
MLton Guide (20051202)

MLton Guide
This is the guide for MLton, an open-source, whole-program, optimizing Standard ML compiler.

This guide was generated automatically from the MLton wiki, available online at http://mlton.org. It is up to
date for MLton 20051202.

MLton Guide (20051202) MLton Guide

1

http://mlton.org/

Home

What is MLton?

MLton is an open-source, whole-program, optimizing Standard ML compiler.

Next steps

Read about MLton's Features.•
Look at Documentation.•
See some Users of MLton.•
Download MLton.•

Meet the MLton Developers.•
Get involved with MLton Development.•
User-maintained FAQ.•
Contact us.•

Last edited on 2005-02-07 01:07:19 by StephenWeeks.

MLton Guide (20051202) Home

2

http://mlton.org/Download
http://mlton.org/Download

Index
There are 292 pages.

A | B | C | D | E | F | G | H | I | J | K | L | M | O | P | R | S | T | U | V | W | X | Z

A

AccessControl
AdmitsEquality
Alice
AllocateRegisters
AndreiFormiga
AST

B

BasisLibrary
Bug
Bugs20041109

C

CallGraph
CallingFromCToSML
CallingFromSMLToC
CallingFromSMLToCFunctionPointer
ChrisClearwater
Chunkify
CKitLibrary
Closure
ClosureConvert
CommonArg
CommonBlock
CommonSubexp
CompilationManager
CompilerOverview
CompileTimeOptions
ConcurrentML
ConcurrentMLImplementation
ConstantPropagation
Contact
Contify
CoreML
CoreMLSimplify
CreatingPages
Credits
CrossCompiling

MLton Guide (20051202) Index

3

D

DeadCode
DeepFlatten
DefineTypeBeforeUse
DefinitionOfStandardML
Defunctorize
Developers
Development
Documentation
Drawbacks

E

Eclipse
EditingPages
Elaborate
Emacs
Enscript
EqualityType
EqualityTypeVariable
eXene
Experimental

F

FAQ
Features
FirstClassPolymorphism
Flatten
ForeignFunctionInterface
ForeignFunctionInterfaceSyntax
ForeignFunctionInterfaceTypes
ForLoops
FrontEnd
FunctionalRecordUpdate
fxp

G

GarbageCollection
GenerativeDatatype
GenerativeException
Glade
Globalize
GnuMP

MLton Guide (20051202) Index

4

H

HaMLet
HenryCejtin
History
Home
HowProfilingWorks

I

Identifier
Immutable
ImperativeTypeVariable
ImplementExceptions
ImplementHandlers
ImplementProfiling
ImplementSuffix
Index
InfixingOperators
Inline
InsertLimitChecks
InsertSignalChecks
Installation
IntermediateLanguage
IntroduceLoops

J

JesperLouisAndersen
JohnnyAndersen

K

KnownCase

L

LambdaFree
LanguageChanges
Lazy
Libraries
License
LineDirective
LocalFlatten
LocalRef
LoopInvariant

MLton Guide (20051202) Index

5

M

Machine
ManualPage
MatchCompilation
MatchCompile
MatthewFluet
mGTK
MichaelNorrish
MikeThomas
ML
MLBasis
MLBasisAnnotationExamples
MLBasisAnnotations
MLBasisAvailableLibraries
MLBasisExamples
MLBasisPathMap
MLBasisSyntaxAndSemantics
MLj
MLKit
MLNLFFI
MLNLFFIImplementation
MLtonArray
MLtonBinIO
MLtonCont
MLtonExn
MLtonFinalizable
MLtonGC
MLtonIntInf
MLtonIO
MLtonItimer
MLtonPlatform
MLtonPointer
MLtonProcEnv
MLtonProcess
MLtonProfile
MLtonRandom
MLtonRlimit
MLtonRusage
MLtonSignal
MLtonSocket
MLtonStructure
MLtonSyslog
MLtonTextIO
MLtonThread
MLtonVector
MLtonWeak
MLtonWord
MLtonWorld
MoinMoin
Monomorphise

MLton Guide (20051202) Index

6

MoscowML
Multi
Mutable

O

ObjectOrientedProgramming
OCaml
OpenGL
OperatorPrecedence
OptionalArguments
OrphanedPages
OtherSites
Overloading

P

PackedRepresentation
PageSize
ParallelMove
Performance
PhantomType
PlatformSpecificNotes
PolyEqual
PolyML
PolymorphicEquality
Polyvariance
Poplog
PortingMLton
PrecedenceParse
Printf
PrintfGentle
ProductType
Profiling
ProfilingAllocation
ProfilingCounts
ProfilingTheStack
ProfilingTime
Projects
Pronounce
PropertyList

R

RayRacine
Redundant
RedundantTests
References
RefFlatten
Regions

MLton Guide (20051202) Index

7

ReleaseChecklist
RemoveUnused
Restore
RSSA
RSSAShrink
RSSASimplify
RunningOnCygwin
RunningOnDarwin
RunningOnFreeBSD
RunningOnLinux
RunningOnMinGW
RunningOnNetBSD
RunningOnOpenBSD
RunningOnPowerPC
RunningOnSolaris
RunningOnSparc
RunTimeOptions

S

ScopeInference
SelfCompiling
Serialization
ShowBasis
Shrink
SimplifyTypes
SMLNET
SMLNJ
SMLNJDeviations
SMLNJLibrary
SMLofNJStructure
Sources
SpaceSafety
SSA
SSA2
SSA2Simplify
SSASimplify
StandardML
StandardMLBooks
StandardMLHistory
StandardMLImplementations
StandardMLPortability
StandardMLTutorials
StephenWeeks
StyleGuide
Subversion
SureshJagannathan
Survey
SurveyDone
Swerve
SXML

MLton Guide (20051202) Index

8

SXMLShrink
SXMLSimplify
SyntacticConventions
SystemInfo

T

Talk
TalkDiveIn
TalkFolkLore
TalkFromSMLTo
TalkHowHigherOrder
TalkHowModules
TalkHowPolymorphism
TalkMLtonApproach
TalkMLtonFeatures
TalkMLtonHistory
TalkStandardML
TalkWholeProgram
TILT
ToMachine
TomMurphy
ToRSSA
ToSSA2
TrustedGroup
TypeChecking
TypeConstructor
TypeVariableScope

U

Unicode
UniversalType
UnresolvedBugs
UnsafeStructure
Useless
Users

V

ValueRestriction
Variant
VesaKarvonen

W

WantedPages
WebSite
WesleyTerpstra
WholeProgramOptimization

MLton Guide (20051202) Index

9

WikiMacros
WikiName
WikiTool

X

XML
XMLShrink
XMLSimplify
XMLSimplifyTypes

Z

Zone
ZZZOrphanedPages

MLton Guide (20051202) Index

10

AST
AST is the IntermediateLanguage produced by the FrontEnd and translated by Elaborate to CoreML.

Description

The abstract syntax tree produced by the FrontEnd.

Implementation

ast-programs.sig ast-programs.fun
ast-modules.sig ast-modules.fun
ast-core.sig ast-core.fun
ast

Type Checking

The AST IntermediateLanguage has no independent type checker. Type inference is performed on an AST
program as part of Elaborate.

Details and Notes

Last edited on 2005-11-30 19:55:04 by StephenWeeks.

MLton Guide (20051202) AST

11

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast/ast-programs.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast/ast-programs.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast/ast-programs.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast/ast-programs.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast/ast-modules.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast/ast-modules.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast/ast-modules.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast/ast-modules.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast/ast-core.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast/ast-core.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast/ast-core.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast/ast-core.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ast

AccessControl
MoinMoin supports a lot of access control features.

Because people download binaries from the MLton web site, and we are worried about malicious users either
changing those binaries, or changing the links that should point at those binaries, we allow editing of some
pages (in particular, Download, Home, and Experimental) only by TrustedGroup members.

All other pages are freely editable by any user with an account.

Last edited on 2005-11-30 19:54:23 by StephenWeeks.

MLton Guide (20051202) AccessControl

12

http://moinmaster.wikiwikiweb.de/HelpOnAccessControlLists
http://moinmaster.wikiwikiweb.de/HelpOnAccessControlLists
http://mlton.org/Download
http://mlton.org/Download

AdmitsEquality
A TypeConstructor admits equality if whenever it is applied to equality types, the result is an EqualityType.
This notion enables one to determine whether a type constructor application yields an equality type solely
from the application, without looking at the definition of the type constructor. It helps to ensure that
PolymorphicEquality is only applied to sensible values.

The definition of admits equality depends on whether the type constructor was declared by a type definition
or a datatype declaration.

Type definitions

For type definition

type ('a1, ..., 'an) t = ...

type constructor t admits equality if the right-hand side of the definition is an equality type after replacing
'a1, ..., 'an by equality types (it doesn't matter which equality types are chosen).

For a nullary type definition, this amounts to the right-hand side being an equality type. For example, after the
definition

type t = bool * int

type constructor t admits equality because bool * int is an equality type. On the other hand, after the
definition

type t = bool * int * real

type constructor t does not admit equality, because real is not an equality type.

For another example, after the definition

type 'a t = bool * 'a

type constructor t admits equality because bool * int is an equality type (we could have chosen any
equality type other than int).

On the other hand, after the definition

type 'a t = real * 'a

type constructor t does not admit equality because real * int is not equality type.

We can check that a type constructor admits equality using an eqtype specification.

structure Ok: sig eqtype 'a t end =
struct

type 'a t = bool * 'a
end

MLton Guide (20051202) AdmitsEquality

13

structure Bad: sig eqtype 'a t end =
struct

type 'a t = real * int * 'a
end

On structure Bad, MLton reports the following error.

Type t admits equality in signature but not in structure.
 not equality: [real] * _ * _

The not equality section provides an explanation of why the type did not admit equality, highlighting
the problematic component (real).

Datatype declarations

For a type constructor declared by a datatype declaration to admit equality, every variant of the datatype must
admit equality. For example, the following datatype admits equality because bool and char * int are
equality types.

datatype t = A of bool | B of char * int

Nullary constructors trivially admit equality, so that the following datatype admits equality.

datatype t = A | B | C

For a parameterized datatype constructor to admit equality, we consider each variant as a type definition, and
require that the definition admit equality. For example, for the datatype

datatype 'a t = A of bool * 'a | B of 'a

the type definitions

type 'a tA = bool * 'a
type 'a tB = 'a

both admit equality. Thus, type constructor t admits equality.

On the other hand, the following datatype does not admit equality.

datatype 'a t = A of bool * 'a | B of real * 'a

As with type definitions, we can check using an eqtype specification.

structure Bad: sig eqtype 'a t end =
struct

datatype 'a t = A of bool * 'a | B of real * 'a
end

MLton reports the following error.

Type t admits equality in signature but not in structure.
 not equality: B of [real] * _

MLton Guide (20051202) AdmitsEquality

14

MLton indicates the problematic constructor (B), as well as the problematic component of the constructor's
argument.

Recursive datatypes

A recursive datatype like

datatype t = A | B of int * t

introduces a new problem, since in order to decide whether t admits equality, we need to know for the B
variant whether t admits equality. The Definition answers this question by requiring a type constructor to
admit equality if it is consistent to do so. So, in our above example, if we assume that t admits equality, then
the variant B of int * t admits equality. Then, since the A variant trivially admits equality, so does the
type constructor t. Thus, it was consistent to assume that t admits equality, and so, t does admit equality.

On the other hand, in the following declaration

datatype t = A | B of real * t

if we assume that t admits equality, then the B variant does not admit equality. Hence, the type constructor t
does not admit equality, and our assumption was inconsistent. Hence, t does not admit equality.

The same kind of reasoning applies to mutually recursive datatypes as well. For example, the following
defines both t and u to admit equality.

datatype t = A | B of u
and u = C | D of t

But the following defines neither t nor u to admit equality.

datatype t = A | B of u * real
and u = C | D of t

As always, we can check whether a type admits equality using an eqtype specification.

structure Bad: sig eqtype t eqtype u end =
struct

datatype t = A | B of u * real
and u = C | D of t

end

MLton reports the following error.

Error: z.sml 1.16.
 Type t admits equality in signature but not in structure.
 not equality: B of [u] * [real]
Error: z.sml 1.16.
 Type u admits equality in signature but not in structure.
 not equality: D of [t]

Last edited on 2005-12-02 06:44:43 by StephenWeeks.

MLton Guide (20051202) AdmitsEquality

15

Alice
Alice is an extension of SML with concurrency, distribution, and constraint solving.

Last edited on 2004-12-28 19:46:32 by StephenWeeks.

MLton Guide (20051202) Alice

16

http://www.ps.uni-sb.de/alice/
http://www.ps.uni-sb.de/alice/

AllocateRegisters
AllocateRegisters is an analysis pass for the RSSA IntermediateLanguage, invoked from ToMachine.

Description

Computes an allocation of RSSA variables as Machine register or stack operands.

Implementation

allocate-registers.sig allocate-registers.fun

Details and Notes

Last edited on 2005-11-30 19:54:55 by StephenWeeks.

MLton Guide (20051202) AllocateRegisters

17

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/allocate-registers.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/allocate-registers.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/allocate-registers.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/allocate-registers.fun?view=markup

AndreiFormiga
I'm a graduate student just back in academia. I study concurrent and parallel systems, with a great deal of
interest in programming languages (theory, design, implementation). I happen to like functional languages.

I use the nickname tautologico on #sml and my email is andrei DOT formiga AT gmail DOT com.

Last edited on 2004-11-20 18:17:19 by AndreiFormiga.

MLton Guide (20051202) AndreiFormiga

18

BasisLibrary
The Standard ML Basis Library is a collection of modules dealing with basic types, input/output, OS
interfaces, and simple datatypes. It is intended as a portable library usable across all implementations of SML.
The official online version of the Basis Library specification is at http://www.standardml.org/Basis/. We
keep a copy at http://mlton.org/basis/. There is a book that includes all of the online version and more. For
a reverse chronological list of changes to the specification, see
http://www.standardml.org/Basis/history.html.

MLton implements all of the required portions of the Basis Library. MLton also implements many of the
optional structures. You can obtain a complete and current list of what's available using
mlton -show-basis (see ShowBasis). By default, MLton makes the Basis Library available to user
programs. You can also access the Basis Library from ML Basis files.

Below is a complete list of what MLton implements.

Top-level types and constructors1.
Top-level exception constructors2.
Top-level values3.
Overloaded identifiers4.
Top-level signatures5.
Top-level structures6.
Type equivalences7.
Real and Math functions8.
Top-level functors9.

Top-level types and constructors

eqtype 'a array
datatype bool = false | true
eqtype char
type exn
eqtype int
datatype 'a list = nil | :: of ('a * 'a list)
datatype 'a option = NONE | SOME of 'a
datatype order = EQUAL | GREATER | LESS
type real
datatype 'a ref = ref of 'a
eqtype string
type substring
eqtype unit
eqtype 'a vector
eqtype word

Top-level exception constructors

Bind
Chr
Div

MLton Guide (20051202) BasisLibrary

19

http://www.standardml.org/Basis/
http://www.standardml.org/Basis/
http://mlton.org/basis/
http://mlton.org/basis/
http://www.standardml.org/Basis/history.html
http://www.standardml.org/Basis/history.html

Domain
Empty
Fail of string
Match
Option
Overflow
Size
Span
Subscript

Top-level values

MLton does not implement the optional top-level value use: string -> unit, which conflicts with
whole-program compilation because it allows new code to be loaded dynamically. MLton implements all
other top-level values:

!, :=, <>, =, @, ^, app, before, ceil, chr, concat, exnMessage, exnName, explode, floor,
foldl, foldr, getOpt, hd, ignore, implode, isSome, length, map, not, null, o, ord, print,
real, rev, round, size, str, substring, tl, trunc, valOf, vector.

Overloaded identifiers

*, +, -, /, <, <=, >, >=, ~, abs, div, mod.

