WFMath 0.3.12
|
00001 // ball.h (A n-dimensional ball) 00002 // 00003 // The WorldForge Project 00004 // Copyright (C) 2000, 2001 The WorldForge Project 00005 // 00006 // This program is free software; you can redistribute it and/or modify 00007 // it under the terms of the GNU General Public License as published by 00008 // the Free Software Foundation; either version 2 of the License, or 00009 // (at your option) any later version. 00010 // 00011 // This program is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 // 00016 // You should have received a copy of the GNU General Public License 00017 // along with this program; if not, write to the Free Software 00018 // Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 00019 // 00020 // For information about WorldForge and its authors, please contact 00021 // the Worldforge Web Site at http://www.worldforge.org. 00022 // 00023 00024 // Author: Ron Steinke 00025 00026 #ifndef WFMATH_BALL_H 00027 #define WFMATH_BALL_H 00028 00029 #include <wfmath/point.h> 00030 #include <wfmath/intersect_decls.h> 00031 00032 namespace WFMath { 00033 00034 template<int dim> class Ball; 00035 00037 template<int dim, template<class, class> class container> 00038 Ball<dim> BoundingSphere(const container<Point<dim>, std::allocator<Point<dim> > >& c); 00040 template<int dim, template<class, class> class container> 00041 Ball<dim> BoundingSphereSloppy(const container<Point<dim>, std::allocator<Point<dim> > >& c); 00042 00043 template<int dim> 00044 std::ostream& operator<<(std::ostream& os, const Ball<dim>& m); 00045 template<int dim> 00046 std::istream& operator>>(std::istream& is, Ball<dim>& m); 00047 00049 00059 template<int dim = 3> 00060 class Ball 00061 { 00062 public: 00064 Ball() : m_center(), m_radius(0.f) {} 00066 Ball(const Point<dim>& center, CoordType radius) 00067 : m_center(center), m_radius(radius) { if (radius < 0) m_center.setValid(false); } 00069 Ball(const Ball& b) : m_center(b.m_center), m_radius(b.m_radius) {} 00071 explicit Ball(const AtlasInType& a); 00072 00073 ~Ball() {} 00074 00075 friend std::ostream& operator<< <dim>(std::ostream& os, const Ball& b); 00076 friend std::istream& operator>> <dim>(std::istream& is, Ball& b); 00077 00079 AtlasOutType toAtlas() const; 00081 void fromAtlas(const AtlasInType& a); 00082 00083 Ball& operator=(const Ball& b) 00084 {m_radius = b.m_radius; m_center = b.m_center; return *this;} 00085 00086 bool isEqualTo(const Ball& b, double epsilon = WFMATH_EPSILON) const; 00087 00088 bool operator==(const Ball& b) const {return isEqualTo(b);} 00089 bool operator!=(const Ball& b) const {return !isEqualTo(b);} 00090 00091 bool isValid() const {return m_center.isValid();} 00092 00093 // Descriptive characteristics 00094 00095 int numCorners() const {return 0;} 00096 // This next function exists so that Ball can be used by code 00097 // that finds the number of corners with numCorners(), and does something 00098 // with each corner with getCorner(). No idea how useful that is, but 00099 // it's not a particularly complicated function to write. 