘2 AND t‘1 > t‘3(0)
ft_deprecated: FORMULA PROJ_2(t) AND PROJ_1(t) > (PROJ_3(t))(0)

Projection expressions may be used without an argument as long as the context
determines the tuple type involved. For example, in the following it is obvious what
tuple type is involved.
F: [[[int, bool, [int -> int]] -> bool] -> bool]
FP: FORMULA F(PROJ_2)

Note that the PROJ keyword must be used in such cases, as, e.g., ‘2 is not an ex-
pression. In the following example we see that the context does not provide enough
information.
PP: FORMULA PROJ_2 = PROJ_2

To deal with such situations, the syntax for projections has been extended to allow
the tuple type to be provided.
PP: FORMULA PROJ_2[[int, bool, [int -> int]]] = PROJ_2

In this case only one of the operators needs to be annotated. This looks like a use of
actual parameters, but it is not, as the PROJ is not a name, and does not belong to a
theory.

5.11 Record Expressions

Record expressions are of the form (# a1 := e1, ..., an := en #), which has type
[# a1: t1, ..., an: tn #], where each ei is of type ti. Partial record expressions
are not allowed; all fields must be given. If it is desired to give a partial record, declare
an uninterpreted constant or variable of the record type, and use override expressions
to specify the given record at the fields of interest. For example,
rc: [# a, b : int #]
re: [# a, b : int #] = rc WITH [‘a := 0]

The type of a record expression is determined by the type of its components.
Thus (# a := 3, b := 2 #) is of type [# a, b: real #]. This means that a
record expression is never of a dependent record type directly, though it may be used
where a dependent record is expected, and TCCs may be generated as a result. For
example,
R: TYPE = [# a: int, b: {x: int | x < a} #]
r: R = (# a := 3, b := 4 #)

54 Expressions

leads to the (unprovable) TCC 4 < 3.
Record expressions may be introduced without introducing the record type first,

and the type of a record expression is determined by its components, independently of
any previously declared record type. For this reason record types do not automatically
generate associated accessor functions.

5.12 Record Accessors

The components of an expression of a record type are accessed using the corresponding
field name. There are two forms of access. For example if r is of type [# x, y:

real #], the x-component may be accessed using either r‘x or x(r). The first form
is preferred as there is less chance for ambiguity.

As noted above, accessors are not stand-alone functions. However, you can define
your own functions to provide this capability, and even use the same name. For
example:
point: TYPE = [# x, y: real #]
x(p:point): real = p‘x
y(p:point): real = p‘y

Now x and y may be provided wherever a function is expected. Note that this means
that a subsequent expression of the form x(p) could be ambiguous, but the record
field accessor is always preferred, so in practice such ambiguities don’t arise.

5.13 Cotuple Expressions

Elements of cotuple types [t1 + ...+ tn] are constructed with the injection opera-
tors IN i of type [ti -> [t1 + ...+ tn]]. Thus if e is of type ti, IN i(e) is of the
cotuple type. If x is an element of a cotuple type, IN? i(x) is a boolean that tests if
x belongs to the ith component, and if it does, OUT i(x) returns the associated value
of type ti. Note that this is similar to a datatype of the form
cotup: DATATYPE
BEGIN
IN_1(OUT_1: t1): IN?_1
· · ·
IN_n(OUT_n: tn): IN?_n
END cotup

The differences are that cotuples are not recursive, do not generate all the func-
tions and axioms associated with datatypes, and allow for any number of component
types—using datatypes a new one would have to be given for each arity.

The analogy works also for the CASES expression described in Section 8.4. This
allows access to the values of a cotuple element. It has the form
CASES e OF
IN_1(x1): f1(x1),
...
IN_n(xn): fn(xn)

ENDCASES

5.14 Override Expressions 55

where each fi is an expression of type [ti -> T], and the common return type T is
the type of the CASES expression. For example, if x is of type [int + bool + [int
-> int], the following expression will return a boolean value.
CASES x OF
IN_1(i): i > 0,
IN_2(b): NOT b,
IN_3(f): FORALL (n: int): f(f(n)) = f(n)

ENDCASES

If there are any missing components in the CASES expression, a cases TCC will be
generated stating that the cotuple expression must be one of the given selections,
unless there is an ELSE selection.

Like the projection operators PROJ i, the IN i, OUT i and IN? i operators make
be disambiguated by adding the cotuple type reference to the operator, for example,
IN 2[int + int](3) or IN? 1[coT]. Note that although they have the form of actual
parameters, they are not, as these operators are built in and not associated with any
theory. Also, for brevity, only the cotuple type is given, not the full type of the
operator. There are a number of axioms associated with cotuples that are built in to
the PVS typechecker and prover.

5.14 Override Expressions

Functions, tuples, records, and datatype elements may be “modified” by means of
the override expression. The result of an override expression is a function, tuple,
record, or datatype element that is exactly the same as the original, except that at
the specified arguments it takes the new values. For example,
identity WITH [(0) := 1, (1) := 2]

is the same function as the identity function (defined in the prelude) except at
argument values 0 and 1. This is exactly the same expression as either of
(identity WITH [(0) := 1]) WITH [(1) := 2] or
(LAMBDA x: IF x = 1 THEN 2 ELSIF x = 0 THEN 1 ELSE identity(x))

This order of evaluation ensures that functions remain total, and allows for the
possibility of expressions such as
identity WITH [(c) := 1, (d) := 2]

where c and d may or may not be equal. If they are equal, then the value of the
override expression at the common argument is 2.

More complex overrides can be made using nested arguments; for example,
R: TYPE = [# a: int, b: [int -> [int, int]] #]
r1: R
r2: R = r1 WITH [‘a := 0, ‘b(1)‘2 := 4]

r2 is equivalent to
(# a := 0,

b := LAMBDA (x: int):
IF x = 1
THEN (r1‘b(x)‘1, 4)
ELSE r2‘b(x)
ENDIF #)

56 Expressions

Updating a datatype element amounts to updating the accessor(s) associated with
a constructor. For example, if lst is of type (cons?[nat]), then lst WITH [‘car :=
3] returns a list that is the same as lst, but whose first element is 3. If lst is given
type list[nat], then the same override expression generates a TCC obligation to
prove that lst is a cons?. Because accessors may be both dependent and overloaded,
TCCs may get complicated. For example,
dt: DATATYPE
BEGIN
c0: c0?
c1(x: int, a: {z: (even?) | z > x}, b: int): c1?
c2(x: int, a: {n: nat | n > x}, c: int): c2?
END dt

If d is of type dt, the update expression d WITH [a := y] leads to the TCC
f1_TCC1: OBLIGATION
(c1?(d) AND even?(y) AND y > x(d)) OR
(c2?(d) AND y >= 0 AND y > x(d));

Another form of override expression is the maplet, indicated using |-> in place of
:=. This is used to extend the domain of the corresponding element; for example, if
f:[nat -> int] is given, then f WITH [(-1) |-> 0] is a function of type [{i:int

| i >= 0 OR i = -1}-> int]. This is especially useful with dependent types, see
Section 4.5. Domain extension is also possible for record and tuple types; for example,
r1 WITH [‘c |-> 3] is of type [# a: int, b: [int -> [int,int]], c: int #],
and if t1 is of type [int, bool], then t1 WITH [‘3 |-> 1] is of type [int, bool,

int]. It is an error to extend a tuple type such that gaps are left, so t1 WITH [‘4

|-> 1] is illegal, though t1 WITH [‘3 |-> 1, ‘4 |-> 1] is allowed. Gaps would
also be left if nested arguments were given, so r1 WITH [‘c(0) |-> 0] is also illegal.
It would have to be given as r1 WITH [‘c := LAMBDA (x: int): IF x = 0 THEN 0

ELSE · · · ENDIF], where the gap · · · now has to be filled in. Domain extension is not
possible for datatype elements, as a new datatype theory would need to be generated
for each such extension.

In the past, the two forms of assignment (using := and |->) were merely alter-
native notation, and domains would be extended automatically whenever the type-
checker could not determine that the argument belonged to the domain. In most
cases, extending the domain unnecessarily is harmless. However, when terms get
large, the types can get cumbersome, slowing down the system dramatically. Even
worse, when domains are extended and matched against a rewrite rule with the orig-
inal type, the match can fail, and the automatic rewrite will not be triggered. For
this reason, it is always best to use the maplet on function types only when actually
extending the domain.

5.15 Coercion Expressions

Coercion expressions are of the form expr :: type-expr, indicating that the expres-
sion expr is expected to be of type type-expr. This serves two purposes. First,

5.16 Tables 57

although PVS allows a liberal amount of overloading, it cannot always disambiguate
things for itself, and coercion may be needed. For example, in
foo: int
foo: [int -> int]
foo: LEMMA foo = foo::int

the coercion of foo to int is needed, because otherwise the typechecker cannot de-
termine the type. Note that only one of the sides of the equation needs to be disam-
biguated.

The second purpose of coercion is as an aid to typechecking; by providing the
expected type in key places within complex expressions, the resulting TCCs may be
considerably simplified.

5.16 Tables

Many expressions are easier to express and to read when presented in tabular form,
as described in [7, 12]. There are many types of tables, ten different interpretations
are described in [12] alone. Rather than provide support for all these tables, we chose
to support a simple form of table initially, providing extensions in later versions of
PVS as the need arises.

PVS provides a form of table expressions that allows simple tables6 to be pre-
sented, and supports table consistency conditions . One of the consistency conditions
(the Mutual Exclusion Property or disjointness) requires the pairwise conjunction of
a set of formulas to be false; another (the Coverage Property) requires the disjunction
of a set of formulas to be true.

Tables are supported by means of the more generic COND expression, which pro-
vides the semantic foundation. In the following sections, we first describe the COND

expression, and then TABLE expressions.

5.16.1 COND Expressions

The COND construct is a multi-way extension to the polymorphic IF-THEN-ELSE con-
struct of PVS. Its form is
COND

be 1 -> e 1,
be 2 -> e 2,

...
be n -> e n

ENDCOND
where the be i’s are boolean expressions, and the e i’s are expressions of some common
supertype. It is required that the be i’s are pairwise disjoint and that their disjunction
is a tautology: these constraints are generated as disjointness and coverage TCCs that
must be discharged before PVS will consider a COND expression fully type-correct.