Top-level signatures

ARRAY
ARRAY2
ARRAY_SLICE
BIN_IO
BIT_FLAGS
BOOL
BYTE
CHAR
COMMAND_LINE
DATE
GENERAL
GENERIC_SOCK
IEEE_REAL
IMPERATIVE_IO
INET_SOCK
INTEGER
INT_INF
IO
LIST
LIST_PAIR
MATH
MONO_ARRAY
MONO_ARRAY2

MLton Guide (20051202) BasisLibrary

20

MONO_ARRAY_SLICE
MONO_VECTOR
MONO_VECTOR_SLICE
NET_HOST_DB
NET_PROT_DB
NET_SERV_DB
OPTION
OS
OS_FILE_SYS
OS_IO
OS_PATH
OS_PROCESS
PACK_REAL
PACK_WORD
POSIX
POSIX_ERROR
POSIX_FILE_SYS
POSIX_IO
POSIX_PROCESS
POSIX_PROC_ENV
POSIX_SIGNAL
POSIX_SYS_DB
POSIX_TTY
PRIM_IO
REAL
SOCKET
STREAM_IO
STRING
STRING_CVT
SUBSTRING
TEXT
TEXT_IO
TEXT_STREAM_IO
TIME
TIMER
UNIX
UNIX_SOCK
VECTOR
VECTOR_SLICE
WORD

Top-level structures

structure Array: ARRAY
structure Array2: ARRAY2
structure ArraySlice: ARRAY_SLICE
structure BinIO: BIN_IO
structure BinPrimIO: PRIM_IO
structure Bool: BOOL
structure BoolArray: MONO_ARRAY

MLton Guide (20051202) BasisLibrary

21

structure BoolArray2: MONO_ARRAY2
structure BoolArraySlice: MONO_ARRAY_SLICE
structure BoolVector: MONO_VECTOR
structure BoolVectorSlice: MONO_VECTOR_SLICE
structure Byte: BYTE
structure Char: CHAR

Char characters correspond to ISO-8859-1. The Char functions do not depend on locale.

structure CharArray: MONO_ARRAY
structure CharArray2: MONO_ARRAY2
structure CharArraySlice: MONO_ARRAY_SLICE
structure CharVector: MONO_VECTOR
structure CharVectorSlice: MONO_VECTOR_SLICE
structure CommandLine: COMMAND_LINE
structure Date: DATE

Date.fromString and Date.scan accept a space in addition to a zero for the first character of the day
of the month. The Basis Library specification only allows a zero.

structure FixedInt: INTEGER
structure General: GENERAL
structure GenericSock: GENERIC_SOCK
structure IEEEReal: IEEE_REAL
structure INetSock: INET_SOCK
structure IO: IO
structure Int: INTEGER
structure Int1: INTEGER
structure Int2: INTEGER
structure Int3: INTEGER
structure Int4: INTEGER
...
structure Int31: INTEGER
structure Int32: INTEGER
structure Int64: INTEGER
structure IntArray: MONO_ARRAY
structure IntArray2: MONO_ARRAY2
structure IntArraySlice: MONO_ARRAY_SLICE
structure IntVector: MONO_VECTOR
structure IntVectorSlice: MONO_VECTOR_SLICE
structure Int8: INTEGER
structure Int8Array: MONO_ARRAY
structure Int8Array2: MONO_ARRAY2
structure Int8ArraySlice: MONO_ARRAY_SLICE
structure Int8Vector: MONO_VECTOR
structure Int8VectorSlice: MONO_VECTOR_SLICE
structure Int16: INTEGER
structure Int16Array: MONO_ARRAY
structure Int16Array2: MONO_ARRAY2
structure Int16ArraySlice: MONO_ARRAY_SLICE
structure Int16Vector: MONO_VECTOR

MLton Guide (20051202) BasisLibrary

22

structure Int16VectorSlice: MONO_VECTOR_SLICE
structure Int32: INTEGER
structure Int32Array: MONO_ARRAY
structure Int32Array2: MONO_ARRAY2
structure Int32ArraySlice: MONO_ARRAY_SLICE
structure Int32Vector: MONO_VECTOR
structure Int32VectorSlice: MONO_VECTOR_SLICE
structure Int64Array: MONO_ARRAY
structure Int64Array2: MONO_ARRAY2
structure Int64ArraySlice: MONO_ARRAY_SLICE
structure Int64Vector: MONO_VECTOR
structure Int64VectorSlice: MONO_VECTOR_SLICE
structure IntInf: INT_INF
structure LargeInt: INTEGER
structure LargeIntArray: MONO_ARRAY
structure LargeIntArray2: MONO_ARRAY2
structure LargeIntArraySlice: MONO_ARRAY_SLICE
structure LargeIntVector: MONO_VECTOR
structure LargeIntVectorSlice: MONO_VECTOR_SLICE
structure LargeReal: REAL
structure LargeRealArray: MONO_ARRAY
structure LargeRealArray2: MONO_ARRAY2
structure LargeRealArraySlice: MONO_ARRAY_SLICE
structure LargeRealVector: MONO_VECTOR
structure LargeRealVectorSlice: MONO_VECTOR_SLICE
structure LargeWord: WORD
structure LargeWordArray: MONO_ARRAY
structure LargeWordArray2: MONO_ARRAY2
structure LargeWordArraySlice: MONO_ARRAY_SLICE
structure LargeWordVector: MONO_VECTOR
structure LargeWordVectorSlice: MONO_VECTOR_SLICE
structure List: LIST
structure ListPair: LIST_PAIR
structure Math: MATH
structure NetHostDB: NET_HOST_DB
structure NetProtDB: NET_PROT_DB
structure NetServDB: NET_SERV_DB
structure OS: OS
structure Option: OPTION
structure PackReal32Big: PACK_REAL
structure PackReal32Little: PACK_REAL
structure PackReal64Big: PACK_REAL
structure PackReal64Little: PACK_REAL
structure PackRealBig: PACK_REAL
structure PackRealLittle: PACK_REAL
structure PackWord32Big: PACK_WORD
structure PackWord32Little: PACK_WORD
structure Position: INTEGER
structure Posix: POSIX
structure Real: REAL
structure RealArray: MONO_ARRAY

MLton Guide (20051202) BasisLibrary

23

structure RealArray2: MONO_ARRAY2
structure RealArraySlice: MONO_ARRAY_SLICE
structure RealVector: MONO_VECTOR
structure RealVectorSlice: MONO_VECTOR_SLICE
structure Real32: REAL
structure Real32Array: MONO_ARRAY
structure Real32Array2: MONO_ARRAY2
structure Real32ArraySlice: MONO_ARRAY_SLICE
structure Real32Vector: MONO_VECTOR
structure Real32VectorSlice: MONO_VECTOR_SLICE
structure Real64: REAL
structure Real64Array: MONO_ARRAY
structure Real64Array2: MONO_ARRAY2
structure Real64ArraySlice: MONO_ARRAY_SLICE
structure Real64Vector: MONO_VECTOR
structure Real64VectorSlice: MONO_VECTOR_SLICE
structure Socket: SOCKET

The Basis Library specification requires functions like Socket.sendVec to raise an exception if
they fail. However, on some platforms, sending to a socket that hasn't yet been connected causes a
SIGPIPE signal, which invokes the default signal handler for SIGPIPE and causes the program to
terminate. If you want the exception to be raised, you can ignore SIGPIPE by adding the following
to your program.

let
open MLton.Signal

in
 setHandler (Posix.Signal.pipe, Handler.ignore)
end

structure String: STRING

The String functions do not depend on locale.

structure StringCvt: STRING_CVT
structure Substring: SUBSTRING
structure SysWord: WORD
structure Text: TEXT
structure TextIO: TEXT_IO
structure TextPrimIO: PRIM_IO
structure Time: TIME
structure Timer: TIMER
structure Unix: UNIX
structure UnixSock: UNIX_SOCK
structure Vector: VECTOR
structure VectorSlice: VECTOR_SLICE
structure Word: WORD
structure Word1: WORD
structure Word2: WORD
structure Word3: WORD
structure Word4: WORD
...

MLton Guide (20051202) BasisLibrary

24

structure Word31: WORD
structure Word32: WORD
structure Word64: WORD
structure WordArray: MONO_ARRAY
structure WordArray2: MONO_ARRAY2
structure WordArraySlice: MONO_ARRAY_SLICE
structure WordVectorSlice: MONO_VECTOR_SLICE
structure WordVector: MONO_VECTOR
structure Word8Array: MONO_ARRAY
structure Word8Array2: MONO_ARRAY2
structure Word8ArraySlice: MONO_ARRAY_SLICE
structure Word8Vector: MONO_VECTOR
structure Word8VectorSlice: MONO_VECTOR_SLICE
structure Word16Array: MONO_ARRAY
structure Word16Array2: MONO_ARRAY2
structure Word16ArraySlice: MONO_ARRAY_SLICE
structure Word16Vector: MONO_VECTOR
structure Word16VectorSlice: MONO_VECTOR_SLICE
structure Word32Array: MONO_ARRAY
structure Word32Array2: MONO_ARRAY2
structure Word32ArraySlice: MONO_ARRAY_SLICE
structure Word32Vector: MONO_VECTOR
structure Word32VectorSlice: MONO_VECTOR_SLICE
structure Word64Array: MONO_ARRAY
structure Word64Array2: MONO_ARRAY2
structure Word64ArraySlice: MONO_ARRAY_SLICE
structure Word64Vector: MONO_VECTOR
structure Word64VectorSlice: MONO_VECTOR_SLICE

Type equivalences

The following types are equivalent.

Int.int = Int32.int
Int64.int = FixedInt.int = Position.int
IntInf.int = LargeInt.int
Real.real = Real64.real = LargeReal.real
Word.word = Word32.word = SysWord.word
Word64.word = LargeWord.word

Real and Math functions

The Real, Real32, and Real64 modules are implemented using the C math library, so the SML functions
will reflect the behavior of the underlying library function. We have made some effort to unify the differences
between the math libraries on different platforms, and in particular to handle exceptional cases according to
the Basis Library specification. However, there will be differences due to different numerical algorithms and
cases we may have missed. Please submit a bug report if you encounter an error in the handling of an
exceptional case.

On x86, real arithmetic is implemented internally using 80 bits of precision. Using higher precision for
intermediate results in computations can lead to different results than if all the computation is done at 32 or 64

MLton Guide (20051202) BasisLibrary

25

bits. If you require strict IEEE compliance, you can compile with -ieee-fp true, which will cause
intermediate results to be stored after each operation. This may cause a substantial performance penalty.

Top-level functors

ImperativeIO
PrimIO
StreamIO

MLton's StreamIO functor takes structures ArraySlice and VectorSlice in addition to the arguments
specified in the Basis Library specification.

Last edited on 2005-11-30 23:04:45 by StephenWeeks.

MLton Guide (20051202) BasisLibrary

26

Bug
To report a bug, please send mail to MLton@mlton.org. Please include the complete SML program that
caused the problem and a log of a compile of the program with -verbose 2. For large messages (over
256K), please send an email containing the discussion text and a link to any large files. You may use our
TemporaryUpload page for uploading large files.

There are some UnresolvedBugs that we don't plan to fix.

We also maintain a list of bugs found with each release.

Bugs20041109•

Last edited on 2005-11-30 23:04:27 by StephenWeeks.

MLton Guide (20051202) Bug

27

mailto:MLton@mlton.org
mailto:MLton@mlton.org
http://mlton.org/TemporaryUpload
http://mlton.org/TemporaryUpload

Bugs20041109
Here are the known bugs in MLton 20041109, listed in reverse chronological order of date reported.

MLton.Finalizable.touch doesn't necessarily keep values alive long enough. Our SVN has a
patch to the compiler. You must rebuild the compiler in order for the patch to take effect.

Thanks to Florian Weimer for reporting this bug.

•

A bug in an optimization pass may incorrectly transform a program to flatten ref cells into their
containing data structure, yielding a type-error in the transformed program. Our CVS has a patch to
the compiler. You must rebuild the compiler in order for the patch to take effect.

Thanks to VesaKarvonen for reporting this bug.

•

A bug in the front end mistakenly allows unary constructors to be used without an argument in
patterns. For example, the following program is accepted, and triggers a large internal error.

 fun f x = case x of SOME => true | _ => false

We have fixed the problem in our CVS.

Thanks to William Lovas for reporting this bug.

•

A bug in Posix.IO.{getlk,setlk,setlkw} causes a link-time error:
undefined reference to Posix_IO_FLock_typ Our CVS has a patch to the Basis
Library implementation.

Thanks to Adam Chlipala for reporting this bug.

•

A bug can cause programs compiled with -profile alloc to segfault. Our CVS has a patch to
the compiler. You must rebuild the compiler in order for the patch to take effect.

Thanks to John Reppy for reporting this bug.

•

A bug in an optimization pass may incorrectly flatten ref cells into their containing data structure,
breaking the sharing between the cells. Our CVS has a patch to the compiler. You must rebuild the
compiler in order for the patch to take effect.

Thanks to Paul Govereau for reporting this bug.

•

Some arrays or vectors, such as (char * char) vector, are incorrectly implemented, and will
conflate the first and second components of each element. Our CVS has a patch to the compiler.
You must rebuild the compiler in order for the patch to take effect.

Thanks to Scott Cruzen for reporting this bug.

•

Socket.Ctl.getLINGER and Socket.Ctl.setLINGER mistakenly raise Subscript. Our
CVS has a patch to the Basis Library implementation.

•

MLton Guide (20051202) Bugs20041109

28

http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/ssa/ref-flatten.fun.diff?r1=1.35&r2=1.37
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/ssa/ref-flatten.fun.diff?r1=1.35&r2=1.37
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/posix/primitive.sml.diff?r1=1.34&r2=1.35
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/posix/primitive.sml.diff?r1=1.34&r2=1.35
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/backend/ssa-to-rssa.fun.diff?r1=1.106&r2=1.107
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/backend/ssa-to-rssa.fun.diff?r1=1.106&r2=1.107
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/ssa/ref-flatten.fun.diff?r1=1.32&r2=1.33
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/ssa/ref-flatten.fun.diff?r1=1.32&r2=1.33
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/backend/packed-representation.fun.diff?r1=1.32&r2=1.33
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/mlton/backend/packed-representation.fun.diff?r1=1.32&r2=1.33
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/net/socket.sml.diff?r1=1.14&r2=1.15
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/net/socket.sml.diff?r1=1.14&r2=1.15

Thanks to Ray Racine for reporting the bug.

CML Mailbox.send makes a call in the wrong atomic context. Our CVS has a patch to the CML
implementation.

•

OS.Path.joinDirFile and OS.Path.toString did not raise InvalidArc when they were
supposed to. They now do. Our CVS has a patch to the Basis Library implementation.

Thanks to Andreas Rossberg for reporting the bug.

•

The front end incorrectly disallows sequences of expressions (separated by semicolons) after a topdec
has already been processed. For example, the following is incorrectly rejected.

 val x = 0;
 ignore x;
 ignore x;

We have fixed the problem in our CVS.

Thanks to Andreas Rossberg for reporting the bug.

•

The front end incorrectly disallows expansive val declarations that bind a type variable that doesn't
occur in the type of the value being bound. For example, the following is incorrectly rejected.

 val 'a x = let exception E of 'a in () end

We have fixed the problem in our CVS.

Thanks to Andreas Rossberg for reporting this bug.

•

The x86 codegen fails to account for the possibility that a 64-bit move could interfere with itself (as
simulated by 32-bit moves). We have fixed the problem in our CVS.

Thanks to Scott Cruzen for reporting this bug.

•

NetHostDB.scan and NetHostDB.fromString incorrectly raise an exception on internet
addresses whose last component is a zero, e.g 0.0.0.0. Our CVS has a patch to the Basis Library
implementation.

Thanks to Scott Cruzen for reporting this bug.

•

StreamIO.inputLine has an off-by-one error causing it to drop the first character after a newline
in some situations. Our CVS has a patch. to the Basis Library implementation.

Thanks to Scott Cruzen for reporting this bug.

•

BinIO.getInstream and TextIO.getInstream are implemented incorrectly. This also
impacts the behavior of BinIO.scanStream and TextIO.scanStream. If you (directly or
indirectly) realize a TextIO.StreamIO.instream and do not (directly or indirectly) call
TextIO.setInstream with a derived stream, you may lose input data. We have fixed the
problem in our CVS.

•

MLton Guide (20051202) Bugs20041109

29

http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/lib/cml/core-cml/mailbox.sml.diff?r1=1.3&r2=1.4
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/lib/cml/core-cml/mailbox.sml.diff?r1=1.3&r2=1.4
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/system/path.sml.diff?r1=1.8&r2=1.11
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/system/path.sml.diff?r1=1.8&r2=1.11
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/net/net-host-db.sml.diff?r1=1.12&r2=1.13
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/net/net-host-db.sml.diff?r1=1.12&r2=1.13
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/io/stream-io.fun.diff?r1=text&tr1=1.29&r2=text&tr2=1.30&diff_format=h
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/mlton/basis-library/io/stream-io.fun.diff?r1=text&tr1=1.29&r2=text&tr2=1.30&diff_format=h

Thanks to WesleyTerpstra for reporting this bug.

Posix.ProcEnv.setpgid doesn't work. If you compile a program that uses it, you will get a link
time error

undefined reference to `Posix_ProcEnv_setpgid'

The bug is due to Posix_ProcEnv_setpgid being omitted from the MLton runtime. We fixed
the problem in our CVS by adding the following definition to
runtime/Posix/ProcEnv/ProcEnv.c

 Int Posix_ProcEnv_setpgid (Pid p, Gid g) {
 return setpgid (p, g);
}

Thanks to Tom Murphy for reporting this bug.

•

Last edited on 2005-12-01 05:16:27 by StephenWeeks.

MLton Guide (20051202) Bugs20041109

30

CKitLibrary
The ckit Library is a C front end written in SML that translates C source code (after preprocessing) into
abstract syntax represented as a set of SML datatypes. The ckit Library is distributed with SML/NJ. Due to
differences between SML/NJ and MLton, this library will not work out-of-the box with MLton.

