The software is based upon original FastICA for Matlab from A. Hyvarinen. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks, 10(3), pp. 626-634, 1999. More...
#include <itpp/base/fastica.h>
Public Member Functions | |
Fast_ICA (mat ma_mixed_sig) | |
Constructor. | |
void | separate (void) |
Explicit launch of main FastICA function. | |
void | set_approach (int in_approach) |
Set approach : FICA_APPROACH_DEFL or FICA_APPROACH_SYMM (default). | |
void | set_nrof_independent_components (int in_nrIC) |
Set number of independent components to separate. | |
void | set_non_linearity (int in_g) |
Set non-linearity. | |
void | set_fine_tune (bool in_finetune) |
Set fine tuning. | |
void | set_a1 (double fl_a1) |
Set ![]() | |
void | set_a2 (double fl_a2) |
Set ![]() | |
void | set_mu (double fl_mu) |
Set ![]() | |
void | set_epsilon (double fl_epsilon) |
Set convergence parameter ![]() | |
void | set_sample_size (double fl_sampleSize) |
Set sample size. | |
void | set_stabilization (bool in_stabilization) |
Set stabilization mode true or off. | |
void | set_max_num_iterations (int in_maxNumIterations) |
Set maximum number of iterations. | |
void | set_max_fine_tune (int in_maxFineTune) |
Set maximum number of iterations for fine tuning. | |
void | set_first_eig (int in_firstEig) |
Set first eigenvalue index to take into account. | |
void | set_last_eig (int in_lastEig) |
Set last eigenvalue index to take into account. | |
void | set_pca_only (bool in_PCAonly) |
If true, only perform Principal Component Analysis (default = false). | |
void | set_init_guess (mat ma_initGuess) |
Set initial guess matrix instead of random (default). | |
mat | get_mixing_matrix () |
Get mixing matrix. | |
mat | get_separating_matrix () |
Get separating matrix. | |
mat | get_independent_components () |
Get separated signals. | |
int | get_nrof_independent_components () |
Get number of independent components. | |
mat | get_principal_eigenvectors () |
Get nrIC first columns of the de-whitening matrix. | |
mat | get_whitening_matrix () |
Get the whitening matrix. | |
mat | get_dewhitening_matrix () |
Get the de-whitening matrix. | |
mat | get_white_sig () |
Get whitened signals. |
The software is based upon original FastICA for Matlab from A. Hyvarinen. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks, 10(3), pp. 626-634, 1999.
Example:
FastICA fastica(sources); fastica.set_nrof_independent_components(sources.rows()); fastica.set_non_linearity( FICA_NONLIN_TANH ); fastica.set_approach( FICA_APPROACH_DEFL ); fastica.separate(); mat ICs = fastica.get_independent_components();
Definition at line 122 of file fastica.h.
|
Constructor. Construct a Fast_ICA object with mixed signals to separate.
|
|
Explicit launch of main FastICA function. Explicit launch of the Fast_ICA algorithm. Definition at line 123 of file fastica.cpp. References itpp::Mat< Num_T >::cols(), itpp::diag(), itpp::Mat< Num_T >::get_col(), itpp::max_index(), pcamat(), remmean(), itpp::Mat< Num_T >::rows(), itpp::Mat< Num_T >::set_col(), itpp::Vec< Num_T >::size(), itpp::to_ivec(), whitenv(), and itpp::zeros(). |
|
Set approach : FICA_APPROACH_DEFL or FICA_APPROACH_SYMM (default). Set approach to use : FICA_APPROACH_SYMM (symmetric) or FICA_APPROACH_DEFL (deflation). The symmetric approach computes all ICs at a time, whereas the deflation approach computes them one by one.
Definition at line 169 of file fastica.cpp. References FICA_APPROACH_DEFL. |
|
Set number of independent components to separate. Set the number of ICs to compute.
Definition at line 171 of file fastica.cpp. |
|
Set non-linearity. Set non-linearity to use : FICA_NONLIN_POW3 (default), FICA_NONLIN_TANH, FICA_NONLIN_GAUSS, FICA_NONLIN_SKEW
Definition at line 173 of file fastica.cpp. |
|
Set fine tuning. Set fine tuning true or false.
Definition at line 175 of file fastica.cpp. |
|
Set
Set internal parameter
Definition at line 177 of file fastica.cpp. |
|
Set
Set internal parameter
Definition at line 179 of file fastica.cpp. |
|
Set
Set internal parameter
Definition at line 181 of file fastica.cpp. |
|
Set convergence parameter
Set
Definition at line 183 of file fastica.cpp. |
|
Set sample size. Set the percentage of samples to take into account at every iteration.
Definition at line 185 of file fastica.cpp. |
|
Set stabilization mode true or off. Set stabilization mode.
Definition at line 187 of file fastica.cpp. |
|
Set maximum number of iterations. Set maximum number of iterations for Fast_ICA.
Definition at line 189 of file fastica.cpp. |
|
Set maximum number of iterations for fine tuning. Set maximum numberr of iterations for fine tuning.
Definition at line 191 of file fastica.cpp. |
|
Set first eigenvalue index to take into account. Set first eigenvalue index to take into account.
Definition at line 193 of file fastica.cpp. |
|
Set last eigenvalue index to take into account. Set last eigenvalue index to take into account.
Definition at line 195 of file fastica.cpp. |
|
If true, only perform Principal Component Analysis (default = false). Wether to perform PCA only or PCA+ICA.
Definition at line 197 of file fastica.cpp. |
|
Set initial guess matrix instead of random (default). Set initial matrix instead of random matrix.
|
|
Get mixing matrix. Return mixing matrix.
Definition at line 202 of file fastica.cpp. References it_warning, and itpp::zeros(). |
|
Get separating matrix. Return separating matrix.
Definition at line 204 of file fastica.cpp. References it_warning, and itpp::zeros(). |
|
Get separated signals. Return separated signals (Independent Components).
Definition at line 206 of file fastica.cpp. References it_warning, and itpp::zeros(). |
|
Get number of independent components. Return number of ICs.
Definition at line 208 of file fastica.cpp. |
|
Get nrIC first columns of the de-whitening matrix. Return principal eigenvectors.
Definition at line 210 of file fastica.cpp. |
|
Get the whitening matrix. Return whitening matrix.
Definition at line 212 of file fastica.cpp. |
|
Get the de-whitening matrix. Return dewhitening matrix.
Definition at line 214 of file fastica.cpp. |
|
Get whitened signals. Return whitened signals.
Definition at line 216 of file fastica.cpp. |
Generated on Thu Apr 19 14:20:01 2007 for IT++ by Doxygen 1.4.6