6In Parnas’ terms [12], these tables are normal function tables of one or two dimensions.

58 Expressions

foo_TCC1: OBLIGATION NOT (be 1 AND be 2) AND...AND NOT (be n-1 AND be n)
foo_TCC2: OBLIGATION be 1 OR be 2 OR...OR be n

Notice that a COND expression with n clauses generates O(n2) clauses in its dis-
jointness TCC.

Assuming its associated TCCs are discharged, the schematic COND shown above is
equivalent to the following IF-THEN-ELSE form, which is its semantic definition.
IF be 1 THEN e 1
ELSIF be 2 THEN e 2

...
ELSIF be n-1 THEN e n-1
ELSE e n

The COND may include an ELSE clause:
COND

be 1 -> e 1,
be 2 -> e 2,

...
ELSE -> e n

ENDCOND

This form does not require the coverage TCC and is equivalent to the IF-THEN-ELSE

form shown above.
Using COND, we can translate the following tabular specification of the sign func-

tion
x < 0 x = 0 x > 0

sign(x) −1 0 1

into
sign(x): int = COND

x<0 -> -1,
x=0 -> 0,
x>0 -> 1

ENDCOND

Two dimensional tables can be generated by nested CONDs. For example, the
following table defining the value for safety injection

modes conditions

normal false true
low not overridden overridden

voter failure true false

safety injection on off

can be represented as
safety injection(mode, overridden): on off =
COND
mode=normal -> off,
mode=low -> (COND NOT overridden -> on, overridden -> off ENDCOND),
mode=voter failure -> on

ENDCOND

5.16 Tables 59

Notice that mode=low provides the “left context” used in generating the TCCs for
the nested COND. This causes some redundancy in highly structured two dimensional
tables as the following example shows.

input
state x y

a a b
b b b

This translates to
COND
state=a -> COND input=x -> a,input=y -> b ENDCOND,
state=b -> COND input=x -> b,input=y -> b ENDCOND

ENDCOND
The coverage TCCs generated for the two inner CONDs will have the form

foo TCC2 : OBLIGATION state=a IMPLIES input=x OR input=y
foo TCC3 : OBLIGATION state=b IMPLIES input=x OR input=y

whereas, because of the disjointness and coverage of {a, b}, the correct TCC is the
simpler form

foo TCC: OBLIGATION input=x OR input=y
The source of the error here is that our translation of the original table is too simple-
minded. A better translation is the following.
LET
x1 = COND input=x -> a, input=y -> b ENDCOND,
x2 = COND input=x -> b, input=y -> b ENDCOND

IN
COND state=a -> x1, state=b -> x2 ENDCOND

And this generates the correct TCCs.
Note that if the be i’s are members of an enumerated type, then the standard PVS

CASES construct should be used instead of COND, since there is no need to generate
TCCs in these cases. For example, if in the previous example { a, b } and { x, y }
had been enumerated types, then the table could have been expressed as
CASES state OF
a: CASES input OF x: a, y: b ENDCASES,
b: CASES input OF x: b, y: b ENDCASES

ENDCASES

and no TCCs would be generated.
If the be i’s are all equalities with the same left hand side, whose right hand sides

are ground arithmetic terms (involving only numbers, +, -, *, /) then the typechecker
directly checks for coverage and disjointness so no TCCs are generated in this case.

5.16.2 Table Expressions

The COND and CASES constructs (see datatypes on page 75) provide the semantic
foundation for our treatment of tables in PVS; for convenience, we also provide a
TABLE construct that provides more attractive syntax for the important special cases
of regular one and two-dimensional tables. The example above can be written in the
alternative form.

60 Expressions

TABLE
% ---------------------

|[input=x | input=y]|
% -------------------------------

| state=a | a | b ||
% -------------------------------

| state=b | b | b ||
% -------------------------------

ENDTABLE

This will translate internally into the LET and COND form shown earlier. Note that
the horizontal lines are simply PVS comments.7

The row and column headers to a TABLE construct are arbitrary boolean expres-
sions. In cases where the expressions are all of the form id=x, the id can be factored
out to produce simpler tables of the following form.

TABLE state, input
% ----------

|[x | y]|
% -----------------

| a | a | b ||
% -----------------

| b | b | b ||
% -----------------

ENDTABLE

In this form, as the headings are enumeration constructs this is internally represented
as a CASES construct, and so generates no TCCs (the previous version generates 5
TCCs).

One-dimensional tables can be presented in both “horizontal” and “vertical”
forms. The sign function example can be presented as a “vertical” table as follows.
sign(x): int = TABLE

% ------------
|[x<0 | -1]|

% ------------
| x=0 | 0 ||

% ------------
| x>0 | 1 ||

% ------------
ENDTABLE
And as a horizontal one as follows.

sign(x): int = TABLE
% --------------------

|[x<0 | x=0 | x>0]|
% -------------------

| -1 | 0 | 1 ||
% --------------------

ENDTABLE

7The LATEX generation translates these constructs into attractively typeset tables. See the PVS
System Guide [10] for details.

5.16 Tables 61

A more complex two-dimensional example is provided by the mode transition
tables used in SCR. These have the following form.

current mode Event New Mode
m1 e1,1 m1,1

e1,2 m1,2

.
e1,k1 m1,k1

m2 e2,1 m2,1

e2,2 m2,2

.
e2,k2 m2,k2

.
mp ep,1 mp,1

ep,2 mp,2

.
ep,kp mp,kp

And translate to the following form.

TABLE mode

%--------------------------------

| m 1 | TABLE event

| e 1,1 | m 1,1 ||

| e 1,2 | m 1,2 ||

...

| e 1,k1| m 1,k1||

ENDTABLE ||

%--------------------------------

| m 2 | TABLE event

| e 2,1 | m 2,1 ||

| e 2,2 | m 2,2 ||

...

| e 2,k2| m 2,k2||

ENDTABLE ||

%--------------------------------

...

%--------------------------------

| m p | TABLE event

| e p,1 | m p,1 ||

| e p,2 | m p,2 ||

...

| e p,kp| m p,kp||

ENDTABLE ||

%--------------------------------

ENDTABLE

The last row or column heading in a table may contain the ELSE keyword, which has the same
meaning as for the corresponding COND or CASES expression.

The table may also have blank entries (except in the headings). These represent illegal values; in
other words the entry may never be reached. This is represented by generation of a TCC indicating
that the formulas corresponding to the row and column headings for that entry cannot both be true.

Note that this is different than having “don’t care” values. If you want to add don’t care entries,
make sure that you use an array; the table

62 Expressions

DC: int

TABLE

|[x < 0 | x = 0 | x > 0]|

| y < 0 | 1 | 0 | DC ||

| y = 0 | DC | 2 | 3 ||

| y > 0 | -2 | DC | 0 ||

ENDTABLE

may seem like any integer may appear in place of DC, but it must always be the same integer, which
is probably not intended. The right way to do this is
DC(n:nat): int

TABLE

|[x < 0 | x = 0 | x > 0]|

| y < 0 | 1 | 0 | DC(2) ||

| y = 0 | DC(0) | 2 | 3 ||

| y > 0 | -2 | DC(1) | 0 ||

ENDTABLE

Chapter 6

Theories

Specifications in PVS are built from theories, which provide genericity, reusability, and structuring.
PVS theories may be parameterized. A theory consists of a theory identifier, a list of formal pa-
rameters, an EXPORTING clause, an assuming part, a theory body, and an ending id. The syntax for
theories is shown in Figure 6.1.

Specification ::= {Theory | Datatype } +

Theory ::= Id [TheoryFormals] : THEORY
[Exporting]
BEGIN
[AssumingPart]
[TheoryPart]
END Id

TheoryFormals ::= [TheoryFormal +
,]

TheoryFormal ::= [(Importing)] TheoryFormalDecl

TheoryFormalDecl ::= TheoryFormalType
| TheoryFormalConst
| TheoryFormalTheory

TheoryFormalType ::= Ids : { TYPE | NONEMPTY TYPE | TYPE+ }
[FROM TypeExpr]

TheoryFormalConst ::= IdOps : TypeExpr

TheoryFormalTheory ::= IdOps : THEORY TheoryDeclName

Figure 6.1: Theory Syntax

Everything is optional except the identifiers and the keywords. Thus the simplest theory has
the form

triv : THEORY

BEGIN

END triv

63

64 Theories

AssumingPart ::= ASSUMING {AssumingElement [;] }+ ENDASSUMING

AssumingElement ::= Importing
| Decl
| Assumption

Assumption ::= Ids : ASSUMPTION Expr

Figure 6.2: Assuming Syntax

TheoryPart ::= {TheoryElement [;] }+

TheoryElement ::= Importing | Decl

Decl ::= LibDecl | TheoryDecl | TypeDecl | VarDecl
| ConstDecl | RecursiveDecl | MacroDecl | InductiveDecl
| InductiveDecl | FormulaDecl | Judgement | Conversion
| InlineDatatype | AutoRewriteDecl

Figure 6.3: Theory Part Syntax

The formal parameters, assuming, and theory body consist of declarations and importings.
The various declarations are described in Section 3. In this section we discuss the restrictions on
the allowable declarations within each section, the formal parameters, the assuming part, and the
exportings and importings.

The groups theory below illustrates these concepts. It views a group as a 4-tuple consisting of
a type G, an identity element e of G, and operations o1 and inv. Note the use of the type parameter
G in the rest of the formal parameter list. The assuming part provides the group axioms. Any use
of the groups theory incurs the obligation to prove all of the ASSUMPTIONs. The body of the groups
theory consists of two theorems, which can be proved from the assumptions.

groups [G : TYPE, 0 : G, + : [G, G -> G], - : [G -> G]] : THEORY

BEGIN

ASSUMING

a, b, c: VAR G

associativity : ASSUMPTION a + (b + c) = (a + b) + c

unit : ASSUMPTION 0 + a = a AND a + 0 = a

inverse : ASSUMPTION -(a) + a = 0 AND a + -(a) = 0

ENDASSUMING

left_cancellation: THEOREM a + b = a + c IMPLIES b = c

right_cancellation: THEOREM b + a = c + a IMPLIES b = c

END groups

Figure 6.4: Theory groups

1Recall that o is an infix operator.

6.1 Theory Identifiers 65

6.1 Theory Identifiers

The theory identifier introduces a name for a theory; as described in Section 7, this identifier can
be used to help disambiguate references to declarations of the theory.