As of 20050818, MLton includes a port of the ckit Library synchronized with SML/NJ version 110.57.

Usage

You can import the ckit Library into an MLB file with
$(SML_LIB)/ckit-lib/ckit-lib.mlb

•

If you are porting a project from SML/NJ's CompilationManager to MLton's ML Basis system using
cm2mlb, note that the following map is included by default:

$ckit-lib.cm/ckit-lib.cm $(SML_LIB)/ckit-lib/ckit-lib.mlb

This will automatically convert a $/ckit-lib.cm import in an input .cm file into a
$(SML_LIB)/ckit-lib/ckit-lib.mlb import in the output .mlb file.

•

Details

The following changes were made to the ckit Library, in addition to deriving the .mlb file from the .cm
files:

parser/parse-tree-sig.sml (modified): Rewrote use of (sequential) withtype in
signature.

•

parser/parse-tree.sml (modified): Rewrote use of (sequential) withtype.•
ast/ast-sig.sml (modified): Rewrote use of withtype in signature.•
ast/pp/pp-lib.sml (modified): Rewrote use of or-patterns.•
ast/pp/pp-ast-ext-sig.sml (modified): Rewrote use of signature in local.•
ast/pp/pp-ast-adornment-sig.sml (modified): Rewrote use of signature in local.•
ast/type-util-sig.sml (modified): Rewrote use of signature in local.•
ast/type-util.sml (modified): Rewrote use of or-patterns.•
ast/sizeof.sml (modified): Rewrote use of or-patterns.•
ast/initializer-normalizer.sml (modified): Rewrote use of or-patterns.•
ast/build-ast.sml (modified): Rewrote use of or-patterns.•

Patch

ckit.patch•

Last edited on 2005-11-30 23:24:50 by StephenWeeks.

MLton Guide (20051202) CKitLibrary

31

http://www.smlnj.org/doc/ckit
http://www.smlnj.org/doc/ckit
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/ckit-lib/ckit.patch?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/ckit-lib/ckit.patch?view=markup

CallGraph
For easier visualization of profiling data, mlprof can create a call graph of the program in dot format, from
which you can use the graphviz software package to create a postscript graph. For example,

mlprof -call-graph foo.dot foo mlmon.out

will create foo.dot with a complete call graph. For each source function, there will be one node in the
graph that contains the function name (and source position with -show-line true), as well as the
percentage of ticks. If you want to create a call graph for your program without any profiling data, you can
simply call mlprof without any mlmon.out files, as in

mlprof -call-graph foo.dot foo

Because SML has higher-order functions, the call graph is is dependent on MLton's analysis of which
functions call each other. This analysis depends on many implementation details and might display spurious
edges that a human could conclude are impossible. However, in practice, the call graphs tend to be very
accurate.

Because call graphs can get big, mlprof provides the -keep option to specify the nodes that you would like
to see. This option also controls which functions appear in the table that mlprof prints. The argument to
-keep is an expression describing a set of source functions (i.e. graph nodes). The expression e should be of
the following form.

all•
"s"•
(and e ...)•
(from e)•
(not e)•
(or e)•
(pred e)•
(succ e)•
(thresh x)•
(thresh-gc x)•
(thresh-stack x)•
(to e)•

In the grammar, all denotes the set of all nodes. "s" is a regular expression denoting the set of functions
whose name (followed by a space and the source position) has a prefix matching the regexp. The and, not,
and or expressions denote intersection, complement, and union, respectively. The pred and succ
expressions add the set of immediate predecessors or successors to their argument, respectively. The from
and to expressions denote the set of nodes that have paths from or to the set of nodes denoted by their
arguments, respectively. Finally, thresh, thresh-gc, and thresh-stack denote the set of nodes
whose percentage of ticks, gc ticks, or stack ticks, respectively, is greater than or equal to the real number x.

For example, if you want to see the entire call graph for a program, you can use -keep all (this is the
default). If you want to see all nodes reachable from function foo in your program, you would use
-keep '(from "foo")'. Or, if you want to see all the functions defined in subdirectory bar of your
project that used at least 1% of the ticks, you would use

-keep '(and ".*/bar/" (thresh 1.0))'

MLton Guide (20051202) CallGraph

32

http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/

To see all functions with ticks above a threshold, you can also use -thresh x, which is an abbreviation for
-keep '(thresh x)'. You can not use multiple -keep arguments or both -keep and -thresh.
When you use -keep to display a subset of the functions, mlprof will add dashed edges to the call graph to
indicate a path in the original call graph from one function to another.

When compiling with -profile-stack true, you can use mlprof -gray true to make the nodes
darker or lighter depending on whether their stack percentage is higher or lower.

MLton's optimizer may duplicate source functions for any of a number of reasons (functor duplication,
monomorphisation, polyvariance, inlining). By default, all duplicates of a function are treated as one. If you
would like to treat the duplicates separately, you can use mlprof -split regexp, which will cause all
duplicates of functions whose name has a prefix matching the regular expression to be treated separately. This
can be especially useful for higher-order utility functions like General.o.

Caveats

Technically speaking, mlprof produces a call-stack graph rather than a call graph, because it describes the
set of possible call stacks. The difference is in how tail calls are displayed. For example if f nontail calls g
and g tail calls h, then the call-stack graph has edges from f to g and f to h, while the call graph has edges
from f to g and g to h. That is, a tail call from g to h removes g from the call stack and replaces it with h.

Last edited on 2005-11-30 23:11:25 by StephenWeeks.

MLton Guide (20051202) CallGraph

33

CallingFromCToSML
MLton's ForeignFunctionInterface allows programs to export SML functions to be called from C. Suppose
you would like export from SML a function of type real * char -> int as the C function foo. MLton
extends the syntax of SML to allow expressions like the following:

_export "foo": (real * char -> int) -> unit;

The above expression exports a C function named foo, with prototype

Int32 foo (Real64 x0, Char x1);

The _export expression denotes a function of type (real * char -> int) -> unit that when
called with a function f, arranges for the exported foo function to call f when foo is called. So, for
example, the following exports and defines foo.

val e = _export "foo": (real * char -> int) -> unit;
val _ = e (fn (x, c) => 13 + Real.floor x + Char.ord c)

The general form of an _export expression is

_export "C function name" attr... : cFuncTy -> unit;

The type and the semicolon are not optional. As with _import, a sequence of attributes may follow the
function name.

MLton's -export-header option generates a C header file with prototypes for all of the functions
exported from SML. Include this header file in your C files to type check calls to functions exported from
SML. This header file includes typedefs for the types that can be passed between SML and C.

Example

Suppose that export.sml is

val e = _export "f": (int * real * char -> char) -> unit;
val _ = e (fn (i, r, _) =>
 (print (concat ["i = ", Int.toString i,

" r = ", Real.toString r, "\n"])
 ; #"g"))
val g = _import "g": unit -> unit;
val _ = g ()
val _ = g ()

val e = _export "f2": (Word8.word -> word array) -> unit;
val _ = e (fn w =>
 Array.tabulate (10, fn _ => Word.fromLargeWord (Word8.toLargeWord w)))
val g2 = _import "g2": unit -> word array;
val a = g2 ()
val _ = print (concat ["0wx", Word.toString (Array.sub (a, 0)), "\n"])

val e = _export "f3": (unit -> unit) -> unit;
val _ = e (fn () => print "hello\n");
val g3 = _import "g3": unit -> unit;
val _ = g3 ()

MLton Guide (20051202) CallingFromCToSML

34

(* This example demonstrates mutual recursion between C and SML. *)
val e = _export "f4": (int -> unit) -> unit;
val g4 = _import "g4": int -> unit;
val _ = e (fn i => if i = 0 then () else g4 (i - 1))
val _ = g4 13

val (_, zzzSet) = _symbol "zzz" alloc: (unit -> int) * (int -> unit);
val () = zzzSet 42
val g5 = _import "g5": unit -> unit;
val _ = g5 ()

val _ = print "success\n"

Create the header file with -export-header.

% mlton -default-ann 'allowFFI true' \
 -export-header export.h \
 -stop tc \
 export.sml

export.h now contains the following C prototypes.

Int8 f (Int32 x0, Real64 x1, Int8 x2);
Pointer f2 (Word8 x0);
void f3 ();
void f4 (Int32 x0);
extern Int32 zzz;

Use export.h in a C program, ffi-export.c, as follows.

#include <stdio.h>
#include "export.h"

void g () {
 Char c;

 fprintf (stderr, "g starting\n");
 c = f (13, 17.15, 'a');
 fprintf (stderr, "g done char = %c\n", c);
}

Pointer g2 () {
 Pointer res;
 fprintf (stderr, "g2 starting\n");
 res = f2 (0xFF);
 fprintf (stderr, "g2 done\n");

return res;
}

void g3 () {
 fprintf (stderr, "g3 starting\n");
 f3 ();
 fprintf (stderr, "g3 done\n");
}

void g4 (Int i) {
 fprintf (stderr, "g4 (%d)\n", i);

MLton Guide (20051202) CallingFromCToSML

35

 f4 (i);
}

void g5 () {
 fprintf (stderr, "g5 ()\n");
 fprintf (stderr, "zzz = %i\n", zzz);
 fprintf (stderr, "g5 done\n");
}

Compile ffi-export.c and export.sml.

% gcc -c ffi-export.c
% mlton -default-ann 'allowFFI true' \
 export.sml ffi-export.o

Finally, run export.

% ./export
g starting
...
g4 (0)
success

Download

export.sml•
ffi-export.c•

Last edited on 2005-11-30 23:11:45 by StephenWeeks.

MLton Guide (20051202) CallingFromCToSML

36

http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/doc/examples/ffi/export.sml
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/doc/examples/ffi/export.sml
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/doc/examples/ffi/ffi-export.c
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/doc/examples/ffi/ffi-export.c

CallingFromSMLToC
MLton's ForeignFunctionInterface allows an SML program to import C functions. Suppose you would like to
import from C a function with the following prototype:

int foo (double d, char c);

MLton extends the syntax of SML to allow expressions like the following:

_import "foo": real * char -> int;

This expression denotes a function of type real * char -> int whose behavior is implemented by
calling the C function whose name is foo. Thinking in terms of C, imagine that there are C variables d of
type double, c of type unsigned char, and i of type int. Then, the C statement i = foo (d, c)
is executed and i is returned.

The general form of an _import expression is:

_import "C function name" attr... : cFuncTy;

The type and the semicolon are not optional.

The function name is followed by a (possibly empty) sequence of attributes, analogous to C
__attribute__ specifiers. For now, the only attributes supported are cdecl and stdcall. These
specify the calling convention of the C function on Cygwin/Windows, and are ignored on all other platforms.
The default is cdecl. You must use stdcall in order to correctly call Windows API functions.

Example

import.sml imports the C function ffi and the C variable FFI_INT as follows.

(* main.sml *)

(* Declare ffi to be implemented by calling the C function ffi. *)
val ffi = _import "ffi": real array * int ref * int -> char;
open Array

val size = 10
val a = tabulate (size, fn i => real i)
val r = ref 0
val n = 17

(* Call the C function *)
val c = ffi (a, r, n)

val (nGet, nSet) = _symbol "FFI_INT": (unit -> int) * (int -> unit);

val _ = print (concat [Int.toString (nGet ()), "\n"])

val _ =
 print (if c = #"c" andalso !r = 45

then "success\n"
else "fail\n")

MLton Guide (20051202) CallingFromSMLToC

37

ffi-import.c is

#include "platform.h"

Int FFI_INT = 13;
Word FFI_WORD = 0xFF;
Bool FFI_BOOL = TRUE;
Real FFI_REAL = 3.14159;

Char ffi (Pointer a1, Pointer a2, Int n) {
double *ds = (double*)a1;
int *p = (int*)a2;
int i;
double sum;

 sum = 0.0;
for (i = 0; i < GC_arrayNumElements (a1); ++i) {

 sum += ds[i];
 ds[i] += n;
 }
 *p = (int)sum;

return 'c';
}

Compile and run the program.

% mlton -default-ann 'allowFFI true' import.sml ffi-import.c
% ./import
13
success

Download

import.sml•
ffi-import.c•

Next Steps

CallingFromSMLToCFunctionPointer•

Last edited on 2005-12-02 04:17:30 by StephenWeeks.

MLton Guide (20051202) CallingFromSMLToC

38

http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/doc/examples/ffi/import.sml
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/doc/examples/ffi/import.sml
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/doc/examples/ffi/ffi-import.c
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/doc/examples/ffi/ffi-import.c

CallingFromSMLToCFunctionPointer
Just as MLton can directly call C functions, it is possible to make indirect function calls; that is, function calls
through a function pointer. MLton extends the syntax of SML to allow expressions like the following:

_import * : MLton.Pointer.t -> real * char -> int;

This expression denotes a function of type

MLton.Pointer.t -> real * char -> int

whose behavior is implemented by calling the C function at the address denoted by the MLton.Pointer.t
argument, and supplying the C function two arguments, a double and an int. The C function pointer may
be obtained, for example, by the dynamic linking loader (dlopen, dlsym, ...).

The general form of an indirect _import expression is:

_import * attr... : cPtrTy -> cFuncTy;

The type and the semicolon are not optional.

Example

This example uses dlopen and friends (imported using normal _import) to dynamically load the math
library (libm) and call the cos function. Suppose iimport.sml contains the following.

signature DYN_LINK =
sig

type hndl
type mode
type fptr

val dlopen : string * mode -> hndl
val dlsym : hndl * string -> fptr
val dlclose : hndl -> unit

val RTLD_LAZY : mode
val RTLD_NOW : mode

end

structure DynLink :> DYN_LINK =
struct

type hndl = MLton.Pointer.t
type mode = Word32.word
type fptr = MLton.Pointer.t

val dlopen =
 _import "dlopen" : string * mode -> hndl;

val dlerror =
 _import "dlerror": unit -> MLton.Pointer.t;

val dlsym =
 _import "dlsym" : hndl * string -> fptr;

val dlclose =
 _import "dlclose" : hndl -> Int32.int;

MLton Guide (20051202) CallingFromSMLToCFunctionPointer

39

val RTLD_LAZY = 0wx00001 (* Lazy function call binding. *)
val RTLD_NOW = 0wx00002 (* Immediate function call binding. *)

val dlerror = fn () =>
let

val addr = dlerror ()
in

if addr = MLton.Pointer.null
then NONE
else let

fun loop (index, cs) =
let

val w = MLton.Pointer.getWord8 (addr, index)
val c = Byte.byteToChar w

in
if c = #"\000"

then SOME (implode (rev cs))
else loop (index + 1, c::cs)

end
in

 loop (0, [])
end

end

val dlopen = fn (filename, mode) =>
let

val filename = filename ^ "\000"
val hndl = dlopen (filename, mode)

in
if hndl = MLton.Pointer.null

then raise Fail (case dlerror () of
 NONE => "???"
 | SOME s => s)

else hndl
end

val dlsym = fn (hndl, symbol) =>
let

val symbol = symbol ^ "\000"
val fptr = dlsym (hndl, symbol)

in
case dlerror () of

 NONE => fptr
 | SOME s => raise Fail s

end

val dlclose = fn hndl =>
if MLton.Platform.OS.host = MLton.Platform.OS.Darwin

then () (* Darwin reports the following error message if you
 * try to close a dynamic library.
 * "dynamic libraries cannot be closed"
 * So, we disable dlclose on Darwin.
 *)

else
let

val res = dlclose hndl
in

if res = 0
then ()

else raise Fail (case dlerror () of
 NONE => "???"

MLton Guide (20051202) CallingFromSMLToCFunctionPointer

40

 | SOME s => s)
end

end

val dll =
let

open MLton.Platform.OS
in

case host of
 Cygwin => "cygwin1.dll"
 | Darwin => "libm.dylib"
 | _ => "libm.so"

end

val hndl = DynLink.dlopen (dll, DynLink.RTLD_LAZY)

local
val double_to_double =

 _import * : DynLink.fptr -> real -> real;
val cos_fptr = DynLink.dlsym (hndl, "cos")

in
val cos = double_to_double cos_fptr

end

val _ = print (concat [" Math.cos(2.0) = ", Real.toString (Math.cos 2.0), "\n",
"libm.so::cos(2.0) = ", Real.toString (cos 2.0), "\n"])

val _ = DynLink.dlclose hndl

Compile and run iimport.sml.

% mlton -default-ann 'allowFFI true' \
 -target-link-opt linux -ldl \
 -target-link-opt solaris -ldl \
 iimport.sml
% iimport
 Math.cos(2.0) = ~0.416146836547
libm.so::cos(2.0) = ~0.416146836547

This example also shows the -target-link-opt option, which uses the switch when linking only when
on the specified platform. Compile with -verbose 1 to see in more detail what's being passed to gcc.

Download

iimport.sml•

Last edited on 2005-11-30 23:18:27 by StephenWeeks.