00100 Point<dim> getCorner(int i) const {return m_center;} 00101 Point<dim> getCenter() const {return m_center;} 00102 00104 const Point<dim>& center() const {return m_center;} 00106 Point<dim>& center() {return m_center;} 00108 CoordType radius() const {return m_radius;} 00110 CoordType& radius() {return m_radius;} 00111 00112 // Movement functions 00113 00114 Ball& shift(const Vector<dim>& v) {m_center += v; return *this;} 00115 Ball& moveCornerTo(const Point<dim>& p, int corner) {return *this;} 00116 Ball& moveCenterTo(const Point<dim>& p) {m_center = p; return *this;} 00117 00118 Ball& rotateCorner(const RotMatrix<dim>& m, int corner) {return *this;} 00119 Ball& rotateCenter(const RotMatrix<dim>& m) {return *this;} 00120 Ball& rotatePoint(const RotMatrix<dim>& m, const Point<dim>& p) 00121 {m_center.rotate(m, p); return *this;} 00122 00123 // 3D rotation function 00124 Ball& rotateCorner(const Quaternion&, int corner); 00125 Ball& rotateCenter(const Quaternion&); 00126 Ball& rotatePoint(const Quaternion& q, const Point<dim>& p); 00127 00128 // Intersection functions 00129 00130 AxisBox<dim> boundingBox() const; 00131 Ball boundingSphere() const {return *this;} 00132 Ball boundingSphereSloppy() const {return *this;} 00133 00134 Ball toParentCoords(const Point<dim>& origin, 00135 const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const 00136 {return Ball(m_center.toParentCoords(origin, rotation), m_radius);} 00137 Ball toParentCoords(const AxisBox<dim>& coords) const 00138 {return Ball(m_center.toParentCoords(coords), m_radius);} 00139 Ball toParentCoords(const RotBox<dim>& coords) const 00140 {return Ball(m_center.toParentCoords(coords), m_radius);} 00141 00142 // toLocal is just like toParent, expect we reverse the order of 00143 // translation and rotation and use the opposite sense of the rotation 00144 // matrix 00145 00146 Ball toLocalCoords(const Point<dim>& origin, 00147 const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const 00148 {return Ball(m_center.toLocalCoords(origin, rotation), m_radius);} 00149 Ball toLocalCoords(const AxisBox<dim>& coords) const 00150 {return Ball(m_center.toLocalCoords(coords), m_radius);} 00151 Ball toLocalCoords(const RotBox<dim>& coords) const 00152 {return Ball(m_center.toLocalCoords(coords), m_radius);} 00153 00154 // 3D only 00155 Ball toParentCoords(const Point<dim>& origin, const Quaternion& rotation) const; 00156 Ball toLocalCoords(const Point<dim>& origin, const Quaternion& rotation) const; 00157 00158 friend bool Intersect<dim>(const Ball& b, const Point<dim>& p, bool proper); 00159 friend bool Contains<dim>(const Point<dim>& p, const Ball& b, bool proper); 00160 00161 friend bool Intersect<dim>(const Ball& b, const AxisBox<dim>& a, bool proper); 00162 friend bool Contains<dim>(const Ball& b, const AxisBox<dim>& a, bool proper); 00163 friend bool Contains<dim>(const AxisBox<dim>& a, const Ball& b, bool proper); 00164 00165 friend bool Intersect<dim>(const Ball& b1, const Ball& b2, bool proper); 00166 friend bool Contains<dim>(const Ball& outer, const Ball& inner, bool proper); 00167 00168 friend bool Intersect<dim>(const Segment<dim>& s, const Ball& b, bool proper); 00169 friend bool Contains<dim>(const Segment<dim>& s, const Ball& b, bool proper); 00170 00171 friend bool Intersect<dim>(const RotBox<dim>& r, const Ball& b, bool proper); 00172 friend bool Contains<dim>(const RotBox<dim>& r, const Ball& b, bool proper); 00173 friend bool Contains<dim>(const Ball& b, const RotBox<dim>& r, bool proper); 00174 00175 friend bool Intersect<dim>(const Polygon<dim>& p, const Ball& b, bool proper); 00176 friend bool Contains<dim>(const Polygon<dim>& p, const Ball& b, bool proper); 00177 friend bool Contains<dim>(const Ball& b, const Polygon<dim>& p, bool proper); 00178 00179 private: 00180 00181 Point<dim> m_center; 00182 CoordType m_radius; 00183 }; 00184 00185 } // namespace WFMath 00186 00187 #endif // WFMATH_BALL_H