In the PVS system, the set of theories currently available to the session form a context. Within
the context theory names must be unique. There is an initial context available, called the prelude
(described in Appendix ??), that provides, among other things, the Boolean operators, equality,
and the real, rational, integer, and naturalnumber types and their associated properties. The
only difference between the prelude and user-defined theories is that the prelude is automatically
imported in every theory, without requiring an explicit IMPORTING clause.

The end identifier must match the theory identifier, or an error is signaled.

6.2 Theory Parameters

The theory parameters allow theory schemas to be specified. This provides support for universal
polymorphism

Theory parameters may be types, subtypes, constants, or theories,2 interspersed with import-
ings. Theory parameters must have unique identifiers. The parameters are ordered, allowing later
parameters to refer to earlier parameters or imported entities. This is another form of dependency,
akin to dependent types (see Section 4.5). A theory is instantiated from within another theory by
providing actual parameters to substitute for the formals. Actual parameters may occur in import-
ings, exportings, theory declarations, and names. In each case they are enclosed in braces ([and])
and separated with commas.

The actuals must match the formals in number, kind, and (where applicable) type. In this
matching process the importings, which must be enclosed in parentheses, are ignored. For example,
given the theory declaration

T [t: TYPE,

subt: TYPE FROM t

(IMPORTING orders[subt]) <=: (partial_order?),

c: subt,

d: {x:subt | c <= x}]

a valid instance has five actual parameters; an example is
T[int, {x:nat | x < 10}, <=, 5, 6]

Note that the matching process may lead to the generation of actual TCCs.

6.3 Importings and Exportings

The importing and exporting clauses form a hierarchy, much like the subroutine hierarchy of a
programming language.

Names declared in a theory may be made available to other theories in the same context by
means of the EXPORTING clause. Names exported by a given theory may be imported into a second
theory by means of the IMPORTING clause. Names that are exported from one theory are said to
be visible to any theory which uses the given theory. In this section we describe the syntax of the
EXPORTING and IMPORTING clauses and give some simple examples.

6.3.1 The EXPORTING Clause

The EXPORTING clause specifies the names declared in the theory which are to be made available
to any theory IMPORTING it. It may also specify instances of the theories which it imported to be

2This is discussed in Chapter ??.

66 Theories

Exporting ::= EXPORTING ExportingNames [WITH ExportingTheories]

ExportingNames ::= ALL [BUT ExportingName +
,]

| ExportingName +
,

ExportingName ::= IdOp [: {TypeExpr | TYPE | FORMULA }]

ExportingTheories ::= ALL | CLOSURE | TheoryNames

Importing ::= IMPORTING ImportingItem +
,

ImportingItem ::= TheoryName [AS Id]

Figure 6.5: Importing and Exporting Syntax

exported. The syntax of the EXPORTING clause is given in Figure 6.5.
The EXPORTING clause is optional; if omitted, it defaults to

EXPORTING ALL WITH ALL

Any declared name may be exported except for variable declarations and formal parameters.
When ALL is specified for the ExportingNames, all entities declared in the theory aside from the
variables are exported. If a list of names is specified, then these are exported. Finally, when a list
of names follows ALL BUT, all names aside from these are exported.

Since PVS supports overloading, it is possible that the exported name will be ambiguous. Such
names may be disambiguated by including the type, if it is a constant, or by including one of the
keywords TYPE or FORMULA. The keyword TYPE is used for any type declaration, and FORMULA is used
for any formula declaration (including AXIOMs, LEMMAs, etc.) If not disambiguated, all declarations
(except variables and formals) with the specified id will be exported.

When names are specified they are checked for completeness. This means that when a name is
exported all of the names on which the corresponding declaration(s) depend must also be exported.
Thus, for example, given the following declarations

sometype: TYPE
someconst: sometype

it would be illegal to export someconst without also exporting sometype. Note that this check is
unnecessary if exporting ALL without the BUT keyword.

In some cases it is desirable (or necessary for completeness) to export some of the instances of
the theories which are used by the given theory. This is done by specifying a WITH subclause as a part
of the EXPORTING clause. The WITH subclause may be ALL, indicating that all instances of theories
used by the given theory are exported. If CLOSURE is specified, then the typechecker determines the
instances to be exported by a completion analysis on the exported names. Completion analysis
determines those entities that are directly or indirectly referenced by one of the exported names.3

Finally, a list of theory names may be given; in this case the theory names must be complete in
the sense that if an exported name refers to an entity in another theory instance, then that theory
instance must be exported also. Other theory instances may also be exported even if not actually
needed for completeness in this sense. The WITH subclause may only reference theory instances, i.e.,
theory names with actuals provided for all of the corresponding formal parameters.

3Proofs are not used in completion analysis.

6.4 Assuming Part 67

As a practical matter, it is probably best not to include an EXPORTING clause unless there is a
good reason. That way everything that is declared will be visible at higher levels of the IMPORTING
chain.

6.3.2 IMPORTING Clauses

IMPORTING clauses import the visible names of another theory. IMPORTING clauses may appear in
the formal parameters list, the assuming part, or the theory part of a theory. In addition, theory
abbreviations implicitly import the theory name that they abbreviate (see Section 6.3.2).

The names appearing in an IMPORTING or theory abbreviation specifies a theory and option-
ally gives an instance of that theory, by providing actual parameters corresponding to the formal
parameters of the theory used or mappings for the uninterpreted types and constants (see Chap-
ter /refinterpretations). IMPORTINGs are cumulative; entities made visible at some point in a theory
are visible to every declaration following.

An IMPORTING with actual parameters provided is said to be a theory instance. We use the
same terminology for an IMPORTING that refers to theory that has no formal parameters. Otherwise
it is referred to as a generic reference.

A single theory may appear in any number of IMPORTINGs of another theory, both instantiated
and generic. Obviously, any time there is more than one IMPORTING of a given theory there is a
chance for ambiguity. Section 7 discusses such ambiguities, explaining how the system attempts to
resolve them and how the user can disambiguate in situations where the system cannot.

An IMPORTING forms a relation between the theory containing the IMPORTING and the theory
referenced. The transitive closure of the IMPORTING relation is called the importing chain of a theory.
The importing chain must form a directed acyclic graph; hence a theory may not end up importing
itself, directly or indirectly.

Theory Abbreviations

A theory abbreviation is a form of importing that introduces a new name for a theory instance,
providing an alternate means for referring to the instance. For example, given the importing4

IMPORTING sets[[integer -> integer]] AS fsets

where sets is a theory in which the function member is declared, the name sets[[integer ->
integer]].member may instead be written as fsets.member.

6.4 Assuming Part

The assuming part consists of top-level declarations and IMPORTINGs. The assuming part precedes
the theory part, so the theory part may refer to entities declared in the assuming part. The grammar
for the assuming part is given in Figure 6.2.

The primary purpose of the assuming part is to provide constraints on the use of the theory,
by means of ASSUMPTIONs. These are formulas expressing properties that are expected to hold
of any instance of the theory. They are generally stated in terms of the formal parameters, and
when instantiated they become assuming TCCs. For example, given the theory groups above, the
importing

IMPORTING groups[int, 0, +, -]

generates the following obligations
IMP_groups_TCC1: OBLIGATION FORALL (a, b, c: int): a + (b + c) = (a + b) + c;

IMP_groups_TCC2: OBLIGATION FORALL (a: int): 0 + a = a AND a + 0 = a;

4Prior to the introduction of theory interpretations, this was written as fsets: THEORY =
sets[[integer -> integer]].

68 Theories

IMP_groups_TCC3: OBLIGATION FORALL (a: int): (-)(a) + a = 0 AND a + (-)(a) = 0;

Except for the variable declarations, the declarations of the assumings are all externally visible.
The dynamic semantics of an assuming part of a theory is as follows. Internal to the theory,

assumptions are used exactly as axioms would be used. Externally, for each import of a theory, the
assumptions have to be discharged (i.e., proved) with the actual parameters replacing the formal
parameters. Note that in terms of the proof chain, every proof in a theory depends on the proofs of
the assumptions.

Assuming TCCs are generated when a theory is instantiated, which may or may not occur
when it is imported. Thus if a theory with assumptions is imported generically, the assuming TCCs
are not generated until some reference is instantiated. If a theory instance is imported, then the
assuming TCCs precede the importing in the dynamic semantics. Note that this may not make
sense, as the assumings may refer to entities that are not visible until after the theory is imported.
Thus the following is illegal.

assuming_test[n: nat, m: x:int | x < n]: THEORY
BEGIN
ASSUMING
rel_prime?(x, y: int): bool = EXISTS (a, b: int): x*a + y*b = 1
rel_prime: ASSUMPTION rel_prime?(n,m)
ENDASSUMING

END assuming_test

assimp: THEORY
BEGIN
IMPORTING assuming_test[4, 2]

END assimp

And leads to the following error message.
Error: assumption refers to

assuming_test[4, 2].rel_prime?,

which is not visible in the current theory

There are a number of ways to solve this problem. Perhaps the simplest is to first import the theory
generically, then import the instance.

IMPORTING assuming_test

IMPORTING assuming_test[4, 2]

Now the reference to rel prime? makes sense in the assuming TCC generated for the second
importing.

In this case, another solution is to simply define rel prime? as a macro (see Section 3.5).
rel_prime?(x, y: int): MACRO bool = EXISTS (a, b: int): x*a + y*b = 1

Of course, this will not work if the declaration in question is a recursive or inductive definition.
Another solution is to provide the declaration in a theory that is imported in both the theory

with the assuming and the theory importing that theory.

6.5 Theory Part 69

rel_prime[y:int]: THEORY
BEGIN
rel_prime?(x: int): bool = EXISTS (a, b: int): x*a + y*b = 1

END assth2

assuming_test[n: nat, m: x:int | x < n]: THEORY
BEGIN
ASSUMING
IMPORTING rel_prime[m]
rel_prime: ASSUMPTION rel_prime?(n)
ENDASSUMING

END assuming_test2

assuming_imp: THEORY
BEGIN
IMPORTING rel_prime[2], assuming_test[4, 2]

END assuming_imp

Now the reference to rel prime? in the assuming TCC associated with assuming test[4, 2] is
the same as the previously imported instance, so there is no problem. In the theory assuming imp,
rel prime may also be imported generically. However, if rel prime is not imported, or is imported
with a different parameter (e.g., rel prime[3]) then the above error is produced.