MLton Guide (20051202) CallingFromSMLToCFunctionPointer

41

http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/doc/examples/ffi/iimport.sml
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/doc/examples/ffi/iimport.sml

ChrisClearwater

Last edited on 2005-11-30 23:18:55 by StephenWeeks.

MLton Guide (20051202) ChrisClearwater

42

Chunkify
Chunkify is an analysis pass for the RSSA IntermediateLanguage, invoked from ToMachine.

Description

It partitions all the labels (function and block) in an RSSA program into disjoint sets, referred to as chunks.

Implementation

chunkify.sig chunkify.fun

Details and Notes

Breaking large RSSA functions into chunks is necessary for reasonable gcc compile times with the
CCodegen.

Last edited on 2005-11-30 23:19:46 by StephenWeeks.

MLton Guide (20051202) Chunkify

43

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/chunkify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/chunkify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/chunkify.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/chunkify.fun?view=markup

Closure
A closure is a data structure that is the run-time representation of a function.

Typical Implementation

In a typical implementation, a closure consists of a code pointer (indicating what the function does) and an
environment containing the values of the free variables of the function. For example, in the expression

let
val x = 5

in
fn y => x + y

end

the closure for fn y => x + y contains a pointer to a piece of code that knows to take its argument and
add the value of x to it, plus the environment recording the value of x as 5.

To call a function, the code pointer is extracted and jumped to, passing in some agreed upon location the
environment and the argument.

MLton's Implementation

MLton does not implement closures traditionally. Instead, based on whole-program higher-order control-flow
analysis, MLton represents a function as an element of a sum type, where the variant indicates which function
it is and carries the free variables as arguments. See ClosureConvert and CejtinEtAl00 for details.

Last edited on 2005-11-30 23:25:36 by StephenWeeks.

MLton Guide (20051202) Closure

44

ClosureConvert
ClosureConvert is a translation pass from the SXML IntermediateLanguage to the SSA
IntermediateLanguage.

Description

It converts an SXML program into an SSA program.

Defunctionalization is the technique used to eliminate Closures (see CejtinEtAl00).

Uses Globalize and LambdaFree analyses.

Implementation

closure-convert.sig closure-convert.fun

Details and Notes

Last edited on 2005-12-02 04:17:57 by StephenWeeks.

MLton Guide (20051202) ClosureConvert

45

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/closure-convert/closure-convert.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/closure-convert/closure-convert.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/closure-convert/closure-convert.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/closure-convert/closure-convert.fun?view=markup

CommonArg
CommonArg is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

It optimizes instances of Goto transfers that pass the same arguments to the same label; e.g.

L_1 ()
 ...
 z1 = ?
 ...
 L_3 (x, y, z1)
L_2 ()
 ...
 z2 = ?
 ...
 L_3 (x, y, z2)
L_3 (a, b, c)
 ...

This code can be simplified to:

L_1 ()
 ...
 z1 = ?
 ...
 L_3 (z1)
L_2 ()
 ...
 z2 = ?
 ...
 L_3 (z2)
L_3 (c)
 a = x
 b = y

which saves a number of resources: time of setting up the arguments for the jump to L_3, space (either stack
or pseudo-registers) for the arguments of L_3, etc. It may also expose some other optimizations, if more
information is known about x or y.

Implementation

common-arg.sig common-arg.fun

Details and Notes

Three analyses were originally proposed to drive the optimization transformation. Only the Dominator
Analysis is currently implemented. (Implementations of the other analyses are available in the Subversion
repository.)

MLton Guide (20051202) CommonArg

46

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/common-arg.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/common-arg.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/common-arg.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/common-arg.fun?view=markup

Syntactic Analysis

The simplest analysis I could think of maintains

varInfo: Var.t -> Var.t option list ref

initialized to [].

For each variable v bound in a Statement.t or in the Function.t args, then
List.push(varInfo v, NONE). For each L (x1, ..., xn) transfer where (a1, ..., an)
are the formals of L, then List.push(varInfo ai, SOME xi). For each block argument a used in an
unknown context (e.g., arguments of blocks used as continuations, handlers, arith success, runtime return, or
case switch labels), then List.push(varInfo a, NONE).

Now, any block argument a such that varInfo a = xs, where all of the elements of xs are equal to
SOME x, can be optimized by setting a = x at the beginning of the block and dropping the argument from
{Goto transfers.

That takes care of the example above. We can clearly do slightly better, by changing the transformation
criteria to the following: any block argument a such that varInfo a = xs, where all of the elements of xs
are equal to SOME x or are equal to SOME a, can be optimized by setting a = x at the beginning of the
block and dropping the argument from Goto transfers. This optimizes a case like:

L_1 ()
 ... z1 = ? ...
 L_3 (x, y, z1)
L_2 ()
 ... z2 = ? ...
 L_3(x, y, z2)
L_3 (a, b, c)
 ... w = ? ...
 case w of
 true => L_4 | false => L_5
L_4 ()
 ...
 L_3 (a, b, w)
L_5 ()
 ...

where a common argument is passed to a loop (and is invariant through the loop). Of course, the
LoopInvariant optimization pass would normally introduce a local loop and essentially reduce this to the first
example, but I have seen this in practice, which suggests that some optimizations after LoopInvariant do
enough simplifications to introduce (new) loop invariant arguments.

Fixpoint Analysis

However, the above analysis and transformation doesn't cover the cases where eliminating one common
argument exposes the opportunity to eliminate other common arguments. For example:

L_1 ()
 ...
 L_3 (x)
L_2 ()
 ...
 L_3 (x)

MLton Guide (20051202) CommonArg

47

L_3 (a)
 ...
 L_5 (a)
L_4 ()
 ...
 L_5 (x)
L_5 (b)
 ...

One pass of analysis and transformation would eliminate the argument to L_3 and rewrite the L_5(a)
transfer to L_5 (x), thereby exposing the opportunity to eliminate the common argument to L_5.

The interdependency the arguments to L_3 and L_5 suggest performing some sort of fixed-point analysis.
This analysis is relatively simple; maintain

varInfo: Var.t -> VarLattice.t

where

VarLattice.t ~=~ Bot | Point of Var.t | Top

(but as implemented by the FlatLattice functor with a lessThan list and value ref under the hood),
initialized to Bot.

For each variable v bound in a Statement.t or in the Function.t args, then
VarLattice.<= (Point v, varInfo v) For each L (x1, ..., xn) transfer where
(a1, ..., an) are the formals of L}, then VarLattice.<= (varInfo xi, varInfo ai). For
each block argument a used in an unknown context, then VarLattice.<= (Point a, varInfo a).

Now, any block argument a such that varInfo a = Point x can be optimized by setting a = x at the
beginning of the block and dropping the argument from Goto transfers.

Now, with the last example, we introduce the ordering constraints:

varInfo x <= varInfo a
varInfo a <= varInfo b
varInfo x <= varInfo b

Assuming that varInfo x = Point x, then we get varInfo a = Point x and
varInfo b = Point x, and we optimize the example as desired.

But, that is a rather weak assumption. It's quite possible for varInfo x = Top. For example, consider:

G_1 ()
 ... n = 1 ...
 L_0 (n)
G_2 ()
 ... m = 2 ...
 L_0 (m)
L_0 (x)
 ...
L_1 ()
 ...
 L_3 (x)
L_2 ()

MLton Guide (20051202) CommonArg

48

 ...
 L_3 (x)
L_3 (a)
 ...
 L_5(a)
L_4 ()
 ...
 L_5(x)
L_5 (b)
 ...

Now varInfo x = varInfo a = varInfo b = Top. What went wrong here? When varInfo x
went to Top, it got propagated all the way through to a and b, and prevented the elimination of any common
arguments. What we'd like to do instead is when varInfo x goes to Top, propagate on Point x -- we
have no hope of eliminating x, but if we hold x constant, then we have a chance of eliminating arguments for
which x is passed as an actual.

Dominator Analysis

Does anyone see where this is going yet? Pausing for a little thought, MatthewFluet realized that he had once
before tried proposing this kind of "fix" to a fixed-point analysis -- when we were first investigating the
Contify optimization in light of John Reppy's CWS paper. Of course, that "fix" failed because it defined a
non-monotonic function and one couldn't take the fixed point. But, StephenWeeks suggested a dominator
based approach, and we were able to show that, indeed, the dominator analysis subsumed both the previous
call based analysis and the cont based analysis. And, a moment's reflection reveals further parallels: when
varInfo: Var.t -> Var.t option list ref, we have something analogous to the call analysis,
and when varInfo: Var.t -> VarLattice.t, we have something analogous to the cont analysis.
Maybe there is something analogous to the dominator approach (and therefore superior to the previous
analyses).

And this turns out to be the case. Construct the graph G as follows:

nodes(G) = {Root} U Var.t
edges(G) = {Root -> v | v bound in a Statement.t or
 in the Function.t args} U
 {xi -> ai | L(x1, ..., xn) transfer where (a1, ..., an)
 are the formals of L} U
 {Root -> a | a is a block argument used in an unknown context}

Let idom(x) be the immediate dominator of x in G with root Root. Now, any block argument a such that
idom(a) = x <> Root can be optimized by setting a = x at the beginning of the block and dropping
the argument from Goto transfers.

Furthermore, experimental evidence suggests (and we are confident that a formal presentation could prove)
that the dominator analysis subsumes the "syntactic" and "fixpoint" based analyses in this context as well and
that the dominator analysis gets "everything" in one go.

Final Thoughts

I must admit, I was rather suprised at this progression and final result. At the outset, I never would have
thought of a connection between Contify and CommonArg optimizations. They would seem to be two
completely different optimizations. Although, this may not really be the case. As one of the reviewers of the
ICFP paper said:

MLton Guide (20051202) CommonArg

49

I understand that such a form of CPS might be convenient in some cases, but when we're talking
about analyzing code to detect that some continuation is constant, I think it makes a lot more sense to
make all the continuation arguments completely explicit.

I believe that making all the continuation arguments explicit will show that the optimization can be
generalized to eliminating constant arguments, whether continuations or not.

What I think the common argument optimization shows is that the dominator analysis does slightly better than
the reviewer puts it: we find more than just constant continuations, we find common continuations. And I
think this is further justified by the fact that I have observed common argument eliminate some env_X
arguments which would appear to correspond to determining that while the closure being executed isn't
constant it is at least the same as the closure being passed elsewhere.

At first, I was curious whether or not we had missed a bigger picture with the dominator analysis. When we
wrote the contification paper, I assumed that the dominator analysis was a specialized solution to a specialized
problem; we never suggested that it was a technique suited to a larger class of analyses. After initially finding
a connection between Contify and CommonArg (and thinking that the only connection was the technique), I
wondered if the dominator technique really was applicable to a larger class of analyses. That is still a question,
but after writing up the above, I'm suspecting that the "real story" is that the dominator analysis is a solution to
the common argument optimization, and that the Contify optimization is specializing CommonArg to the case
of continuation arguments (with a different transformation at the end). (Note, a whole-program,
inter-procedural common argument analysis doesn't really make sense (in our SSA IntermediateLanguage),
because the only way of passing values between functions is as arguments. (Unless of course in the case that
the common argument is also a constant argument, in which case ConstantPropagation could lift it to a
global.) The inter-procedural Contify optimization works out because there we move the function to the
argument.)

Anyways, it's still unclear to me whether or not the dominator based approach solves other kinds of problems.

Phase Ordering

On the downside, the optimization doesn't have a huge impact on runtime, although it does predictably saved
some code size. I stuck it in the optimization sequence after Flatten and (the third round of) LocalFlatten,
since it seems to me that we could have cases where some components of a tuple used as an argument are
common, but the whole tuple isn't. I think it makes sense to add it after IntroduceLoops and LoopInvariant
(even though CommonArg get some things that LoopInvariant gets, it doesn't get all of them). I also think that
it makes sense to add it before CommonSubexp, since identifying variables could expose more common
subexpressions. I would think a similar thought applies to RedundantTests.

Last edited on 2005-11-30 23:32:23 by StephenWeeks.

MLton Guide (20051202) CommonArg

50

CommonBlock
CommonBlock is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

It eliminates equivalent blocks in a SSA function. The equivalence criteria requires blocks to have no
arguments or statements and transfer via Raise, Return, or Goto of a single global variable.

Implementation

common-block.sig common-block.fun

Details and Notes

Rewrites

 L_X ()
 raise (global_Y)

to

 L_X ()
 L_Y' ()

and adds

 L_Y' ()
 raise (global_Y)

to the SSA function.

•

Rewrites

 L_X ()
 return (global_Y)

to

 L_X ()
 L_Y' ()

and adds

 L_Y' ()
 return (global_Y)

to the SSA function.

•

Rewrites

 L_X ()
 L_Z (global_Y)

•

MLton Guide (20051202) CommonBlock

51

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/common-block.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/common-block.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/common-block.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/common-block.fun?view=markup

to

 L_X ()
 L_Y' ()

and adds

 L_Y' ()
 L_Z (global_Y)

to the SSA function.

The Shrink pass rewrites all uses of L_X to L_Y' and drops L_X.

For example, all uncaught Overflow exceptions in a SSA function share the same raising block.

Last edited on 2005-11-30 23:33:11 by StephenWeeks.

MLton Guide (20051202) CommonBlock

52

CommonSubexp
CommonSubexp is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

It eliminates instances of common subexpressions.

Implementation

common-subexp.sig common-subexp.fun

Details and Notes

In addition to getting the usual sorts of things like

 (w + 0wx1) + (w + 0wx1)

rewritten to

 let val w' = w + 0wx1 in w' + w' end

•

it also gets things like

 val a = Array_array n
 val b = Array_length a

rewritten to

 val a = Array_array n
 val b = n

•

Arith transfers are handled specially. The result of an Arith transfer can be used in common Arith
transfers that it dominates:

 val l = (n + m) + (n + m)

 val k = (l + n) + ((l + m) handle Overflow => ((l + m)
 handle Overflow => l + n))

is rewritten so that (n + m) is computed exactly once, as

•

are (l + n) and (l + m).

Last edited on 2005-11-30 23:34:09 by StephenWeeks.

MLton Guide (20051202) CommonSubexp

53

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/common-subexp.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/common-subexp.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/common-subexp.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/common-subexp.fun?view=markup

CompilationManager
The Compilation Manager (CM) is SML/NJ's mechanism for supporting programming-in-the-very-large. To
aid in porting code from SML/NJ and in developing code simultaneously with MLton and SML/NJ, MLton
supports a very limited subset of CM files. From MLton's point of view, a CM file foo.cm defines a list of
SML source files. The call

mlton foo.cm

is equivalent to compiling an SML program consisting of the concatenation of these files. As always with
MLton, the concatenation must be the whole program you wish to compile.

In its simplest form, a CM file contains the keywords Group is followed by an explicit list of sml files. For
example, if foo.cm contains

Group is
bar.sig
bar.fun
main.sml

then a call mlton foo.cm is equivalent to concatenating the three files together and calling MLton on that
SML file. The list of files defined by a CM file is the same as the order in which the filenames appear in the
CM file. Thus, to MLton, order in a CM file matters. In the above example, if main.sml refers to a structure
defined in bar.fun, then main.sml must appear after bar.fun in the file list.

CM files can also refer to other CM files. A reference to bar.cm from within foo.cm means to include all
of the SML files defined by bar.cm before any of the subsequent files in foo.cm. For example if foo.cm
contains

Group is
bar.cm
main.sml

and bar.cm contains

Group is
bar.sig
bar.fun

then a call to mlton foo.cm is equivalent to compiling the concatenation of bar.sig, bar.fun, and
main.sml.

CM also has a preprocessor mechanism that allows files to be conditionally included. This can be useful when
developing code with SML/NJ and MLton. In SML/NJ, the preprocessor defines the symbol
SMLNJ_VERSION. In MLton, no symbols are defined. So, to conditionally include foo.sml when
compiling under SML/NJ, one can use the following pattern.

if (defined(SMLNJ_VERSION))
foo.sml
endif

To conditionally include foo.sml when compiling under MLton, one can negate the test.

MLton Guide (20051202) CompilationManager

54

http://www.smlnj.org/doc/CM/index.html
http://www.smlnj.org/doc/CM/index.html

if (! defined(SMLNJ_VERSION))
foo.sml
endif

The filenames listed in a CM file can be either absolute paths or relative paths, in which case they are
interpreted relative to the directory containing the CM file. If a CM file refers either directly or indirectly to an
SML source file in more than one way, only the first occurrence of the file is included. Finally, the only valid
file suffixes in a CM file are .cm, .fun, .sig, and .sml.

Comparison with CM

If you are unfamiliar with CM under SML/NJ, then you can skip this section.

MLton supports the full syntax of CM as of SML/NJ version 110.9.1. Extensions since then are unsupported.
Also, many of the syntactic constructs are ignored. The most important difference between the two is that
order in CM files matters to MLton but not to SML/NJ, which performs automatic dependency analysis. Also,
CM supports export filters, which restricts the visibility of modules. MLton ignores export filters. As a
consequence, it is possible that a program that is accepted by SML/NJ's CM might not be accepted by
MLton's CM. In this case, you will have to manually reorder the files and possibly rename modules so that the
concatenation of the files is the program you intend.