6.5 Theory Part

The theory part consists of top-level declarations and IMPORTINGs. Declarations are ordered; ref-
erences may not be made to declarations which occur later in the theory. The theory part usually
contains the main body of the theory. Assuming declarations are not allowed in the theory part.
The grammar for the theory part is given in Figure 6.3.

70 Theories

Chapter 7

Name Resolution

Names in PVS are used to denote theories, variables, constants, and formulas. New names are
introduced by declarations. The syntax of names is given in Figure 7.1.

The simplest form of a name is an idop, i.e., an identifier or operator symbol. This is generally
all that is needed, unless names are overloaded.

The overloading of names, both from different theories and within a single theory, is allowed as
long as there is some way for the system to distinguish references to them. Names from different
theories may be distinguished by prefixing them with the theory name. Within a theory, all names
of the same kind must be unique, except for expression kinds; which need only be unique up to the
signature. This is because the signature is enough to distinguish these declarations. For example, if
< is declared to have signature [bool,int -> bool], the system will recognize from the context that
TRUE < 3 contains a reference to this declaration, whereas 2 < 3 does not.1 If the use of the name
is not enough to distinguish, coercion may be used to specify the signature directly (see page 56).
Theory parameters must be unique across all kinds.

There are three possible forms for names (two for theory names, which appear in IMPORTINGs,
EXPORTING WITHs, and theory declarations). Given a theory named theoryid, with formal parameters
f1, . . . , fn, that contains a declaration named id, the following three forms may be used to reference
the declaration in a theory that imports theoryid :

• theoryid[a1, . . . , an].id

• id[a1, . . . , an]

• id

where the ai are expressions or type expressions that are compatible with the formal parameters as
described in Section 6.2. Note that any of these forms may have mappings immediately after the
actual parameters. As described in Section ??, these can be viewed as an extension of the actuals.
Note also that theory names allow different kinds of mappings. The forms above are listed in order of
increasing likelihood of ambiguity—that is, names that are given with just an id are far more likely
to produce an ambiguity than those further up. Note that even the top form may be ambiguous,
as id may be declared more than once in theoryid. If this is the case, then either the context will
disambiguate the name or a type will have to be supplied in the form of a coercion expression, e.g.,
id :: nat. This kind of ambiguity is allowed only for constants (including functions and recursive
functions) and variables.

Names are resolved based on the expected type and the number and types of arguments to which
the name is applied. The expected type is generally determined from the context of the name, for
example in

1Of course, this assumes that TRUE has not itself been overloaded.

71

72 Name Resolution

c1: int = c2

c2 has expected type int. For most expressions, this is straight-forward, but applications create
special problems. For example, in

f: FORMULA c1 = c2

we know that the equality (which is an application) has range type boolean since it is a formula,
but this gives no information about the types of the arguments. We will first describe the simpler
situation, and then explain how names used as operators of an application are resolved.

In general, the typechecker works by first collecting possible types for the expressions, and
then chooses from among the possible types using the expected type, which is determined from the
context of the expression. The expected type is used to resolve ambiguities, but otherwise does not
contribute to the type of an expression. Thus if 2 + 3 typechecks, and + has not been redeclared,
then it has type number field regardless of its context. However, for the purpose of checking for
TCCs, it may be treated as having a different type depending on the expected type and the available
judgements.

Name Resolution 73

TheoryNames ::= TheoryName +
,

TheoryName ::= [Id @] Id [Actuals] [Mappings]

TheoryDeclName ::= [Id @] Id [Actuals] [TheoryMaps]

Names ::= Name +
,

Name ::= [Id @] IdOp [Actuals] [Mappings] [. IdOp]

Actuals ::= [Actual +
,]

Actual ::= Expr | TypeExpr

Mappings ::= {{ Mapping +
, }}

Mapping ::= MappingLhs MappingRhs

MappingLhs ::= IdOp Bindings ∗ [: { TYPE | THEORY | TypeExpr }]

MappingRhs ::= := {Expr | TypeExpr }

TheoryMaps ::= {{ TheoryMap +
, }}

TheoryMap ::= MappingLhs TheoryMapRhs

TheoryMapRhs ::= MapSubst | MapDef | MapRename

MapSubst ::= := {Expr | TypeExpr }

MapDef ::= = {Expr | TypeExpr }

MapRename ::= ::= { IdOp | Number }

IdOps ::= IdOp +
,

IdOp ::= Id | Opsym | Number

Opsym ::= Binop | Unaryop
| IF | TRUE | FALSE | [||] | (||) | {||}

Binop ::= o | IFF | <=> | IMPLIES | => | WHEN | OR | \/ | AND
| /\ | & | XOR | ANDTHEN | ORELSE | ^ | + | - | * | /
| ++ | ~ | ** | // | ^^ | |- | |= | <| | |> | =
| /= | == | < | <= | > | >= | <<
| >> | <<= | >>= | # | @@ | ##

Unaryop ::= NOT | ~ | [] | <> | -

FormulaName ::= AXIOM | CHALLENGE | CLAIM | CONJECTURE | COROLLARY
| FACT | FORMULA | LAW | LEMMA | OBLIGATION
| POSTULATE | PROPOSITION | SUBLEMMA | THEOREM

Figure 7.1: Name Syntax

74 Name Resolution

Chapter 8

Abstract Datatypes

PVS provides a powerful mechanism for defining abstract datatypes. This mechanism is akin to,
but more sophisticated than, the shell principle of the Boyer-Moore prover [3]). A PVS datatype is
specified by providing a set of constructors along with associated accessors and recognizers. When a
datatype is typechecked, a new theory is created that provides the axioms and induction principles
needed to ensure that the datatype is the initial algebra defined by the constructors.

Datatype ::= Id [TheoryFormals] : DATATYPE [WITH SUBTYPES Ids]
BEGIN
[Importing [;]]
[AssumingPart]
DatatypePart
END Id

InlineDatatype ::= Id : DATATYPE [WITH SUBTYPES Ids]
BEGIN
[Importing [;]]
[AssumingPart]
DatatypePart
END id

DatatypePart ::= {Constructor : IdOp [: Id] } +

Constructor ::= IdOp [({IdOps : TypeExpr }+
,)]

Figure 8.1: Datatype Syntax

The syntax for PVS datatypes is given in Figure 8.1. Datatypes may appear at the top-level
as with theory declarations, or in-line as a declaration within a theory.1 Typechecking a top-level
datatype named foo causes the generation of a new PVS file named foo adt.pvs containing up to
three theories as described below. Typechecking an in-line datatype has the effect of adding new
declarations to the current theory, effectively replacing the in-line datatype. In-line datatypes are
more restricted: they may not have formal parameters or assuming parts, and they will not generate

1Enumeration types are actually in-line datatypes—see Section 3.1.4.

75

76 Abstract Datatypes

the recursive combinators described below. The declarations generated for an in-line datatype may
be viewed using the M-x prettyprint-expanded command (see the PVS System Guide [10]).

8.1 A Datatype Example: stack

An example of a datatype is stack:

stack[T: TYPE]: DATATYPE
BEGIN
empty: empty?
push(top:T, pop:stack): nonempty?
END stack

The stack datatype has two constructors, empty and push, that allow stack elements to be con-
structed. For example, the term push(1, empty) is an element of type stack[int]. The recognizers
empty? and nonempty? are predicates over the stack datatype that are true when their argument
is constructed using the corresponding constructor. Given a stack element that is known to be
nonempty?, the accessors top and pop may be used to extract the first and second arguments.

Typechecking the stack specification automatically creates a new file stack adt.pvs, that
contains the material found in the next five figures. This new file contains three theories: stack adt,
stack adt map, and stack adt reduce.

The first theory stack adt is parametric in type T. This is a specification of “stacks of T”,
where T may be instantiated by any defined type when the stacks datatype is imported. Thus
“stacks of integers” as well as “stacks of stacks of integers” may be defined using this theory. The
first few lines of the theory define the main type of stacks stack, the recognizers emptystack? and
nonemptystack?, the constructors empty and push, and the accessors top and pop are declared.

The stack ord function is defined, and an axiom provided for it’s definition. This is provided
instead of a disjointness axiom, because the disjointness axiom becomes difficult to generate and
use if the number of constructors is large. The disjointness comes from the fact that the natural
numbers are distinct. The ord function is then defined to return 0 on an empty stack and 1 on a
nonempty stack. This is the same function as stack ord, but is easier to use.

Then a series of axioms are given. The stack empty extensionality axiom states that there is
only one bottom element of the datatype: empty. stack push extensionality states that any
two stacks that have the same top and pop (have the same components) are the same. The
stack push eta axiom states that popping and pushing the same element off and onto a stack
results in a stack identical to the original. stack top push says that if you push and element on
a stack, you get that same element when you pop it back off. stack pop push says that pushing
something on a stack and then popping it back off results in the original stack.

The stack inclusive axiom states that all stacks are either empty? or nonempty?. The PVS
prover builds this axiom in, so that it rarely needs be cited by a user.

8.1 A Datatype Example: stack 77

stack_adt[T: TYPE]: THEORY

BEGIN

stack: TYPE

empty?, nonempty?: [stack -> boolean]

empty: (empty?)

push: [[T, stack] -> (nonempty?)]

top: [(nonempty?) -> T]

pop: [(nonempty?) -> stack]

stack_ord: [stack -> upto(1)]

stack_ord_defaxiom: AXIOM

stack_ord(empty) = 0 AND

(FORALL (top: T, pop: stack): stack_ord(push(top, pop)) = 1);

ord(x: stack): upto(1) =

CASES x OF empty: 0, push(push1_var, push2_var): 1 ENDCASES

stack_empty_extensionality: AXIOM

FORALL (empty?_var: (empty?), empty?_var2: (empty?)):

empty?_var = empty?_var2;

stack_push_extensionality: AXIOM

FORALL (nonempty?_var: (nonempty?), nonempty?_var2: (nonempty?)):

top(nonempty?_var) = top(nonempty?_var2) AND

pop(nonempty?_var) = pop(nonempty?_var2)

IMPLIES nonempty?_var = nonempty?_var2;

stack_push_eta: AXIOM

FORALL (nonempty?_var: (nonempty?)):

push(top(nonempty?_var), pop(nonempty?_var)) = nonempty?_var;

stack_top_push: AXIOM

FORALL (push1_var: T, push2_var: stack):

top(push(push1_var, push2_var)) = push1_var;

stack_pop_push: AXIOM

FORALL (push1_var: T, push2_var: stack):

pop(push(push1_var, push2_var)) = push2_var;

Figure 8.2: Theory stack adt (continues)

The next axiom, stack induction, introduces an induction formula for stacks stating that any
predicate p of stacks that

1. holds for the empty stack (the base case), and

2. if p holds for some stack then p holds for the result of pushing anything of the right type onto
that stack (the induction step),

then p holds for all stacks.
Then some useful functions are defined over stacks. The stack predicate every takes as argu-

ments a predicate over T and a stack and returns TRUE iff all elements on the stack satisfy the given
predicate. every is introduced in both curried and uncurried forms. The stack predicate some is
dual to every, returning TRUE iff there is some element on the stack that satisfies the predicate.
The subterm predicate takes two stacks and returns TRUE if and only if the first argument stack is

78 Abstract Datatypes

stack_inclusive: AXIOM

FORALL (stack_var: stack): empty?(stack_var) OR nonempty?(stack_var);

stack_induction: AXIOM

FORALL (p: [stack -> boolean]):

(p(empty) AND

(FORALL (push1_var: T, push2_var: stack):

p(push2_var) IMPLIES p(push(push1_var, push2_var))))

IMPLIES (FORALL (stack_var: stack): p(stack_var));

every(p: PRED[T])(a: stack): boolean =

CASES a

OF empty: TRUE,

push(push1_var, push2_var): p(push1_var) AND every(p)(push2_var)

ENDCASES;

every(p: PRED[T], a: stack): boolean =

CASES a

OF empty: TRUE,

push(push1_var, push2_var): p(push1_var) AND every(p, push2_var)

ENDCASES;

some(p: PRED[T])(a: stack): boolean =

CASES a

OF empty: FALSE,

push(push1_var, push2_var): p(push1_var) OR some(p)(push2_var)

ENDCASES;

some(p: PRED[T], a: stack): boolean =

CASES a

OF empty: FALSE,

push(push1_var, push2_var): p(push1_var) OR some(p, push2_var)

ENDCASES;

subterm(x, y: stack): boolean =

x = y OR

CASES y

OF empty: FALSE, push(push1_var, push2_var): subterm(x, push2_var)

ENDCASES;

Figure 8.3: Theory stack adt (continues)

a subterm of the second. That is, if the second stack consists of the first stack with some (perhaps
zero) elements pushed onto it. The << predicate is the strict (irreflexive) subterm predicate. Thus
for all stacks s, subterm(s, s) holds, but for no stack s does <<(s, s) hold. An alternative equivalent
definition of << is as follows:

<<(x: stack, y: stack): boolean = subterm(x,y) AND NOT x = y

However, this definition is more awkward to use in a proof, as the recursion is hidden in the definition
of subterm. For this reason the definitions for every, some, subterm, and <<, are each defined as
standalone functions, though some of them could be defined in terms of the others.

The last four declarations of the theory stack adt are functions which reduce a stack to a natural
number or to an ordinal. These functions are useful for simplifying the proof of termination of user-
defined functions over stacks. Recall that PVS requires recursive functions to include a measure,
which is used to generate termination conditions. The primary use of the recursive combinator is
to allow measure functions to be specified. The function reduce nat takes a natural number and
a function. The natural number is used for the empty stack, and then for each element on the
stack, the input function is applied to the element from the stack and the current reduced natural
number, returning a natural number. The function reduce nat returns the final natural number.
The function REDUCE nat is analogous to reduce nat, except that the reducing function is also given

8.1 A Datatype Example: stack 79

<<: (well_founded?[stack]) =

LAMBDA (x, y: stack):

CASES y

OF empty: FALSE,

push(push1_var, push2_var): x = push2_var OR x << push2_var

ENDCASES;

stack_well_founded: AXIOM well_founded?[stack](<<);

reduce_nat(empty?_fun: nat, nonempty?_fun: [[T, nat] -> nat]):

[stack -> nat] =

LAMBDA (stack_adtvar: stack):

LET red: [stack -> nat] = reduce_nat(empty?_fun, nonempty?_fun) IN

CASES stack_adtvar

OF empty: empty?_fun,

push(push1_var, push2_var):

nonempty?_fun(push1_var, red(push2_var))

ENDCASES;

REDUCE_nat(empty?_fun: [stack -> nat],

nonempty?_fun: [[T, nat, stack] -> nat]):

[stack -> nat] =

LAMBDA (stack_adtvar: stack):

LET red: [stack -> nat] = REDUCE_nat(empty?_fun, nonempty?_fun) IN

CASES stack_adtvar

OF empty: empty?_fun(stack_adtvar),

push(push1_var, push2_var):

nonempty?_fun(push1_var, red(push2_var), stack_adtvar)

ENDCASES;

reduce_ordinal(empty?_fun: ordinal,

nonempty?_fun: [[T, ordinal] -> ordinal]):

[stack -> ordinal] =

LAMBDA (stack_adtvar: stack):

LET red: [stack -> ordinal] = reduce_ordinal(empty?_fun, nonempty?_fun)

IN

CASES stack_adtvar

OF empty: empty?_fun,

push(push1_var, push2_var):

nonempty?_fun(push1_var, red(push2_var))

ENDCASES;

Figure 8.4: Theory stack adt (continues)

the entire contents of the stack. This version of reduction can be useful for complicated measures that
involve, for example, the number of repeated elements appearing on the stack. The simpler form of
reduce is difficult to apply to such situations. The functions reduce ordinal and REDUCE ordinal
are analogous to reduce nat and REDUCE nat except that they return ordinal numbers instead of
natural numbers. It is rare that a termination argument requires the use of ordinals, so the simpler
reduce nat form is more often used. This completes the description of the stack adt theory.

The second theory in the file stack adt.pvs is stack adt map. This theory takes two types
T and T1 as parameters, imports the stack adt theory, and defines a mapping from stacks[T] to
stacks[T1]. The higher-order map function takes a function f of type [T -> T1], and a stack of
T, and returns a stack of T1 obtained by applying f to each element on the input stack. map is
defined in both curried and uncurried forms. map couldn’t reside in the stack adt theory because
that theory has only one type parameter, while the map functions require two: In order to construct
and access stacks in two theories, map must be parameterized in the two types.

80 Abstract Datatypes

REDUCE_ordinal(empty?_fun: [stack -> ordinal],

nonempty?_fun: [[T, ordinal, stack] -> ordinal]):

[stack -> ordinal] =

LAMBDA (stack_adtvar: stack):

LET red: [stack -> ordinal] = REDUCE_ordinal(empty?_fun, nonempty?_fun)

IN

CASES stack_adtvar

OF empty: empty?_fun(stack_adtvar),

push(push1_var, push2_var):

nonempty?_fun(push1_var, red(push2_var), stack_adtvar)

ENDCASES;

END stack_adt

stack_adt_map[T: TYPE, T1: TYPE]: THEORY

BEGIN

IMPORTING stack_adt

map(f: [T -> T1])(a: stack[T]): stack[T1] =

CASES a

OF empty: empty,

push(push1_var, push2_var): push(f(push1_var), map(f)(push2_var))

ENDCASES;

map(f: [T -> T1], a: stack[T]): stack[T1] =

CASES a

OF empty: empty,

push(push1_var, push2_var): push(f(push1_var), map(f, push2_var))

ENDCASES;

every(R: [[T, T1] -> boolean])(x: stack[T], y: stack[T1]): boolean =

empty?(x) AND empty?(y) OR

nonempty?(x) AND

nonempty?(y) AND R(top(x), top(y)) AND every(R)(pop(x), pop(y));

END stack_adt_map

Figure 8.5: Theory stack adt map

Also in the stack adt map is a relational every function. It lifts a relation R between T and T1,
to stacks of T and T1. It is true if the stacks are the same size, and corresponding elements satisfy
R.

The third and final theory generated from stack pvs is stack adt reduce. This theory provides
a generalized version of reduce nat and REDUCE nat. It takes as parameters a type T and a range
type range. It defines a generalized reduce which reduces stacks of T to elements of range. The
functions reduce nat, REDUCE nat, reduce ordinal, and REDUCE ordinal could have been defined
using stack adt reduce, but the direct definitions are provided for additional user convenience.
The generalized reduce can be used to provide evidence of termination of user-defined functions,
but the predefined versions such as reduce nat are easier to use in most cases.

8.2 Datatype Details
In general, a datatype declaration has the form

adt: DATATYPE WITH SUBTYPES S1, ..., Sn

BEGIN

cons1(acc11: T11, ..., acc1n1: T1n1): rec1 : Si1

.

.

.

consm(accm1: Tm1, ..., acc1nm: T1nm): recm : Sim

8.2 Datatype Details 81

stack_adt_reduce[T: TYPE, range: TYPE]: THEORY

BEGIN

IMPORTING stack_adt[T]

reduce(empty?_fun: range, nonempty?_fun: [[T, range] -> range]):

[stack -> range] =

LAMBDA (stack_adtvar: stack):

LET red: [stack -> range] = reduce(empty?_fun, nonempty?_fun) IN

CASES stack_adtvar

OF empty: empty?_fun,

push(push1_var, push2_var):

nonempty?_fun(push1_var, red(push2_var))

ENDCASES;

REDUCE(empty?_fun: [stack -> range],

nonempty?_fun: [[T, range, stack] -> range]):

[stack -> range] =

LAMBDA (stack_adtvar: stack):

LET red: [stack -> range] = REDUCE(empty?_fun, nonempty?_fun) IN

CASES stack_adtvar

OF empty: empty?_fun(stack_adtvar),

push(push1_var, push2_var):

nonempty?_fun(push1_var, red(push2_var), stack_adtvar)

ENDCASES;

END stack_adt_reduce

Figure 8.6: Theory stack adt reduce

END adt

where the consi are the constructors, the accij are the accessors, the Tij are type expressions, and
the reci are recognizers. Each line is referred to as a constructor specification. There are a number
of restrictions enforced on constructor specifications:

• The datatype identifier may not be used for a recognizer, accessor, or subtype:
(adt 6≡ reci for all i, adt 6≡ accij for all i and j, and adt 6≡ Si for all i).