CM performs cutoff recompilation to avoid recompiling the entire program, while MLton always compiles the
entire program. CM makes a distinction between groups and libraries, which MLton does not. CM supports
other tools like lex and yacc, while MLton does not. MLton relies on traditional makefiles to use other tools.

Porting SML/NJ CM files to MLton

If you have already created large projects using SML/NJ and CM, there may be a large number of file
dependencies implicit in your sources that are not reflected in your CM files. Because MLton relies on
ordering in CM files, your CM files probably will not work with MLton. To help in porting CM files to
MLton, the MLton distribution includes the sources for a utility, cmcat, that will print an ordered list of files
corresponding to a CM file. See util/cmcat/cmcat.sml for details. Building cmcat requires that you
have already installed a recent version of SML/NJ.

Alternatively, you can convert your CM files to .mlb files. The MLton distribution includes the sources for a
utility, cm2mlb, that will print an ML Basis file with essentially the same semantics as the CM file --
handling the full syntax of CM supported by your installed SML/NJ version and correctly handling export
filters. When cm2mlb encounters a .cm import, it attempts to convert it to a corresponding .mlb import.
CM anchored paths are translated to paths according to a default configuration file (cm2mlb-map). For
example, the default configuration includes

$basis.cm/basis.cm $(SML_LIB)/basis/basis.mlb

to ensure that a $/basis.cm import is translated to a $(SML_LIB)/basis/basis.mlb import. See
util/cm2mlb for details. Building cm2mlb requires that you have already installed a recent version of
SML/NJ.

Last edited on 2005-11-30 23:40:40 by StephenWeeks.

MLton Guide (20051202) CompilationManager

55

CompileTimeOptions
MLton's compile-time options control the name of the output file, the verbosity of compile-time messages,
and whether or not certain optimizations are performed. They also can specify which intermediate files are
saved and can stop the compilation process early, at some intermediate pass, in which case compilation can be
resumed by passing the generated files to MLton. MLton uses the input file suffix to determine the type of
input program. The possibilities are .c, .cm, .mlb, .o, and .sml.

With no arguments, MLton prints the version number and exits. For a usage message, run MLton with an
invalid switch, e.g. mlton -z. In the explanation below and in the usage message, for flags that take a
number of choices (e.g. {true|false}), the first value listed is the default.

Options

-align {4|8} •
Aligns object sizes and doubles in memory by the specified alignment. The default varies depending
on architecture.
-as-opt option•
Pass option to gcc when assembling.
-cc-opt option•
Pass option to gcc when compiling C code.
-codegen {native|bytecode|c} •
Generate native code, byte code, or C code. With -codegen native, MLton typically compiles
more quickly and generates better code.
-const 'name value'•
Set the value of a compile-time constant. Here is a list of available constants, their default values, and
what they control.

Exn.keepHistory {false|true} ♦
Enable MLton.Exn.history. See MLtonExn for details. There is a performance cost to setting
this to true, both in memory usage of exceptions and in run time, because of additional work that
must be performed at each exception construction, raise, and handle.
-default-ann ann•
Specify default ML Basis annotations. For example, -default-ann 'warnUnused true'
causes unused variable warnings to be enabled by default. A default is overridden by the
corresponding annotation in an ML Basis file.
-disable-ann ann•

Ignore the specified ML Basis annotation in every ML Basis file. For example, to see all
match and unused warnings, compile with

-default-ann 'warnUnused true'
-disable-ann forceUsed
-disable-ann nonexhaustiveMatch
-disable-ann redundantMatch
-disable-ann warnUnused

-export-header file•
Write to file C prototypes for all of the functions in the program exported from SML to C.
-ieee-fp {false|true} •
Cause the native code generator to be pedantic about following the IEEE floating point standard. By
default, it is not, because of the performance cost. This only has an effect with -codegen native.

MLton Guide (20051202) CompileTimeOptions

56

-inline n•
Set the inlining threshold used in the optimizer. The threshold is an approximate measure of code size
of a procedure. The default is 320.
-keep {g|o|sml} •

Save intermediate files. If no -keep argument is given, then only the output file is saved.
g generated .S and .c files passed to gcc and the assembler
o object (.o) files
sml SML file

-link-opt option•
Pass option to gcc when linking. You can use this to specify library search paths, e.g.
-link-opt -Lpath, and libraries to link with, e.g. -link-opt -lfoo, or even both at the
same time, e.g. -link-opt '-Lpath -lfoo'. If you wish to pass an option to the linker, you
must use gcc's -Wl, syntax, e.g., -link-opt '-Wl,--export-dynamic'.
-mlb-path-map file•
Use file as an ML Basis path map to define additional MLB path variables. Multiple uses of
-mlb-path-map are allowed, with variable definitions in later path maps taking precedence over
earlier ones.
-output file•
Specify the name of the final output file. The default name is the input file name with its suffix
removed and an appropriate, possibly empty, suffix added.
-profile {no|alloc|count|time} •
Produce an executable that gathers Profiling data. When such an executable is run, it produces an
mlmon.out file.
-profile-branch {false|true} •
If true, the profiler will separately gather profiling data for each branch of a function definition, case
expression, and if expression.
-profile-stack {false|true} •
If true, the executable will gather profiling data for all functions on the stack, not just the currently
executing function. See ProfilingTheStack.
-runtime arg•

Pass argument to the runtime system via @MLton. See RunTimeOptions. The argument will
be processed before other @MLton command line switches. Multiple uses of -runtime are
allowed, and will pass all the arguments in order. If the same runtime switch occurs more than
once, then the last setting will take effect. There is no need to supply the leading @MLton or
the trailing --; these will be supplied automatically.

An argument to -runtime may contain spaces, which will cause the argument to be treated
as a sequence of words by the runtime. For example the command line:

mlton -runtime 'ram-slop 0.4' foo.sml

will cause foo to run as if it had been called like:

foo @MLton ram-slop 0.4 --

An executable created with -runtime stop doesn't process any @MLton arguments. This
is useful to create an executable, e.g. echo, that must treat @MLton like any other
command-line argument.

% mlton -runtime stop echo.sml
% echo @MLton --

MLton Guide (20051202) CompileTimeOptions

57

@MLton --

-show-basis file•
Pretty print to file the basis defined by the input program. See ShowBasis.
-show-def-use file•
Output def-use information to file. Each identifier that is defined appears on a line, followed on
subsequent lines by the position of each use.
-stop {f|g|o|sml|tc} •

Specify when to stop.
f list of files on stdout (only makes sense when input is foo.cm or foo.mlb)
g generated .S and .c files
o object (.o) files
sml SML file (only makes sense when input is foo.cm or foo.mlb)
tc after type checking
If you compile with -stop g or -stop o, you can resume compilation by running MLton
on the generated .c and .S or .o files.

-target {self|...} •
Generate an executable that runs on the specified platform. The default is self, which means to
compile for the machine that MLton is running on. To use any other target, you must first install a
cross compiler.
-target-as-opt target option•
Like -as-opt, this passes option to gcc when assembling, except it only passes option when the
target architecture or operating system is target. Valid values for target are: hppa, powerpc,
sparc, x86, cygwin, darwin, freebsd, linux, mingw, netbsd, openbsd, solaris.
-target-cc-opt target option•
Like -cc-opt, this passes option to gcc when compiling C code, except it only passes option when
the target architecture or operating system is target. Valid values for target are as for
-target-as-opt.
-target-link-opt target option•
Like -link-opt, this passes option to gcc when linking, except it only passes option when the
target architecture or operating system is target. Valid values for target are as for
-target-as-opt.
-verbose {0|1|2|3} •

How verbose to be about what passes are running. The default is 0.
0 silent
1 calls to compiler, assembler, and linker
2 1, plus intermediate compiler passes
3 2, plus some data structure sizes

Last edited on 2005-12-02 06:14:04 by StephenWeeks.

MLton Guide (20051202) CompileTimeOptions

58

CompilerOverview
The following table shows the overall structure of the compiler. IntermediateLanguages are shown in the
center column. The names of compiler passes are listed in the left and right columns.

Compiler Overview
Translation Passes IntermediateLanguage Optimization Passes

Source
FrontEnd

AST
Elaborate

CoreML CoreMLSimplify

Defunctorize
XML XMLSimplify

Monomorphise
SXML SXMLSimplify

ClosureConvert
SSA SSASimplify

ToSSA2
SSA2 SSA2Simplify

ToRSSA
RSSA RSSASimplify

ToMachine
Machine

The Compile functor (compile.sig , compile.fun), controls the high-level view of the compiler passes,
from FrontEnd to code generation.

Last edited on 2005-08-19 15:41:28 by MatthewFluet.

MLton Guide (20051202) CompilerOverview

59

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/main/compile.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/main/compile.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/main/compile.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/main/compile.fun?view=markup

CompilerPassTemplate
An analysis pass for the ZZZ IntermediateLanguage, invoked from ZZZOtherPass. An implementation pass
for the ZZZ IntermediateLanguage, invoked from ZZZSimplify. An optimization pass for the ZZZ
IntermediateLanguage, invoked from ZZZSimplify. A rewrite pass for the ZZZ IntermediateLanguage,
invoked from ZZZOtherPass. A translation pass from the ZZA IntermediateLanguage to the ZZB
IntermediateLanguage.

Description

A short description of the pass.

Implementation

ZZZ.sig ZZZ.fun

Details and Notes

Relevant details and notes.

Last edited on 2005-12-02 04:18:14 by StephenWeeks.

MLton Guide (20051202) CompilerPassTemplate

60

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ZZZ.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ZZZ.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ZZZ.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ZZZ.fun?view=markup

ConcurrentML
Concurrent ML is an SML concurrency library based on synchronous message passing. MLton has an initial

port of CML from SML/NJ, but is missing a thread-safe wrapper around the Basis Library and event-based
equivalents to IO and OS functions.

All of the core CML functionality is present.

structure CML: CML
structure SyncVar: SYNC_VAR
structure Mailbox: MAILBOX
structure Multicast: MULTICAST
structure SimpleRPC: SIMPLE_RPC
structure RunCML: RUN_CML

The RUN_CML signature is minimal.

signature RUN_CML =
sig

val isRunning: unit -> bool
val doit: (unit -> unit) * Time.time option -> OS.Process.status
val shutdown: OS.Process.status -> 'a

end

MLton's RunCML structure does not include all of the cleanup and logging operations of SML/NJ's RunCML
structure. However, the implementation does include the CML.timeOutEvt and CML.atTimeEvt
functions, and a preemptive scheduler that knows to sleep when there are no ready threads and some threads
blocked on time events.

Because MLton does not wrap the Basis Library for CML, the "right" way to call a Basis Library function that
is stateful is to wrap the call with MLton.Thread.atomically.

Usage

You can import the CML Library into an MLB file with $(SML_LIB)/cml/cml.mlb•
If you are porting a project from SML/NJ's CompilationManager to MLton's ML Basis system using
cm2mlb, note that the following map is included by default:

$cml/cml.cm $(SML_LIB)/cml/cml.mlb

This will automatically convert a $cml/cml.cm import in an input .cm file into a
$(SML_LIB)/cml/cml.mlb import in the output .mlb file.

•

Also see

ConcurrentMLImplementation•
eXene•

Last edited on 2005-12-02 03:33:39 by StephenWeeks.

MLton Guide (20051202) ConcurrentML

61

http://cml.cs.uchicago.edu/
http://cml.cs.uchicago.edu/

ConcurrentMLImplementation
Here are some notes on MLton's implementation of ConcurrentML.

Concurrent ML was originally implemented for SML/NJ. It was ported to MLton in the summer of 2004. The
main difference between the implementations is that SML/NJ uses continuations to implement CML threads,
while MLton uses its underlying thread package. Presently, MLton's threads are a little more heavyweight
than SML/NJ's continuations, but it's pretty clear that there is some fat there that could be trimmed.

The implementation of CML in SML/NJ is built upon the first-class continuations of the SMLofNJ.Cont
module.

type 'a cont
val callcc: ('a cont -> 'a) -> 'a
val isolate: ('a -> unit) -> 'a cont
val throw: 'a cont -> 'a -> 'b

The implementation of CML in MLton is built upon the first-class threads of the MLtonThread module.

type 'a t
val new: ('a -> unit) -> 'a t
val prepare: 'a t * 'a -> Runnable.t
val switch: ('a t -> Runnable.t) -> 'a

The port is relatively straightforward, because CML always throws to a continuation at most once. Hence, an
"abstract" implementation of CML could be built upon first-class one-shot continuations, which map equally
well to SML/NJ's continuations and MLton's threads.

The "essence" of the port is to transform:

callcc (fn k => ... throw k' v')

to

switch (fn t => ... prepare (t', v'))

which suffices for the vast majority of the CML implementation.

There was only one complicated transformation: blocking multiple base events. In SML/NJ CML, the
representation of base events is given by:

datatype 'a event_status
= ENABLED of {prio: int, doFn: unit -> 'a}
| BLOCKED of {

 transId: trans_id ref,
 cleanUp: unit -> unit,
 next: unit -> unit
 } -> 'a
type 'a base_evt = unit -> 'a event_status

When synchronizing on a set of base events, which are all blocked, we must invoke each BLOCKED function
with the same transId and cleanUp (the transId is (checked and) set to CANCEL by the cleanUp function,
which is invoked by the first enabled event; this "fizzles" every other event in the synchronization group that

MLton Guide (20051202) ConcurrentMLImplementation

62

later becomes enabled). However, each BLOCKED function is implemented by a callcc, so that when the event
is enabled, it throws back to the point of synchronization. Hence, the next function (which doesn't return) is
invoked by the BLOCKED function to escape the callcc and continue in the thread performing the
synchronization. In SML/NJ this is implemented as follows:

fun ext ([], blockFns) = callcc (fn k => let
val throw = throw k
val (transId, setFlg) = mkFlg()
fun log [] = S.atomicDispatch ()

 | log (blockFn:: r) =
 throw (blockFn {
 transId = transId,
 cleanUp = setFlg,
 next = fn () => log r
 })

in
 log blockFns; error "[log]"

end)

(Note that S.atomicDispatch invokes the continuation of the next continuation on the ready queue.) This
doesn't map well to the MLton thread model. Although it follows the

callcc (fn k => ... throw k v)

model, the fact that blockFn will also attempt to do

callcc (fn k' => ... next ())

means that the naive transformation will result in nested switch-es.

We need to think a little more about what this code is trying to do. Essentially, each blockFn wants to
capture this continuation, hold on to it until the event is enabled, and continue with next; when the event is
enabled, before invoking the continuation and returning to the synchronization point, the cleanUp and other
event specific operations are performed.

To accomplish the same effect in the MLton thread implementation, we have the following:

datatype 'a status =
 ENABLED of {prio: int, doitFn: unit -> 'a}
| BLOCKED of {transId: trans_id,
 cleanUp: unit -> unit,
 next: unit -> rdy_thread} -> 'a

type 'a base = unit -> 'a status

fun ext ([], blockFns): 'a =
 S.atomicSwitch
 (fn (t: 'a S.thread) =>

let
val (transId, cleanUp) = TransID.mkFlg ()
fun log blockFns: S.rdy_thread =

case blockFns of
 [] => S.next ()
 | blockFn::blockFns =>
 (S.prep o S.new)
 (fn _ => fn () =>

let

MLton Guide (20051202) ConcurrentMLImplementation

63

val () = S.atomicBegin ()
val x = blockFn {transId = transId,

 cleanUp = cleanUp,
 next = fn () => log blockFns}

in S.switch(fn _ => S.prepVal (t, x))
end)

in
 log blockFns

end)

To avoid the nested switch-es, I run the blockFn in it's own thread, whose only purpose is to return to the
synchronization point. This corresponds to the throw (blockFn {...}) in the SML/NJ
implementation. I'm worried that this implementation might be a little expensive, starting a new thread for
each blocked event (when there are only multiple blocked events in a synchronization group). But, I don't see
another way of implementing this behavior in the MLton thread model.

Note that another way of thinking about what is going on is to consider each blockFn as prepending a
different set of actions to the thread t. It might be possible to give a MLton.Thread.unsafePrepend.

fun unsafePrepend (T r: 'a t, f: 'b -> 'a): 'b t =
let

val t =
case !r of

 Dead => raise Fail "prepend to a Dead thread"
 | New g => New (g o f)
 | Paused (g, t) => Paused (fn h => g (f o h), t)

in (* r := Dead; *)
 T (ref t)

end

I have commented out the r := Dead, which would allow multiple prepends to the same thread (i.e., not
destroying the original thread in the process). Of course, only one of the threads could be run: if the original
thread were in the Paused state, then multiple threads would share the underlying runtime/primitive thread.
Now, this matches the "one-shot" nature of CML continuations/threads, but I'm not comfortable with
extending MLton.Thread with such an unsafe operation.