• The subtype names must be unique: (i 6= j ⇒ Si 6≡ Sj)

• Each subtype name must be used at least once.

• The constructor names must be unique: (i 6= j ⇒ consi 6≡ consj).

• The recognizer names must be unique: (i 6= j ⇒ reci 6≡ recj).

• No identifier may be used as both a constructor and a recognizer:
(consi 6≡ recj forall i and j).

• Duplicate accessor identifiers are not allowed within a single constructor specification: (j 6=
k ⇒ accij 6≡ accik).

As seen in the stack example, datatypes may be recursive; this is the case when the type of
one or more of the accessors reference the datatype. In PVS, all such occurrences must be positive,
where a type occurrence T is positive in a type expression τ iff either

• τ ≡ T.

• τ ≡ {x : τ ′|p(x)} and the occurrence T is positive in τ ′.

• τ ≡ [τ1 → τ2] and the occurrence T is positive in τ2. For example, T occurs positively in
sequence[T] where sequence[T] is defined in the PVS prelude as the function type [nat
-> T].

82 Abstract Datatypes

• τ ≡ [τ1, . . . , τn] and the occurrence T is positive in some τi.

• τ ≡ [# l1 : τ1, . . . , ln : τn #] and the occurrence T is positive in some τi.

• τ ≡ datatype[τ1, . . . , τn], where datatype is a previously defined datatype and the occurrence
T is positive in τi, where τi is a positive parameter of datatype.

When a top-level datatype is given with formal type parameters, they are checked for whether
their occurrences are all positive; this is used as described above for any datatype that imports this
one, as well as determining some of the declarations described below.

When a datatype is typechecked, a number of new declarations are generated:

• The datatype identifier is used to create an uninterpreted type declaration. In general, the
term datatype refers to this type.

• Each recognizer is used to declare an uninterpreted subtype of the datatype.

• Each subtype identifier is used to declare an interpreted type that is the disjunction of the
types given by the recognizers that reference the subtype identifier in the constructor speci-
fication.

• Each constructor and accessor is used to generate a constant declaration.

• An id ord uninterpreted function is created, and an axiom id ord defaxiom defines its
values. This is provided instead of a disjointness axiom, because the disjointness axiom
becomes difficult to generate and use when the number of constructors is large.

• An ord function is generated that gives a zero-based number to each constructor (e.g.,
ord(null) = 0 and cons(1,null) = 1). This is mostly useful for enumeration types.

• An extensionality axiom is generated for each constructor specification.

• An eta axiom is generated for each constructor specification that has accessors.

• For each accessor an axiom is created that says that the accessor composed with the corre-
sponding constructor returns the correct value; e.g.,

accij(consi(ei1,..., eimi) = eij

• An inclusive axiom is generated that says that every element of the datatype belongs to at
least one recognizer subtype. This axiom is not actually needed in practice as the prover
checks for this directly.

• Two induction schemes are provided for proving properties of the datatype.

• If there is at least one constructor with accessors,2 and there are positive type parameters
to the datatype, then every and some functions are defined that provide a predicate on the
datatype in terms of the positive types.

• The subterm and << (irreflexive subterm) functions are defined, and an axiom is generated
that states that << is well-founded. This allows it to be used as an ordering relation in
recursive function definitions.

• If there is at least one constructor with accessors,2 the reduce nat, REDUCE nat, reduce ordinal,
and REDUCE ordinal recursion combinators are defined. These provide a means for defining
notions like the size or depth of a datatype term.
Note that accessor subtypes involving the datatype are “lifted”. The following example shows
why.

2Note that enumeration types have no accessors.

8.2 Datatype Details 83

dt: DATATYPE

BEGIN

c0: c0?

c1(a1: {x: list[dt] | length(x) > 0}): c1?

c2(a2: {x: list[dt] | every(c0?)(x)}): c2?

END dt

Consider the reduc nat function. The signature for the lifted mapping function for c1 and c2
are the same: [list[nat] -> nat]. It’s obvious the mapping function for c2 function could
have the signature [{x: list[nat] | length(x) > 0} -> nat], but there is no obvious
way to map c2 without lifting it. Since it is not trivial to determine which predicates map
nicely, we lift them all. In the future we may provide heuristics that refine this.

• If some type parameter is positive a map function is generated in a separate theory. Every
positive type parameter in the datatype is associated with a pair of map parameters, which
form the domain and range of a corresponding function argument. Given a set of such
functions and a term of the datatype, map returns a term that has the same structure, but
with the “leaf” elements replaced by the function values.

• A separate theory is generated for the reduce and REDUCE functions. These generalize the
reduce functions above to an arbitrary range type.

Note that in the stack example, the stack type is nonempty, since empty is an element of stack
even if the parameter type T is instantiated with an empty type. However, there is no requirement
that a datatype be nonempty, though if it is imported and a constant is declared to be of that type,
a TCC will be generated as described on page 15 in section 3.1.5.

The stack adt theory is parameterized in the type T, and introduces the uninterpreted type
stack. Under normal circumstances, this would imply no relation between, for example, stack[nat]
and stack[int]. However, since every occurrence of T in the accessor types is positive, we can
infer that stack[nat] is a subtype of stack[int]. In general, given a type T and a subtype
S ≡ –x : T |p(x)˝, then stack[S] is treated the same as –s : stack[T]|every(p)(s)˝. When a
datatype has a mix of positive and nonpositive type parameters, the subtype relation only holds for
the positive ones. For example, in the datatype

dt[T1, T2: TYPE, c: T1]: DATATYPE
BEGIN
c(a1: T1, a2: [T2 -> T1]): c?
END dt

T1 is positive and T2 is not, so dt[nat, nat, 0] is a subtype of dt[int, nat, 0], but is not a
subtype of dt[nat, int, 0], nor is it a subtype of dt[nat, nat, 1].

More complex datatypes lead to correspondingly more complex declarations; for example, in the
following contrived datatype

adt1[t1,t2: TYPE, c:t1]: DATATYPE
BEGIN
bottom: bottom?
c1(a11:t1, a12: [t2 -> int]): c1?
c2(a21:adt1, a22:[nat -> adt1], a23: list[adt1]): c2?
c3(a31:[list[int] -> adt1],

a32:[# a: adt1, b: [int -> adt1] #],
a33:[adt1, [set[int] -> adt1]]) : c3?

END adt1

the curried every is generated as follows:

84 Abstract Datatypes

every(p: PRED[t1])(a1: adt1): boolean =
CASES a1
OF bottom: TRUE,

c1(c11_var, c12_var): p(c11_var),
c2(c21_var, c22_var, c23_var):
every(p)(c21_var) AND
every(every(p))(c22_var) AND every[adt1](every(p))(c23_var),

c3(c31_var, c32_var, c33_var):
(FORALL (x1: list[int]): every(p)(c31_var(x1)))

AND every(p)(a(c32_var))
AND FORALL (x: int): every(p)(b(c32_var)(x))
AND every(p)(c33_var‘1)
AND FORALL (x: set[int]): every(p)(c33_var‘2(x))

ENDCASES;

Note that this is only defined for predicates over t1, since the occurrence of t2 in the constructor
specification for c2 is not positive.

As with record types, constructor selectors may be dependent. Here is a simple example.

depdt: DATATYPE
BEGIN
b: b?
c(x: int, y: {z: int | z < x}): c?
END depdt

8.3 Datatype Subtypes

The WITH SUBTYPES keyword introduces a set of subtype names. These are useful, for example,
in defining the nonterminals of a language. For example, we might try to describe a simple typed
lambda calculus:

T ::= B | T → T

E ::= x | λx : T.E | E(E)

This is difficult to express using datatypes without subtypes, but is reasonably straightforward with
them:3

tlc: DATATYPE WITH SUBTYPES typ, expr
BEGIN
base_type(n:nat): base_type? : typ
fun_type(dom, ran: typ): fun_type? : typ
expr_var(n:nat): expr_var? : expr
lambda_expr(lvar:(expr_var?), ltype: typ, lexpr: expr)

: lambda_expr? : expr
application(fun, arg: expr): application? : expr
END tlc

In addition to the usual generated declarations, this generates

3TYPE, LAMBDA, and VAR are PVS keywords, so variants are used here.

8.4 CASES Expressions 85

typ((x: tlc)): boolean = base_type?(x) OR fun_type?(x);
typ: TYPE = {x: tlc | base_type?(x) OR fun_type?(x)}
expr((x: tlc)): boolean =

expr_var?(x) OR lambda_expr?(x) OR application?(x);
expr: TYPE =

{x: tlc | expr_var?(x) OR lambda_expr?(x) OR application?(x)}

immediately after the declarations generated for the recognizers, so they may be referenced in the
accessor types. Note that only a single induction scheme is generated. To induct over a particular
subtype, extend the property of interest to the entire datatype so that it returns true for everything
else.

8.4 CASES Expressions

The CASES expression uses a simple form of pattern-matching on abstract datatypes. Patterns
are of the form c(x1, . . . , xn) where c is an n-ary constructor and x1, . . . , xn is a list of distinct
variables. Patterns here are simple so that certain logical properties of the expression are easy to
check. Patterns are not defined in the grammar but in the type rules, since the notion of a variable
or a constructor is only defined in the type rules.

For example, if x is of type stack, the cases expression
CASES x OF

empty : FALSE,

push(y, z) : even?(y) AND empty?(z)

ENDCASES

is TRUE if x is a singleton even integer, and otherwise is false. This expression can be translated into
IF empty?(x)

THEN FALSE

ELSE LET (y, z) = (car(x), cdr(x))

IN even?(y) AND empty?(z)

ENDIF

The CASES expression also allows an ELSE clause, which comes last and covers all constructors
not previously mentioned in a pattern. If the ELSE clause is missing, and not all constructors have
been mentioned, then a cases TCC is generated which states that the expression is not any of the
missing elements. For example, if the x above is declared to be a subtype of stack in which empty
is excluded, then the empty case can safely be left out, and a TCC will be generated that obligates
the user to prove that x is not empty. There is a trade-off here between simpler specifications and
simpler verifications; if the empty case is left in, then there is no obligation to prove, but the extra
case clutters up the specification, and can mislead the reader into thinking that the empty case is
possible. In general, we feel that the specification should be as perspicuous as possible, even if it
means a little more work behind the scenes.

86 Abstract Datatypes

Appendix A

The Grammar

The complete PVS grammar is presented in this Appendix, along with a discussion of the notation
used in presenting the grammar.

The conventions used in the presentation of the syntax are as follows.

• Names in italics indicate syntactic classes and metavariables ranging over syntactic classes.

• The reserved words of the language are printed in tt font, UPPERCASE.

• An optional part A of a clause is enclosed in square brackets: [A] .

• Alternatives in a syntax production are separated by a bar (“ | ”); a list of alternatives that
is embedded in the right-hand side of a syntax production is enclosed in brackets, as in

ExportingName ::= IdOp [: {TypeExpr | TYPE | FORMULA }]

• Iteration of a clause B one or more times is indicated by enclosing it in brackets followed by
a plus sign: B +; repetition zero or more times is indicated by an asterisk instead of the plus
sign: B ∗.

• A double plus or double asterisk indicates a clause separator; for example, B ∗, indicates zero
or more repetitions of the clause B separated by commas.

• Other items printed in tt font on the right hand side of productions are literals. Be careful
to distinguish where BNF symbols occur as literals, e.g., the BNF brackets { } versus the
literal brackets {}.

87

88 The Grammar

Specification

Specification ::= {Theory | Datatype } +

Theory ::= Id [TheoryFormals] : THEORY
[Exporting]
BEGIN
[AssumingPart]
[TheoryPart]
END Id

TheoryFormals ::= [TheoryFormal +
,]

TheoryFormal ::= [(Importing)] TheoryFormalDecl

TheoryFormalDecl ::= TheoryFormalType
| TheoryFormalConst
| TheoryFormalTheory

TheoryFormalType ::= Ids : { TYPE | NONEMPTY TYPE | TYPE+ }
[FROM TypeExpr]

TheoryFormalConst ::= IdOps : TypeExpr

TheoryFormalTheory ::= IdOps : THEORY TheoryDeclName

Datatypes

Datatype ::= Id [TheoryFormals] : DATATYPE [WITH SUBTYPES Ids]
BEGIN
[Importing [;]]
[AssumingPart]
DatatypePart
END Id

InlineDatatype ::= Id : DATATYPE [WITH SUBTYPES Ids]
BEGIN
[Importing [;]]
[AssumingPart]
DatatypePart
END id

DatatypePart ::= {Constructor : IdOp [: Id] } +

Constructor ::= IdOp [({IdOps : TypeExpr }+
,)]

The Grammar 89

Assumings

AssumingPart ::= ASSUMING {AssumingElement [;] }+ ENDASSUMING

AssumingElement ::= Importing
| Decl
| Assumption

Assumption ::= Ids : ASSUMPTION Expr

Theory Part

TheoryPart ::= {TheoryElement [;] }+

TheoryElement ::= Importing | Decl

Decl ::= LibDecl | TheoryDecl | TypeDecl | VarDecl
| ConstDecl | RecursiveDecl | MacroDecl | InductiveDecl
| InductiveDecl | FormulaDecl | Judgement | Conversion
| InlineDatatype | AutoRewriteDecl

Importings and Exportings

Exporting ::= EXPORTING ExportingNames [WITH ExportingTheories]

ExportingNames ::= ALL [BUT ExportingName +
,]

| ExportingName +
,

ExportingName ::= IdOp [: {TypeExpr | TYPE | FORMULA }]

ExportingTheories ::= ALL | CLOSURE | TheoryNames

Importing ::= IMPORTING ImportingItem +
,

ImportingItem ::= TheoryName [AS Id]

90 The Grammar

Declarations

LibDecl ::= Ids : LIBRARY [=] String

TheoryDecl ::= Ids : THEORY = TheoryDeclName

TypeDecl ::= Id [{, Ids} | Bindings] :
{TYPE | NONEMPTY TYPE | TYPE+}
[{ = | FROM } TypeExpr [CONTAINING Expr]]

VarDecl ::= IdOps : VAR TypeExpr

ConstDecl ::= IdOp [{, IdOps } | Bindings +] : TypeExpr [= Expr]

RecursiveDecl ::= IdOp [{, IdOps } | Bindings +] : RECURSIVE
TypeExpr = Expr MEASURE Expr [BY Expr]

MacroDecl ::= IdOp [{, IdOps } | Bindings +] : MACRO
TypeExpr = Expr

InductiveDecl ::= IdOp [{, IdOps } | Bindings +] : INDUCTIVE
TypeExpr = Expr

CoInductiveDecl ::= IdOp [{, IdOps } | Bindings +] : COINDUCTIVE
TypeExpr = Expr

FormulaDecl ::= Ids : FormulaName Expr

Judgement ::= SubtypeJudgement | ConstantJudgement

SubtypeJudgement ::= [IdOp :] JUDGEMENT TypeExpr +
, SUBTYPE OF TypeExpr

ConstantJudgement ::= [IdOp :] JUDGEMENT ConstantReference +
,

HAS TYPE TypeExpr

ConstantReference ::= Name Bindings ∗

Conversion ::= { CONVERSION | CONVERSION+ | CONVERSION- } Expr +
,

AutoRewriteDecl ::= { AUTO REWRITE | AUTO REWRITE+ | AUTO REWRITE- }
RewriteName +

,

RewriteName ::= Name [! [!]] [: {TypeExpr | FormulaName }]

Bindings ::= (Binding +
,)

Binding ::= TypedId | { (TypedIds) }

TypedIds ::= IdOps [: TypeExpr] [| Expr]

TypedId ::= IdOp [: TypeExpr] [| Expr]

The Grammar 91

Type Expressions

TypeExpr ::= Name
| EnumerationType
| Subtype
| TypeApplication
| FunctionType
| TupleType
| CotupleType
| RecordType

EnumerationType ::= { IdOps }

Subtype ::= { SetBindings | Expr }
| (Expr)

TypeApplication ::= Name Arguments

FunctionType ::= [FUNCTION | ARRAY]
[– [IdOp :] TypeExpr ˝ +

, -> TypeExpr]

TupleType ::= [– [IdOp :] TypeExpr ˝ +
,]

CotupleType ::= [– [IdOp :] TypeExpr ˝ +
+]

RecordType ::= [# FieldDecls +
, #]

FieldDecls ::= Ids : TypeExpr

92 The Grammar

Expressions

Expr ::= Number
| String
| Name
| Id ! Number
| Expr Arguments
| Expr Binop Expr
| Unaryop Expr
| Expr ‘ –Id | Number ˝
| (Expr +

,)
| (: Expr ∗

, :)
| [| Expr ∗

, |]
| (| Expr ∗

, |)
| {| Expr ∗

, |}
| (# Assignment +

, #)
| Expr :: TypeExpr
| IfExpr
| BindingExpr
| { SetBindings | Expr }
| LET LetBinding +

, IN Expr
| Expr WHERE LetBinding +

,
| Expr WITH [Assignment +

,]
| CASES Expr OF Selection +

, [ELSE Expr] ENDCASES
| COND {Expr -> Expr } +

, [, ELSE -> Expr] ENDCOND
| TableExpr

The Grammar 93

Expressions (continued)

IfExpr ::= IF Expr THEN Expr
{ ELSIF Expr THEN Expr } ∗ ELSE Expr ENDIF

BindingExpr ::= BindingOp LambdaBindings : Expr

BindingOp ::= LAMBDA | FORALL | EXISTS | { IdOp ! }

LambdaBindings ::= LambdaBinding [[,] LambdaBindings]

LambdaBinding ::= IdOp | Bindings

SetBindings ::= SetBinding [[,] SetBindings]

SetBinding ::= {IdOp [: TypeExpr] } | Bindings

Assignment ::= AssignArgs { := | |-> } Expr

AssignArgs ::= Id [! Number]
| Number
| AssignArg +

AssignArg ::= (Expr +
,)

| ‘ Id
| ‘ Number

Selection ::= IdOp [(IdOps)] : Expr

TableExpr ::= TABLE [Expr] [, Expr]
[ColHeading]
TableEntry + ENDTABLE

ColHeading ::= |[Expr { | {Expr | ELSE } } +]|

TableEntry ::= { | [Expr | ELSE] } + ||

LetBinding ::= {LetBind | (LetBind +
,) } = Expr

LetBind ::= IdOp Bindings ∗ [: TypeExpr]

Arguments ::= (Expr +
,)

94 The Grammar

Names

TheoryNames ::= TheoryName +
,

TheoryName ::= [Id @] Id [Actuals] [Mappings]

TheoryDeclName ::= [Id @] Id [Actuals] [TheoryMaps]

Names ::= Name +
,

Name ::= [Id @] IdOp [Actuals] [Mappings] [. IdOp]

Actuals ::= [Actual +
,]

Actual ::= Expr | TypeExpr

Mappings ::= {{ Mapping +
, }}

Mapping ::= MappingLhs MappingRhs

MappingLhs ::= IdOp Bindings ∗ [: { TYPE | THEORY | TypeExpr }]

MappingRhs ::= := {Expr | TypeExpr }

TheoryMaps ::= {{ TheoryMap +
, }}

TheoryMap ::= MappingLhs TheoryMapRhs

TheoryMapRhs ::= MapSubst | MapDef | MapRename

MapSubst ::= := {Expr | TypeExpr }

MapDef ::= = {Expr | TypeExpr }

MapRename ::= ::= { IdOp | Number }

IdOps ::= IdOp +
,

IdOp ::= Id | Opsym | Number

Opsym ::= Binop | Unaryop
| IF | TRUE | FALSE | [||] | (||) | {||}

Binop ::= o | IFF | <=> | IMPLIES | => | WHEN | OR | \/ | AND
| /\ | & | XOR | ANDTHEN | ORELSE | ^ | + | - | * | /
| ++ | ~ | ** | // | ^^ | |- | |= | <| | |> | =
| /= | == | < | <= | > | >= | <<
| >> | <<= | >>= | # | @@ | ##

Unaryop ::= NOT | ~ | [] | <> | -

FormulaName ::= AXIOM | CHALLENGE | CLAIM | CONJECTURE | COROLLARY
| FACT | FORMULA | LAW | LEMMA | OBLIGATION
| POSTULATE | PROPOSITION | SUBLEMMA | THEOREM

The Grammar 95

Identifiers

Ids ::= Id +
,

Id ::= Letter IdChar +

Number ::= Digit +

String ::= " ASCII-character ∗ "

IdChar ::= Letter | Digit | | ?