Other than this complication with blocking multiple base events, the port was quite routine. (As a very
pleasant surprise, the CML implementation in SML/NJ doesn't use any SML/NJ-isms.) There is a slight
difference in the way in which critical sections are handled in SML/NJ and MLton; since
MLton.Thread.switch _always_ leaves a critical section, it is sometimes necessary to add additional
atomicBegin/Ends to ensure that we remain in a critical section after a thread switch.

While looking at virtually every file in the core CML implementation, I took the liberty of simplifying things
where it seemed possible; in terms of style, the implementation is about half-way between Reppy's original
and MLton's.

Some changes of note:

util/ contains all pertinent data-structures: (functional and imperative) queues, (functional) priority
queues. Hence, it should be easier to switch in more efficient or real-time implementations.

•

core-cml/scheduler.sml: in both implementations, this is where most of the interesting action
takes place. I've made the connection between MLton.Thread.ts and ThreadId.thread_ids
more abstract than it is in the SML/NJ implementation, and encapsulated all of the MLton.Thread
operations in this module.

•

MLton Guide (20051202) ConcurrentMLImplementation

64

eliminated all of the "by hand" inlining•

Future Extensions

The CML documentation says the following:

CML.joinEvt: thread_id -> unit event

joinEvt tid

creates an event value for synchronizing on the termination of the thread with the ID tid. There are three ways
that a thread may terminate: the function that was passed to spawn (or spawnc) may return; it may call the exit
function, or it may have an uncaught exception. Note that joinEvt does not distinguish between these cases;
it also does not become enabled if the named thread deadlocks (even if it is garbage collected).

I believe that the MLton.Finalizable might be able to relax that last restriction. Upon the creation of a
'a Scheduler.thread, we could attach a finalizer to the underlying 'a MLton.Thread.t that
enables the joinEvt (in the associated ThreadID.thread_id) when the 'a MLton.Thread.t
becomes unreachable.

I don't know why CML doesn't have

CML.kill: thread_id -> unit

which has a fairly simple implementation -- setting a kill flag in the thread_id and adjusting the scheduler
to discard any killed threads that it takes off the ready queue. The fairness of the scheduler ensures that a
killed thread will eventually be discarded. The semantics are little murky for blocked threads that are killed,
though. For example, consider a thread blocked on SyncVar.mTake mv and a thread blocked on
SyncVar.mGet mv. If the first thread is killed while blocked, and a third thread does
SyncVar.mPut (mv, x), then we might expect that we'll enable the second thread, and never the first.
But, when only the ready queue is able to discard killed threads, then the SyncVar.mPut could enable the
first thread (putting it on the ready queue, from which it will be discarded) and leave the second thread
blocked. We could solve this by adjusting the TransID.trans_id types and the "cleaner" functions to
look for both canceled transactions and transactions on killed threads.

John Reppy says that MarlowEtAl01 and FlattFindler04 explain why CML.kill would be a bad idea.

Between CML.timeOutEvt and CML.kill, one could give an efficient solution to the recent
comp.lang.ml post about terminating a function that doesn't complete in a given time.

fun timeOut (f: unit -> 'a, t: Time.time): 'a option =
let

val iv = SyncVar.iVar ()
val tid = CML.spawn (fn () => SyncVar.iPut (iv, f ()))

in
 CML.select
 [CML.wrap (CML.timeOutEvt t, fn () => (CML.kill tid; NONE)),
 CML.wrap (SyncVar.iGetEvt iv, fn x => SOME x)]

end

MLton Guide (20051202) ConcurrentMLImplementation

65

Space Safety

There are some CML related posts on the MLton mailing list

http://mlton.org/pipermail/mlton/2004-May/

that discuss concerns that SML/NJ's implementation is not space efficient, because multi-shot continuations
can be held indefinitely on event queues. MLton is better off because of the one-shot nature -- when an event
enables a thread, all other copies of the thread waiting in other event queues get turned into dead threads (of
zero size).

Last edited on 2005-12-02 04:18:52 by StephenWeeks.

MLton Guide (20051202) ConcurrentMLImplementation

66

http://mlton.org/pipermail/mlton/2004-May/
http://mlton.org/pipermail/mlton/2004-May/

ConstantPropagation
Constant propagation is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This is whole-program constant propagation, even through data structures. It also performs globalization of
(small) values computed once.

Uses Multi.

Implementation

constant-propagation.sig constant-propagation.fun

Details and Notes

Last edited on 2005-12-01 02:56:45 by StephenWeeks.

MLton Guide (20051202) ConstantPropagation

67

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/constant-propagation.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/constant-propagation.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/constant-propagation.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/constant-propagation.fun?view=markup

Contact

Mailing lists

There are two mailing lists available.

MLton@mlton.org (subscribe, archive) MLton developers•
MLton-user@mlton.org (subscribe, archive) MLton user community•

In addition to the pipermail archive at mlton.org, there are archives of both MLton and MLton-user that
use Lurker.

Mailing list policy

Both mailing lists are unmoderated. However, we use a whitelist to prevent spam. So, the first time
you send to the list, your mail will be delayed until we add you to the whitelist.

•

Large messages (over 256K) should not be sent. Rather, please send an email containing the
discussion text and a link to any large files. You may use our TemporaryUpload page for uploading
these files.

•

Very active MLton@mlton.org list members who might otherwise be expected to provide a fast
response should send a message when they will be offline for more than a few days. The convention
is to put "userid offline until date" in the subject line to make it easy to scan.

•

IRC

Some MLton developers and users are in channel #sml on http://freenode.net.•

Last edited on 2005-12-01 02:58:05 by StephenWeeks.

MLton Guide (20051202) Contact

68

mailto:MLton@mlton.org
mailto:MLton@mlton.org
http://mlton.org/mailman/listinfo/mlton
http://mlton.org/mailman/listinfo/mlton
http://mlton.org/pipermail/mlton
http://mlton.org/pipermail/mlton
mailto:MLton-user@mlton.org
mailto:MLton-user@mlton.org
http://mlton.org/mailman/listinfo/mlton-user
http://mlton.org/mailman/listinfo/mlton-user
http://mlton.org/pipermail/mlton-user
http://mlton.org/pipermail/mlton-user
http://terpstra.ca/lurker/list/mlton.en.html
http://terpstra.ca/lurker/list/mlton.en.html
http://terpstra.ca/lurker/list/mlton-user.en.html
http://terpstra.ca/lurker/list/mlton-user.en.html
http://lurker.sourceforge.net/
http://lurker.sourceforge.net/
http://mlton.org/TemporaryUpload
http://mlton.org/TemporaryUpload
http://freenode.net
http://freenode.net

Contify
Contify is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

Contification is a compiler optimization that turns a function that always returns to the same place into a
continuation. This exposes control-flow information that is required by many optimizations, including
traditional loop optimizations.

Implementation

contify.sig contify.fun

Details and Notes

See Contification Using Dominators. The intermediate language described in that paper has since evolved to
the SSA IntermediateLanguage; hence, the complication described in Section 6.1 is no longer relevant.

Last edited on 2005-12-01 02:59:40 by StephenWeeks.

MLton Guide (20051202) Contify

69

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/contify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/contify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/contify.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/contify.fun?view=markup

CoreML
Core ML is an IntermediateLanguage, translated from AST by Elaborate, optimized by CoreMLSimplify, and
translated by Defunctorize to XML.

Description

CoreML is polymorphic, higher-order, and has nested patterns.

Implementation

core-ml.sig core-ml.fun

Type Checking

The CoreML IntermediateLanguage has no independent type checker.

Details and Notes

Last edited on 2005-12-01 03:00:12 by StephenWeeks.

MLton Guide (20051202) CoreML

70

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/core-ml/core-ml.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/core-ml/core-ml.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/core-ml/core-ml.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/core-ml/core-ml.fun?view=markup

CoreMLSimplify
The single optimization pass for the CoreML IntermediateLanguage is controlled by the Compile functor (
compile.fun).

The following optimization pass is implemented:

DeadCode•

Last edited on 2005-08-19 15:40:09 by MatthewFluet.

MLton Guide (20051202) CoreMLSimplify

71

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/main/compile.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/main/compile.fun?view=markup

CreatingPages
To create a page on this WebSite, edit an existing page, and add the name of the new page, like FooBar, to
the page contents. When you view the new version of the existing page, a link will have been automatically
created, and if you click on it, you will be given the option to create the new page.

You can also go directly to a new page by entering the page name as a URL into your browser, like
http://mlton.org/FooBar.

You can also type in the page name here to go directly to that page.

Last edited on 2005-12-01 03:02:19 by StephenWeeks.

MLton Guide (20051202) CreatingPages

72

Credits
MLton was designed and implemented by HenryCejtin, MatthewFluet, SureshJagannathan, and
StephenWeeks.

HenryCejtin wrote the IntInf implementation, the original profiler, the original man pages, the
.spec files for the RPMs, and lots of little hacks to speed stuff up.

•

MatthewFluet implemented the X86 native code generator, ported mlprof to work with the native
code generator, did a lot of work on the SSA optimizer, both adding new optimizations and improving
or porting existing optimizations, updated the Basis Library implementation, ported ConcurrentML
and ML-NLFFI to MLton, and implemented the ML Basis system.

•

SureshJagannathan implemented some early inlining and uncurrying optimizations.•
StephenWeeks implemented most of the original version of MLton, and continues to keep his fingers
in most every part.

•

Many people have helped us over the years. Here is an alphabetical list.

JesperLouisAndersen sent several patches to improve the runtime on FreeBSD and ported MLton to
run on NetBSD and OpenBSD.

•

JohnnyAndersen implemented BinIO, modified MLton so it could cross compile to MinGW, and
provided useful discussion about cross-compilation.

•

Alain Deutsch and PolySpace Technologies provided many bug fixes and runtime system
improvements, code to help the Sparc/Solaris port, and funded a number of improvements to MLton.

•

Martin Elsman provided helpful discussions in the development of the ML Basis system.•
Brent Fulgham ported MLton most of the way to MinGW.•
Adam Goode provided the script to build the PDF MLton Guide.•
Simon Helsen provided bug reports, suggestions, and helpful discussions.•
Joe Hurd provided useful discussion and feedback on source-level profiling.•
VesaKarvonen contributed esml-mode.el (see Emacs) and patches for improving match warnings.•
Richard Kelsey provided helpful discussions.•
Geoffrey Mainland helped with FreeBSD packaging.•
TomMurphy wrote the original version of MLton.Syslog as part of his mlftpd project, and has
sent many useful bug reports and suggestions.

•

Michael Neumann helped to patch the runtime to compile under FreeBSD.•
Barak Pearlmutter built the original Debian package for MLton, and helped us to take over the
process.

•

Filip Pizlo ported MLton to Darwin.•
Sam Rushing ported MLton to FreeBSD.•
Jeffrey Mark Siskind provided helpful discussions and inspiration with his Stalin Scheme compiler.•
WesleyTerpstra added support for MLton.Process.create, made a number of contributions to
the ForeignFunctionInterface, and contributed a number of other runtime system patches.

•

Luke Ziarek assisted in porting MLton to Darwin.•

We have also benefited from other software development tools and used code from other sources.

MLton was developed using Standard ML of New Jersey and the Compilation Manager (CM)•
MLton's lexer (mlton/frontend/ml.lex), parser (mlton/frontend/ml.grm), and
precedence-parser (mlton/elaborate/precedence-parse.fun) are modified versions of
code from SML/NJ.

•

MLton Guide (20051202) Credits

73

http://www.polyspace.com/
http://www.polyspace.com/
http://packages.debian.org/mlton
http://packages.debian.org/mlton

The MLton Basis Library implementation of conversions between binary and decimal representations
of reals uses David Gay's gdtoa library.

•

The MLton Basis Library implementation uses modified versions of portions of the the SML/NJ Basis
Library implementation modules OS.IO, Posix.IO, Process, and Unix.

•

The MLton Basis Library implementation uses modified versions of portions of the ML Kit Version
4.1.4 Basis Library implementation modules Path, Time, and Date.

•

Many of the benchmarks come from the SML/NJ benchmark suite.•
Many of the regression tests come from the ML Kit Version 4.1.4 distribution, which borrowed them
from the Moscow ML distribution.

•

MLton uses the [http://www.gnu.org/software/gmp/gmp.html GNU multiprecision library] for its
implementation of IntInf.

•

MLton's implementation of mllex, mlyacc, the ckit Library, Concurrent ML, and ML-NLFFI are
modified versions of code from SML/NJ.

•

Last edited on 2005-12-01 05:16:39 by StephenWeeks.

MLton Guide (20051202) Credits

74

http://www.netlib.org/fp/
http://www.netlib.org/fp/
http://www.dina.kvl.dk/~sestoft/mosml.html
http://www.dina.kvl.dk/~sestoft/mosml.html
http://www.gnu.org/software/gmp/gmp.html

CrossCompiling
MLton's -target flag directs MLton to cross compile an application for another platform. By default,
MLton is only able to compile for the machine it is running on. In order to use MLton as a cross compiler, you
need to do two things.

Install the GCC cross-compiler tools on the host so that GCC can compile to the target.1.
Cross compile the MLton runtime system to build the runtime libraries for the target.2.

To make the terminology clear, we refer to the host as the machine MLton is running on and the target as the
machine that MLton is compiling for.

To build a GCC cross-compiler toolset on the host, you can use the script bin/build-cross-gcc,
available in the MLton sources, as a template. The value of the target variable in that script is important,
since that is what you will pass to MLton's -target flag. Once you have the toolset built, you should be
able to test it by cross compiling a simple hello world program on your host machine.

% gcc -b i386-pc-cygwin -o hello-world hello-world.c

You should now be able to run hello-world on the target machine, in this case, a Cygwin machine.

Next, you must cross compile the MLton runtime system and inform MLton of the availability of the new
target. The script bin/add-cross from the MLton sources will help you do this. Please read the comments
at the top of the script. Here is a sample run adding a Solaris cross compiler.

% add-cross sparc-sun-solaris sun blade
Making runtime.
Building print-constants executable.
Running print-constants on blade.

Running add-cross uses ssh to compile the runtime on the target machine and to create
print-constants, which prints out all of the constants that MLton needs in order to implement the Basis
Library. The script runs print-constants on the target machine (blade in this case), and saves the
output.

Once you have done all this, you should be able to cross compile SML applications. For example,

mlton -target i386-pc-cygwin hello-world.sml

will create hello-world, which you should be able to run from a Cygwin shell on your Windows machine.

Cross-compiling alternatives

Building and maintaining cross-compiling gcc's is complex. You may find it simpler to use
mlton -keep g to generate the files on the host, then copy the files to the target, and then use gcc or
mlton on the target to compile the files.

Last edited on 2005-12-02 04:19:16 by StephenWeeks.

MLton Guide (20051202) CrossCompiling

75

DeadCode
Dead-code elimination is an optimization pass for the CoreML IntermediateLanguage, invoked from
CoreMLSimplify.

Description

This pass eliminates declarations from the Basis Library not needed by the user program.

Implementation

dead-code.sig dead-code.fun

Details and Notes

In order to compile small programs rapidly, a pass of dead code elimination is run in order to eliminate as
much of the Basis Library as possible. The dead code elimination algorithm used is not safe in general, and
only works because the Basis Library implementation has special properties:

it terminates•
it performs no I/O•

The dead code elimination includes the minimal set of declarations from the Basis Library so that there are no
free variables in the user program (or remaining Basis Library implementation). It has a special hack to
include all bindings of the form:

 val _ = ...

There is an ML Basis annotation, deadCode true, that governs which code is subject to this unsafe
dead-code elimination.

Last edited on 2005-12-01 03:28:11 by StephenWeeks.

MLton Guide (20051202) DeadCode

76

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/core-ml/dead-code.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/core-ml/dead-code.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/core-ml/dead-code.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/core-ml/dead-code.fun?view=markup

DeepFlatten
Deep flatten is an optimization pass for the SSA2 IntermediateLanguage, invoked from SSA2Simplify.

Description

This pass flattens into mutable fields of objects and into vectors.

For example, an (int * int) ref is represented by a 2 word object, and an (int * int) array
contains pairs of ints, rather than pointers to pairs of ints.

Implementation

deep-flatten.sig deep-flatten.fun

Details and Notes

Last edited on 2005-12-01 03:29:16 by StephenWeeks.

MLton Guide (20051202) DeepFlatten

77

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/deep-flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/deep-flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/deep-flatten.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/deep-flatten.fun?view=markup

DefineTypeBeforeUse
Standard ML requires types to be defined before they are used. Because of type inference, the use of a type
can be implicit; hence, this requirement is more subtle than it might appear. For example, the following
program is not type correct, because the type of r is t option ref, but t is defined after r.

val r = ref NONE
datatype t = A | B
val () = r := SOME A

MLton reports the following error, indicating that the type defined on line 2 is used on line 1.