Letter ::= A | . . . | Z | a | . . . | z

Digit ::= 0 | . . . | 9

96 The Grammar

Bibliography

[1] Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook of
Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, pages
739–782. North-Holland, Amsterdam, Holland, 1978. 23

[2] Michael J. Beeson. Foundations of Constructive Mathematics. Ergebnisse der Mathematik und
ihrer Grenzgebiete; 3. Folge · Band 6. Springer-Verlag, 1985. 4

[3] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, NY, 1979.
75

[4] J. H. Cheng and C. B. Jones. On the usability of logics which handle partial functions. In
Carroll Morgan and J. C. P. Woodcock, editors, Proceedings of the Third Refinement Workshop,
pages 51–69. Springer-Verlag Workshops in Computing, 1990. 43

[5] William M. Farmer. A partial functions version of Church’s simple theory of types. Journal of
Symbolic Logic, 55(3):1269–1291, September 1990. 4

[6] Chris George. The RAISE specification language: A tutorial. In S. Prehn and W. J. Toetenel,
editors, VDM ’91: Formal Software Development Methods, volume 552 of Lecture Notes in
Computer Science, pages 238–319, Noordwijkerhout, The Netherlands, October 1991. Springer-
Verlag. Volume 2: Tutorials. 4

[7] Constance Heitmeyer, Bruce Labaw, and Daniel Kiskis. Consistency checks for SCR-style
requirements specifications. Technical report, Naval Research Laboratory, Washington DC,
September 1994. In press. 57

[8] Cliff B. Jones. Systematic Software Development Using VDM. Prentice Hall International Series
in Computer Science. Prentice Hall, Hemel Hempstead, UK, second edition, 1990. 4

[9] Leslie Lamport and Lawrence C. Paulson. Should your specification language be typed? SRC
Research Report 147, Digital Systems Research Center, Palo Alto, CA, May 1997. Available
at http://www.research.digital.com/SRC. 3

[10] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System Guide.
Computer Science Laboratory, SRI International, Menlo Park, CA, September 1999. 1, 35, 60,
76

[11] Sam Owre and Natarajan Shankar. The formal semantics of PVS. Technical Report SRI-
CSL-97-2, Computer Science Laboratory, SRI International, Menlo Park, CA, August 1997. 3,
41

[12] David Lorge Parnas. Tabular representation of relations. Technical Report CRL Report 241,
McMaster University, Hamilton, Canada, TRIO (Telecommunication Research Institute of On-
tario), October 1992. 57

97

http://www.research.digital.com/SRC

98 BIBLIOGRAPHY

[13] Lawrence C. Paulson. A fixedpoint approach to (co)inductive and (co)datatype definitions,
2000. 23

[14] D. S. Scott. Identity and existence in intuitionistic logic. In Applications of Sheaves, volume
753 of Lecture Notes in Mathematics, pages 660–696. Springer-Verlag, 1979. 4

[15] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover Guide. Com-
puter Science Laboratory, SRI International, Menlo Park, CA, September 1999. 1, 11, 24,
26

Index

*, 49
+, 49
-, 49
.pvscontext, 35
/, 49
/=, 46
<, 49
<=, 49
<=>, 46
=, 46
=>, 46
>, 49
>=, 49
%, 8
&, 46
,̂ 49

accessor, 81
ackerman, 21
actual parameters, 65
actual TCC, 65
AND, 46
application expressions, 50
assuming TCC, 67
assumptions, 26
auto-rewrites, 35–37
axioms, 26

binding expressions, 50
boolean expressions, 46

cases expressions, 85
cases TCC, 55, 85
CHALLENGE, 26
CLAIM, 26
coinductive definition, 25
coinductive definitions(, 25
comments, 8
completion analysis, 66
componentwise conversions, 33
COND expressions, 57–59
CONJECTURE, 26
conservative extension, 18
constant judgement, 27
constants, 17–18

interpreted, 17
uninterpreted, 17

constructor, 81
constructor specification, 81
CONTAINING, 15, 17

context, 41
conversion

extend bool, 31
lambda, 32
restrict, 31

conversions, 30–35
type constructor, 33

coproduct types, see cotuple type
COROLLARY, 26
cotuple expression, 54
cotuple types, 39, 44
coverage property, 57
coverage TCC, 57
curried applications, 50

datatype
accessor, 81
constructor, 81
constructor specification, 81
recognizer, 81

declaration, 11–37
binding, 12
body, 12
constants, 17
formulas, 26–27
identifier, 12
kind, 11

expr, 11
prop, 11
theory, 11
type, 11

library, 35
local, 11
multiple, 12
top-level, 11
variables, 17

dependent types, 39, 43–44, 51
disequality, 46
disjointness property, 57
disjointness TCC, 57
domain mismatch TCC, 42

empty type, 15, 40, 41
enumeration types, 12, 14–15
equality, 46
existence TCC, 15
EXISTS, 50
exporting, 11
EXPORTING, 65–67
expression, 62

99

100 INDEX

expressions, 45
extend bool conversion, 31

f91, 21
FACT, 26
factorial, 19
FALSE, 46
fixed inductive variable, 25
FORALL, 50
formal parameters, see theory parameters
FORMULA, 26
formula declarations, 26–27
free variables, 27
FROM, 14
function

partial, 3
total, 3

function types, 39, 41–42

generic reference, 67

higher-order logic, 3

identifiers, 7
IF-THEN-ELSE, 48
IFF, 46
IMPLIES, 46
IMPORTING, 35
importing, 11
importings, 67
inductive definition, 23–25
interpreted type, 12
interpreted type declarations, 14

judgements, 27–30

LAMBDA, 50
lambda conversion, 32
lambda expressions, 51
LAW, 26
LEMMA, 26
LET expressions, 51
LIBRARY, 35
library declaration, 35

macros, 22–23
measure, 19
measure function, 19
monotonicity TCC, 24
mutual exclusion property, 57
mutual recursion, 19

name equivalence, 14, 39
nonempty type, 15
NONEMPTY TYPE, 15, 16
NOT, 46
numerals, 49

overloading, 49
numeric expressions, 49

obligations, 26
operator symbols, 45
OR, 46
ordinal, 19

overloading, 11
overloading numberals, 49
override expression, 55

parameterized type names, 14
polymorphism, 65
positive occurrence, 24
postulate, 26
precedence, 45
pred, 42
predicate subtype, 4
projection expressions, 53
PROPOSITION, 26
PVS Context, 35

quantified expressions, 51

real, 49
recognizer, 81
record accessors, 43
record expressions, 53
record types, 39, 43
recursion

mutual, 19
recursive definitions, 19–22
recursive signature, 19
reserved words, 7
restrict conversion, 31

set theory, 3
setof, 42
special symbols, 7
stacks example, 4
string expressions, 49
structural equivalence, 14, 39
SUBLEMMA, 26
subtype judgement, 27, 29
subtype predicate, 39, 40
subtype TCC, 41
subtypes, 14, 39–41
sum types, see cotuple type
supertype, 14, 39, 40
syntax

conventions, 87
declarations, 12

table consistency, 57
tables, 57–62
TCC, 41

actual, 65
assuming, 67
cases, 55, 85
coverage, 57
disjointness, 57
domain mismatch, 42
existence, 15
monotonicity, 24
subtype, 41
termination, 19
termination-subtype, 20
well-founded, 19

termination TCC, 19
termination-subtype TCC, 20
THEOREM, 26

INDEX 101

theorems, 26
theories, 63
theory abbreviations, 67
theory instance, 67
theory parameters, 65
total function, 19
TRUE, 46
tuple expressions, 52
tuple types, 39, 42–43
type, 39–44

application, 39
cotuple, 39, 44
dependent, 39, 43–44
empty, 15–17, 40, 41
enumeration, 12, 14–15
function, 39, 41–42
interpreted, 12, 14
name, 12
nonempty, 15–17
ordinal, 19
record, 39, 43
subtype, 14, 39–41
supertype, 14
tuple, 39, 42–43
uninterpreted, 12–14
uninterpreted subtype, 12

NONEMPTY TYPE, 12
TYPE, 12
type application, 39
type constructor conversiona, 33
type constructors, 39
type declarations, 12–15
type expressions, 39
TYPE+, 12, 15, 16

uninterpreted subtype, 12, 14
uninterpreted type, 12, 14
universal closure, 27
update expression, 55

variables, 17

well-founded order releation, 19
well-founded TCC, 19
WHEN, 46
WHERE expressions, 51
with expression, 55

	Contents
	Introduction
	Summary of the PVS Language
	PVS Language Design Principles
	An Example: stacks

	The Lexical Structure
	Declarations
	Type Declarations
	Uninterpreted Type Declarations
	Uninterpreted Subtype Declarations
	Interpreted Type Declarations
	Enumeration Type Declarations
	Empty versus Nonempty Types
	Checking Nonemptiness

	Variable Declarations
	Constant Declarations
	Recursive Definitions
	Macros
	Inductive and Coinductive Definitions
	Formula Declarations
	Judgements
	Constant Judgements
	Subtype Judgements
	Judgement Processing

	Conversions
	Conversion Examples
	Lambda conversions
	Conversions on Type Constructors
	Conversion Processing
	Conversion Control

	Library Declarations
	Auto-rewrite Declarations

	Types
	Subtypes
	Function Types
	Tuple Types
	Record Types
	Dependent types
	Cotuple Types

	Expressions
	Boolean Expressions
	IF-THEN-ELSE Expressions
	Numeric Expressions
	Characters and String Expressions
	Applications
	Binding Expressions
	LET and WHERE Expressions
	Set Expressions
	Tuple Expressions
	Projection Expressions
	Record Expressions
	Record Accessors
	Cotuple Expressions
	Override Expressions
	Coercion Expressions
	Tables
	COND Expressions
	Table Expressions

	Theories
	Theory Identifiers
	Theory Parameters
	Importings and Exportings
	The EXPORTING Clause
	IMPORTING Clauses

	Assuming Part
	Theory Part

	Name Resolution
	Abstract Datatypes
	A Datatype Example: stack
	Datatype Details
	Datatype Subtypes
	CASES Expressions

	The Grammar
	Bibliography
	Index