Error: z.sml 1.1.
 Type escapes the scope of its definition at z.sml 2.10.
 type: t
 in: val r = ref NONE

While the above example is benign, the following example shows how to cast an integer to a function by
(implicitly) using a type before it is defined. In the example, the ref cell r is of type t option ref, where
t is defined after r, as a parameter to functor F. This example causes PolyML 4.1.3 to seg fault.

val r = ref NONE
functor F (type t

val x: t) =
struct

val () = r := SOME x
fun get () = valOf (!r)

end
structure S1 = F (type t = unit -> unit

val x = fn () => ())
structure S2 = F (type t = int

val x = 13)
val () = S1.get () ()

MLton reports the following error.

Warning: z.sml 1.1.
 Unable to locally determine type of variable: r.
 type: ??? option ref
 in: val r = ref NONE
Error: z.sml 1.1.
 Type escapes the scope of its definition at z.sml 2.17.
 type: t
 in: val r = ref NONE

Last edited on 2005-12-01 03:38:39 by StephenWeeks.

MLton Guide (20051202) DefineTypeBeforeUse

78

DefinitionOfStandardML
The Definition of Standard ML (Revised) is a terse and formal specification of Standard ML's syntax and
semantics. The language specified by this book is often referred to as SML 97.

There is an older version of the definition, published in 1990, which has an accompanying commentary that
introduces and explains the notation and approach. The same notation is used in the SML 97 definition, so it is
worth purchasing the older definition and commentary if you intend a close study of the definition.

Last edited on 2004-12-28 19:55:24 by StephenWeeks.

MLton Guide (20051202) DefinitionOfStandardML

79

Defunctorize
Defunctorize is a translation pass from the CoreML IntermediateLanguage to the XML
IntermediateLanguage.

Description

This pass converts a CoreML program to an XML program by performing:

linearization•
MatchCompile•
LookupConstants•
polymorphic val dec expansion•
datatype lifting (to the top-level)•

Implementation

defunctorize.sig defunctorize.fun

Details and Notes

This pass is grossly misnamed and does not perform defunctorization.

Datatype Lifting

This pass moves all datatype declarations to the top level.

Standard ML datatype declarations can contain type variables that are not bound in the declaration itself.
For example, the following program is valid.

fun 'a f (x: 'a) =
let

datatype 'b t = T of 'a * 'b
val y: int t = T (x, 1)

in
13

end

Unfortunately, the datatype declaration can not be immediately moved to the top level, because that would
leave 'a free.

datatype 'b t = T of 'a * 'b
fun 'a f (x: 'a) =
 let
 val y: int t = T (x, 1)
 in
 13
 end

In order to safely move datatypes, this pass must close them, as well as add any free type variables as extra
arguments to the type constructor. For example, the above program would be translated to the following.

MLton Guide (20051202) Defunctorize

80

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/defunctorize/defunctorize.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/defunctorize/defunctorize.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/defunctorize/defunctorize.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/defunctorize/defunctorize.fun?view=markup

datatype ('a, 'b) t = T of 'a * 'b
fun 'a f (x: 'a) =
 let
 val y: ('a, int) t = T (x, 1)
 in
 13
 end

Historical Notes

The Defunctorize pass originally eliminated Standard ML functors by duplicating their body at each
application. These duties have been adopted by the Elaborate pass.

Last edited on 2005-12-02 04:19:26 by StephenWeeks.

MLton Guide (20051202) Defunctorize

81

Developers
Here is a picture of the MLton team at a meeting in Chicago in August 2003. From left to right we have:

StephenWeeks MatthewFluet HenryCejtin SureshJagannathan

image

Also see the Credits for a list of specific contributions.

Developers list

A number of people read the developers mailing list, MLton@mlton.org, and make contributions there.
Here's a list of those who have a page here.

AndreiFormiga•
JesperLouisAndersen•
JohnnyAndersen•
MichaelNorrish•
MikeThomas•
RayRacine•
WesleyTerpstra•

Last edited on 2005-12-01 03:45:09 by StephenWeeks.

MLton Guide (20051202) Developers

82

http://mlton.org/pages/Developers/attachments/team.jpg?ts=1098901016
mailto:MLton@mlton.org
mailto:MLton@mlton.org

Development
This page is the central point for MLton development.

Access the Sources.•
Ideas for Projects to improve MLton.•
Developers that are or have been involved in the project.•
Help maintain and improve the WebSite.•

Notes

CompilerOverview•
CrossCompiling•
License•
PortingMLton•
ReleaseChecklist•
SelfCompiling•

Last edited on 2005-04-22 19:59:46 by StephenWeeks.

MLton Guide (20051202) Development

83

Documentation
Documentation is available on the following topics.

Standard ML•
Basis Library♦
Additional libraries♦

Installing MLton•
Using MLton•

Foreign function interface (FFI)♦
Manual page (compile-time options run-time options)♦
ML Basis system♦
MLton structure♦
Platform-specific notes♦
Profiling♦
Type checking♦

About MLton•
Credits♦
Drawbacks♦
Features♦
History♦
License♦
Talk♦

MLLex pdf•
MLYacc pdf•
References•

Last edited on 2005-12-01 19:30:55 by StephenWeeks.

MLton Guide (20051202) Documentation

84

http://mlton.org/pages/Documentation/attachments/mllex.pdf
http://mlton.org/pages/Documentation/attachments/mllex.pdf
http://mlton.org/pages/Documentation/attachments/mlyacc.pdf
http://mlton.org/pages/Documentation/attachments/mlyacc.pdf

Drawbacks
MLton has several drawbacks due to its use of whole-program compilation.

Large compile-time memory requirement.•
Because MLton performs whole-program analysis and optimization, compilation requires a large
amount of memory. For example, compiling MLton (over 140K lines) requires at least 512M RAM.
Long compile times.•
Whole-program compilation can take a long time. For example, compiling MLton (over 140K lines)
on a 1.6GHz machine takes five to ten minutes.
No interactive top level.•

Because of whole-program compilation, MLton does not provide an interactive top level. In particular, it does
not implement the optional Basis Library function use.

Last edited on 2005-12-02 04:19:39 by StephenWeeks.

MLton Guide (20051202) Drawbacks

85

Eclipse
Eclipse is an open, extensible IDE.

There has been some talk on the MLton mailing list about adding support to Eclipse for MLton/SML, and in
particular, using http://eclipsefp.sourceforge.net/. So far, we are unaware of any progress along these lines.

Last edited on 2005-03-08 06:46:15 by StephenWeeks.

MLton Guide (20051202) Eclipse

86

http://eclipse.org/
http://eclipse.org/
http://eclipsefp.sourceforge.net/

EditingPages
You can help maintain this WebSite and improve a page's contents by using the "Edit" link found at the
bottom of that page. Pages are written using MoinMoin's wiki markup language. You can practice editing in
the WikiSandBox.

Before you begin editing, you must create a user account. When you do so, please also create a home page
(like StephenWeeks) so we know who you are. See our AccessControl policy for who is allowed to edit what.

By contributing to this web site, you agree to dedicate your contribution to the public domain. For more
details, please see our License.

Last edited on 2005-12-01 20:16:41 by StephenWeeks.

MLton Guide (20051202) EditingPages

87

http://moinmoin.wikiwikiweb.de/HelpOnEditing
http://moinmoin.wikiwikiweb.de/HelpOnEditing
http://mlton.org/WikiSandBox
http://mlton.org/WikiSandBox
http://mlton.org/Preferences
http://mlton.org/Preferences

Elaborate
Elaborate is a translation pass from the AST IntermediateLanguage to the CoreML IntermediateLanguage.

Description

This pass performs type inference and type checking according to the Definition. It also defunctorizes the
program, eliminating all module-level constructs.

Implementation

elaborate.sig elaborate.fun
elaborate-env.sig elaborate-env.fun
elaborate-modules.sig elaborate-modules.fun
elaborate-core.sig elaborate-core.fun
elaborate

Details and Notes

At the modules level, the Elaborate pass:

elaborates signatures with interfaces (see interface.sig and interface.fun).•
The main trick is to use disjoint sets to efficiently handle sharing of tycons and of structures and then
to copy signatures as dags rather than as trees.
checks functors at the point of definition, using functor summaries to speed up checking of functor
applications.

•

When a functor is first type checked, we keep track of the dummy argument structure and the dummy
result structure, as well as all the tycons that were created while elaborating the body. Then, if we
later need to type check an application of the functor (as opposed to defunctorize an application), we
pair up tycons in the dummy argument structure with the actual argument structure and then replace
the dummy tycons with the actual tycons in the dummy result structure, yielding the actual result
structure. We also generate new tycons for all the tycons that we created while originally elaborating
the body.
handles opaque signature constraints.•

This is implemented by building a dummy structure realized from the signature, just as we would for a functor
argument when type checking a functor. The dummy structure contains exactly the type information that is in
the signature, which is what opacity requires. We then replace the variables (and constructors) in the dummy
structure with the corresponding variables (and constructors) from the actual structure so that the translation to
CoreML uses the right stuff. For each tycon in the dummy structure, we keep track of the corresponding type
structure in the actual structure. This is used when producing the CoreML types (see expandOpaque in
type-env.sig and type-env.fun).

Then, within each structure or functor body, for each declaration (<dec> in the Standard ML
grammar), the Elaborate pass does three steps:

ScopeInference1.
2. PrecedenceParse♦

_{ex,im}port expansion♦

MLton Guide (20051202) Elaborate

88

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate-env.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate-env.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate-env.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate-env.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate-modules.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate-modules.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate-modules.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate-modules.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate-core.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate-core.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate-core.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/elaborate-core.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/interface.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/interface.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/interface.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/interface.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/type-env.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/type-env.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/type-env.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/type-env.fun?view=markup

profiling insertion♦
unification♦

Overloaded {constant, function, record pattern} resolution3.

Defunctorization

The Elaborate pass performs a number of duties historically assigned to the Defunctorize pass.

As part of the Elaborate pass, all module level constructs (open, signature, structure, functor,
long identifiers) are removed. This works because the Elaborate pass assigns a unique name to every type and
variable in the program. This also allows the Elaborate pass to eliminate local declarations, which are
purely for namespace management.

Examples

Here are a number of examples of elaboration.

All variables bound in val declarations are renamed.

val x = 13
val y = x

val x_0 = 13
val y_0 = x_0

•

All variables in fun declarations are renamed.

fun f x = g x
and g y = f y

fun f_0 x_0 = g_0 x_0
and g_0 y_0 = f_0 y_0

•

Type abbreviations are removed, and the abbreviation is expanded wherever it is used.

type 'a u = int * 'a
type 'b t = 'b u * real
fun f (x : bool t) = x

fun f_0 (x_0 : (int * bool) * real) = x_0

•

Exception declarations create a new constructor and rename the type.

type t = int
exception E of t * real

exception E_0 of int * real

•

The type and value constructors in datatype declarations are renamed.

datatype t = A of int | B of real * t

datatype t_0 = A_0 of int | B_0 of real * t_0

•

Local declarations are moved to the top-level. The environment keeps track of the variables in scope.

val x = 13
local val x = 14
in val y = x

•

MLton Guide (20051202) Elaborate

89

end
val z = x

val x_0 = 13
val x_1 = 14
val y_0 = x_1
val z_0 = x_0

Structure declarations are eliminated, with all declarations moved to the top level. Long identifiers are
renamed.

structure S =
struct

type t = int
val x : t = 13

end
val y : S.t = S.x

val x_0 : int = 13
val y_0 : int = x_0

•

Open declarations are eliminated.

val x = 13
val y = 14
structure S =

struct
val x = 15

end
open S
val z = x + y

val x_0 = 13
val y_0 = 14
val x_1 = 15
val z_0 = x_1 + y_0

•

Functor declarations are eliminated, and the body of a functor is duplicated wherever the functor is
applied.

functor F(val x : int) =
struct
val y = x

end
structure F1 = F(val x = 13)
structure F2 = F(val x = 14)
val z = F1.y + F2.y

val x_0 = 13
val y_0 = x_0
val x_1 = 14
val y_1 = x_1
val z_0 = y_0 + y_1

•

Signature constraints are eliminated. Note that signatures do affect how subsequent variables are
renamed.

val y = 13
structure S : sig

val x : int
end =

struct

•

MLton Guide (20051202) Elaborate

90

val x = 14
val y = x

end
open S
val z = x + y

val y_0 = 13
val x_0 = 14
val y_1 = x_0
val z_0 = x_0 + y_0

Last edited on 2005-12-01 03:54:13 by StephenWeeks.

MLton Guide (20051202) Elaborate

91

Emacs

SML Modes

There are a few Emacs modes for SML.

sml-mode•
http://www.xemacs.org/Documentation/packages/html/sml-mode_3.html♦
http://www.smlnj.org/doc/Emacs/sml-mode.html♦

mlton.el contains the Emacs lisp that StephenWeeks uses to interact with MLton (in addition to
using sml-mode).

•

http://primate.net/~itz/mindent.tar, developed by Ian Zimmerman, who writes:•

Unlike the widespread sml-mode.el it doesn't try to indent code based on ML syntax. I gradually got
sceptical about this approach after writing the initial indentation support for caml mode and watching it bloat
insanely as the language added new features. Also, any such attempts that I know of impose a particular
coding style, or at best a choice among a limited set of styles, which I now oppose. Instead my mode is based
on a generic package which provides manual bindable commands for common indentation operations
(example: indent the current line under the n-th occurrence of a particular character in the previous non-blank
line).

MLB modes

There is a mode for editing ML Basis files.

esml-mlb-mode.el•

Error messages

MLton's error messages are not in the format that the Emacs next-error parser natively understands.
There are a couple of ways to fix this. The easiest way is to add the following to your .emacs to cause
Emacs to recognize MLton's error messages.

(require 'compile)
(add-to-list 'compilation-error-regexp-alist
 '("^Error: \\([^\t\n]*\\) \\([0-9]+\\)\\.\\([0-9]+\\)\\.$"
 1 2 3))

Alternatively, you could use a sed script to rewrite MLton's errors. Here is one such script:

sed -e 's/^\([W|E].*\): \([^]*\) \([0-9][0-9]*\)\.\([0-9][0-9]*\)\./\2:\3:\1:\4/'

Last edited on 2005-12-01 03:57:27 by StephenWeeks.

MLton Guide (20051202) Emacs

92

http://www.xemacs.org/Documentation/packages/html/sml-mode_3.html
http://www.xemacs.org/Documentation/packages/html/sml-mode_3.html
http://www.smlnj.org/doc/Emacs/sml-mode.html
http://www.smlnj.org/doc/Emacs/sml-mode.html
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/emacs/mlton.el?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/emacs/mlton.el?view=markup
http://primate.net/~itz/mindent.tar
http://primate.net/~itz/mindent.tar
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/emacs/esml-mlb-mode.el?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/emacs/esml-mlb-mode.el?view=markup

Enscript
GNU Enscript converts ASCII files to PostScript, HTML, and other output languages, applying language

sensitive highlighting (similar to Emacs's font lock mode). Here are a few states files for highlighting
Standard ML.

sml_simple.st -- Provides highlighting of keywords, string and character constants, and (nested)
comments.

(* Comments (* can be nested *) *)
structure S = struct
val x = (1, 2, "three")

end

•

sml_verbose.st -- Supersedes the above, adding highlighting of numeric constants. Due to the
limited parsing available, numeric record labels are highlighted as numeric constants, in all contexts.
Likewise, a binding precedence separated from infix or infixr by a newline is highlighted as a
numeric constant and a numeric record label selector separated from # by a newline is highlighted as
a numeric constant.

structure S = struct
(* These look good *)
val x = (1, 2, "three")
val z = #2 x

(* Although these look bad (not all the numbers are constants), *
 * they never occur in practice, as they are equivalent to the above. *)
val x = {1 = 1, 3 = "three", 2 = 2}
val z = #

2 x
end

•

sml_fancy.st -- Supersedes the above, adding highlighting of type and constructor bindings,
highlighting of explicit binding of type variables at val and fun declarations, and separate
highlighting of core and modules level keywords. Due to the limited parsing available, it is assumed
that the input is a syntactically correct, top-level declaration.

structure S = struct
val x = (1, 2, "three")
datatype 'a t = T of 'a

and u = U of v * v
withtype v = {left: int t, right: int t}
exception E1 of int and E2
fun 'a id (x: 'a) : 'a = x

(* Although this looks bad (the explicitly bound type variable 'a is *
 * not highlighted), it is unlikely to occur in practice. *)
val

 'a id = fn (x : 'a) => x
end

•

sml_gaudy.st -- Supersedes the above, adding highlighting of type annotations, in both expressions
and signatures. Due to the limited parsing available, it is assumed that the input is a syntactically
correct, top-level declaration.

signature S = sig
type t
val x : t

•

MLton Guide (20051202) Enscript

93

http://people.ssh.com/mtr/genscript
http://people.ssh.com/mtr/genscript
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/enscript/sml_simple.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/enscript/sml_simple.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/enscript/sml_verbose.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/enscript/sml_verbose.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/enscript/sml_fancy.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/enscript/sml_fancy.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/enscript/sml_gaudy.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/enscript/sml_gaudy.st?view=markup

val f : t * int -> int
end
structure S : S = struct
datatype t = T of int
val x : t = T 0
fun f (T x, i : int) : int = x + y
fun 'a id (x: 'a) : 'a = x

end

Install and use

Version 1.6.3 of GNU Enscript•
Copy all files to /usr/share/enscript/hl/ or .enscript/ in your home directory.♦
Invoke enscript with --highlight=sml_simple (or
--highlight=sml_verbose or --highlight=sml_fancy or
--highlight=sml_gaudy).

♦

Version 1.6.1 of GNU Enscript•
Append sml_all.st to /usr/share/enscript/enscript.st♦
Invoke enscript with --pretty-print=sml_simple (or
--pretty-print=sml_verbose or --pretty-print=sml_fancy or
--pretty-print=sml_gaudy).

♦

This WebSite uses sml_fancy to pretty-print Standard ML source code. Comments and suggestions should
be directed to MatthewFluet.

Last edited on 2005-12-02 03:28:59 by StephenWeeks.

MLton Guide (20051202) Enscript

94

http://people.ssh.com/mtr/genscript
http://people.ssh.com/mtr/genscript
http://people.ssh.com/mtr/genscript
http://people.ssh.com/mtr/genscript
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/enscript/sml_all.st?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/enscript/sml_all.st?view=markup

EqualityType
An equality type is a type to which PolymorphicEquality can be applied. The Definition and the Basis
Library precisely spell out which types are equality types.

bool, char, IntInf.int, Int<N>.int, string, and Word<N>.word are equality types.•
for any t, both t array and t ref are equality types.•
if t is an equality type, then t list, and t vector are equality types.•
if t1, ..., tn are equality types, then t1 * ... * tn and {l1: t1, ..., ln: tn} are
equality types.

•

if t1, ..., tn are equality types and t AdmitsEquality, then (t1, ..., tn) t is an equality type.•

To check that a type t is an equality type, use the following idiom.

structure S: sig eqtype t end =
struct

type t = ...
end

Notably, exn and real are not equality types. Neither is t1 -> t2, for any t1 and t2.

Equality on arrays and ref cells is by identity, not structure. For example, ref 13 = ref 13 is false.
On the other hand, equality for lists, strings, and vectors is by structure, not identity. For example, the
following equalities hold.

[1, 2, 3] = 1 :: [2, 3]
"foo" = concat ["f", "o", "o"]
Vector.fromList [1, 2, 3] = Vector.tabulate (3, fn i => i + 1)

Last edited on 2005-12-02 01:19:02 by StephenWeeks.

MLton Guide (20051202) EqualityType

95

EqualityTypeVariable
An equality type variable is a type variable that starts with two or more primes, as in ''a or ''b. The
canonical use of equality type variables is in specifying the type of the PolymorphicEquality function, which
is ''a * ''a -> bool. Equality type variables ensure that polymorphic equality is only used on equality
types, by requiring that at every use of a polymorphic value, equality type variables are instantiated by
equality types.

For example, the following program is type correct because polymorphic equality is applied to variables of
type ''a.

fun f (x: ''a, y: ''a): bool = x = y

On the other hand, the following program is not type correct, because polymorphic equality is applied to
variables of type 'a, which is not an equality type.

fun f (x: 'a, y: 'a): bool = x = y

MLton reports the following error, indicating that polymorphic equality expects equality types, but didn't get
them.

Error: z.sml 1.32.
 Function applied to incorrect argument.
 expects: [<equality>] * [<equality>]
 but got: [<non-equality>] * [<non-equality>]
 in: = (x, y)

As an example of using such a function that requires equality types, suppose that f has polymorphic type
''a -> unit. Then, f 13 is type correct because int is an equality type. On the other hand, f 13.0
and f (fn x => x) are not type correct, because real and arrow types are not equality types. We can
test these facts with the following short programs. First, we verify that such an f can be applied to integers.

functor Ok (val f: ''a -> unit): sig end =
struct

val () = f 13
val () = f 14

end

We can do better, and verify that such an f can be applied to any integer.

functor Ok (val f: ''a -> unit): sig end =
struct

fun g (x: int) = f x
end

Even better, we don't need to introduce a dummy function name; we can use a type constraint.

functor Ok (val f: ''a -> unit): sig end =
struct

val _ = f: int -> unit
end

Even better, we can use a signature constraint.

MLton Guide (20051202) EqualityTypeVariable

96

functor Ok (S: sig val f: ''a -> unit end):
sig val f: int -> unit end = S

This functor concisely verifies that a function of polymorphic type ''a -> unit can be safely used as a
function of type int -> unit.

As above, we can verify that such an f can not be used at non equality types.

functor Bad (S: sig val f: ''a -> unit end):
sig val f: real -> unit end = S

functor Bad (S: sig val f: ''a -> unit end):
sig val f: ('a -> 'a) -> unit end = S

For each of these programs, MLton reports the following error.

Error: z.sml 2.4.
 Variable type in structure disagrees with signature.
 variable: f
 structure: [<equality>] -> _
 signature: [<non-equality>] -> _

Equality type variables in type and datatype declarations

Equality type variables can be used in type and datatype declarations; however they play no special role. For
example,

type 'a t = 'a * int

is completely identical to

type ''a t = ''a * int

In particular, such a definition does not require that t only be applied to equality types.

Similarly,

datatype 'a t = A | B of 'a

is completely identical to

datatype ''a t = A | B of ''a

Last edited on 2005-12-01 04:00:38 by StephenWeeks.

MLton Guide (20051202) EqualityTypeVariable

97

Experimental
This page is for experimental releases of MLton. These versions are not as well tested as our public
releases, and may not be available for our all our usual platforms.

Last edited on 2005-12-02 07:12:18 by StephenWeeks.

MLton Guide (20051202) Experimental

98

http://mlton.org/Download
http://mlton.org/Download
http://mlton.org/Download

FAQ
Feel free to ask questions and to update answers by editing this page. Since we try to make as much
information as possible available on the web site and we like to avoid duplication, many of the answers are
simply links to a web page that answers the question.

How do you pronounce MLton?

Pronounce

What SML software has been ported to MLton?

Libraries

What graphical libraries are available for MLton?

Libraries

How does MLton's performance compare to other SML
compilers and to other languages?

MLton has excellent performance.

Does MLton treat monomorphic arrays and vectors specially?

MLton implements monomorphic arrays and vectors (e.g. BoolArray, Word8Vector) exactly as
instantiations of their polymorphic counterpart (e.g. bool array, Word8.word vector). Thus, there is
no need to use the monomorphic versions except when required to interface with the Basis Library or for
portability with other SML implementations.

Why do I get a Segfault/Bus error in a program that uses
IntInf/LargeInt to calculate numbers with several hundred
thousand digits?

GnuMP

How can I decrease compile-time memory usage?

Compile with -verbose 3 to find out if the problem is due to an SSA optimization pass. If so,
compile with -drop-pass pass to skip that pass.

•

Compile with @MLton hash-cons 0.5 --, which will instruct the runtime to hash cons the
heap every other GC.

•

Compile with -polyvariance false, which is an undocumented option that causes less code
duplication.

•

Also, please Contact us to let us know the problem to help us better understand MLton's limitations.

MLton Guide (20051202) FAQ

99

How do I see what has changed recently in the wiki?

RecentChanges

How portable is SML code across SML compilers?

StandardMLPortability

Last edited on 2005-12-02 01:19:12 by StephenWeeks.

MLton Guide (20051202) FAQ

100

http://mlton.org/RecentChanges
http://mlton.org/RecentChanges

Features
MLton has the following features.

Portability

Runs on a variety of platforms.•
hppa♦

Debian Linux◊
PowerPC♦

Darwin (Mac OS X)◊
Debian Linux◊

X86:♦
Cygwin/Windows◊
FreeBSD◊

Linux (Debian, Red Hat, ...)◊
MinGW/Windows◊
NetBSD◊
OpenBSD◊

Sparc♦
Debian Linux◊
Solaris◊

Robustness

Supports the full SML 97 language as given in The Definition of Standard ML (Revised).•
If there is a program that is valid according to The Definition that is rejected by MLton, or a program
that is invalid according to the Definition that is accepted by MLton, it is a bug. For a list of known
bugs, see UnresolvedBugs.
A complete implementation of the Basis Library.•
MLton's implementation matches latest Basis Library specification, and includes a complete
implementation of all the required modules, as well as many of the optional modules.
Generates standalone executables.•
No additional code or libraries are necessary in order to run an executable, except for the standard
shared libraries. MLton can also generate statically linked executables.
Compiles large programs.•
MLton is sufficiently efficient and robust that it can compile large programs, including itself (over
140K lines). The distributed version of MLton was compiled by MLton.
Support for large amounts of memory (up to 4G).•
Array lengths up to 231 - 1, the largest possible twos-complement 32 bit integer.•
Support for large files, using 64-bit file positions.•

Performance

Executables have excellent running times.•
Generates small executables.•
MLton takes advantage of whole-program compilation to perform very aggressive dead-code
elimination, which often leads to smaller executables than with other SML compilers.
Native integers, reals, and words.•

MLton Guide (20051202) Features

101

http://www.cygwin.com
http://www.cygwin.com
http://www.freebsd.org
http://www.freebsd.org
http://mingw.org
http://mingw.org
http://www.netbsd.org
http://www.netbsd.org
http://www.openbsd.org
http://www.openbsd.org

In MLton, integers and words are 32 bits and arithmetic does not have any overhead due to tagging or
boxing. Also, reals are stored unboxed, avoiding any overhead due to boxing.
Unboxed native arrays.•
In MLton, an array (or vector) of integers, reals, or words uses the natural C-like representation. This
is fast and supports easy exchange of data with C. Monomorphic arrays (and vectors) use the same
C-like representations as their polymorphic counterparts.
Multiple garbage collection strategies.•
Fast arbitrary precision arithmetic (IntInf) based on the GnuMP. For IntInf intensive programs,
MLton can be an order of magnitude or more faster than Poly/ML or SML/NJ.

•

Tools

Source-level Profiling of both time and allocation.•
MLLex lexer generator•
MLYacc parser generator•

Extensions

A simple and fast C ForeignFunctionInterface that supports calling from SML to C and from C to
SML.

•

The ML Basis system for programming in the very large, separate delivery of library sources, and
more.

•

A number of extension libraries that provide useful functionality that cannot be implemented with the
Basis Library. See below for an overview and MLtonStructure for details.

•

continuations♦
MLton supports continuations via callcc and throw.
finalization♦
MLton supports finalizable values of arbitrary type.
interval timers♦
MLton supports the functionality of the C setitimer function.
random numbers♦
MLton has functions similar to the C rand and srand functions, as well as support for
access to /dev/random and /dev/urandom.
resource limits♦
MLton has functions similar to the C getrlimit and setrlimit functions.
resource usage♦
MLton supports a subset of the functionality of the C getrusage function.
signal handlers♦
MLton supports signal handlers written in SML. Signal handlers run in a separate MLton
thread, and have access to the thread that was interrupted by the signal. Signal handlers can be
used in conjunction with threads to implement preemptive multitasking.
size primitive♦
MLton includes a primitive that returns the size (in bytes) of any object. This can be useful in
understanding the space behavior of a program.
system logging♦
MLton has a complete interface to the C syslog function.
threads♦
MLton has support for its own threads, upon which either preemptive or non-preemptive
multitasking can be implemented. MLton also has support for Concurrent ML (CML).
weak pointers♦

MLton Guide (20051202) Features

102

MLton supports weak pointers, which allow the garbage collector to reclaim objects that it
would otherwise be forced to keep. Weak pointers are also used to provide finalization.
world save and restore♦

MLton has a facility for saving the entire state of a computation to a file and restarting it later. This facility
can be used for staging and for checkpointing computations. It can even be used from within signal handlers,
allowing interrupt driven checkpointing.

Last edited on 2005-12-01 04:12:19 by StephenWeeks.

MLton Guide (20051202) Features

103

FirstClassPolymorphism
First-class polymorphism is the ability to treat polymorphic functions just like other values: pass them as
arguments, store them in data structures, etc. Although Standard ML does have polymorphic functions, it does
not support first-class polymorphism.

For example, the following declares and uses the polymorphic function id.

val id = fn x => x
val _ = id 13
val _ = id "foo"

If SML supported first-class polymorphism, we could write the following.

fun useId id = (id 13; id "foo")

However, this does not type check. MLton reports the following error.

Error: z.sml 1.24.
 Function applied to incorrect argument.
 expects: [int]
 but got: [string]
 in: id "foo"

The error message arises because MLton infers from id 13 that id accepts an integer argument, but that
id "foo" is passing a string. Using explicit types sheds some light on the problem.

fun useId (id: 'a -> 'a) = (id 13; id "foo")

On this, MLton reports the following errors.

Error: z.sml 1.29.
 Function applied to incorrect argument.
 expects: ['a]
 but got: [int]
 in: id 13
Error: z.sml 1.36.
 Function applied to incorrect argument.
 expects: ['a]
 but got: [string]
 in: id "foo"

The errors arise because the argument id is not polymorphic; rather, it is monomorphic, with type
'a -> 'a. It is perfectly valid to apply id to a value of type 'a, as in the following

fun useId (id: 'a -> 'a, x: 'a) = id x (* type correct *)

So, what is the difference between the type specification on id in the following two declarations?

val id: 'a -> 'a = fn x => x
fun useId (id: 'a -> 'a) = (id 13; id "foo")

While the type specifications on id look identical, they mean different things. The difference can be made
clearer by explicitly scoping the type variables.

MLton Guide (20051202) FirstClassPolymorphism

104

val 'a id: 'a -> 'a = fn x => x
fun 'a useId (id: 'a -> 'a) = (id 13; id "foo") (* type error *)

In val 'a id, the type variable scoping means that for any 'a, id has type 'a -> 'a. Hence, id can be
applied to arguments of type int, real, etc. Similarly, in fun 'a useId, the scoping means that useId
is a polymorphic function that for any 'a takes a function of type 'a -> 'a and does something. Thus,
useId could be applied to a function of type int -> int, real -> real, etc.

One could imagine an extension of SML that allowed scoping of type variables at places other than fun or
val declarations, as in the following.

fun useId (id: ('a).'a -> 'a) = (id 13; id "foo") (* not SML *)

Such an extension would need to be thought through very carefully, as it could cause significant
complications with TypeInference, possible even undecidability.

Last edited on 2005-12-01 04:14:09 by StephenWeeks.

MLton Guide (20051202) FirstClassPolymorphism

105

Flatten
Flatten is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass flattens arguments to SSA constructors, blocks, and functions.

If a tuple is explicitly available at all uses of a function (resp. block), then:

The formals and call sites are changed so that the components of the tuple are passed.•
The tuple is reconstructed at the beginning of the body of the function (resp. block).•

Similarly, if a tuple is explicitly available at all uses of a constructor, then:

The constructor argument datatype is changed to flatten the tuple type.•
The tuple is passed flat at each ConApp.•
The tuple is reconstructed at each Case transfer target.•

Implementation

flatten.sig flatten.fun

Details and Notes

Last edited on 2005-12-01 04:41:06 by MatthewFluet.

MLton Guide (20051202) Flatten

106

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/flatten.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/flatten.fun?view=markup

ForLoops
A for-loop is typically used to iterate over a range of consecutive integers that denote indices of some sort.
For example, in OCaml a for-loop takes either the form

for <name> = <lower> to <upper> do <body> done

or the form

for <name> = <upper> downto <lower> do <body> done

Some languages provide considerably more flexible for-loop or foreach-constructs.

A bit surprisingly, Standard ML provides special syntax for while-loops, but not for for-loops. Indeed, in
SML, many uses of for-loops are better expressed using app, foldl/foldr, map and many other
higher-order functions provided by the Basis Library for manipulating lists, vectors and arrays. However, the
Basis Library does not provide a function for iterating over a range of integer values. Fortunately, it is very
easy to write one.

A fairly simple design

The following implementation imitates both the syntax and semantics of the OCaml for-loop.

datatype for = to of int * int
| downto of int * int

infix to downto

val for =
fn lo to up =>

 (fn f => let fun loop lo = if lo > up then ()
else (f lo; loop (lo+1))

in loop lo end)
 | up downto lo =>
 (fn f => let fun loop up = if up < lo then ()

else (f up; loop (up-1))
in loop up end)

For example,

for (1 to 9)
 (fn i => print (Int.toString i))

would print 123456789 and

for (9 downto 1)
 (fn i => print (Int.toString i))

would print 987654321.

Straightforward formatting of nested loops

for (a to b)

MLton Guide (20051202) ForLoops

107

 (fn i =>
 for (c to d)
 (fn j =>
 ...))

is fairly readable, but tends to cause the body of the loop to be indented quite deeply.

Off-by-one

The above design has an annoying feature. In practice, the upper bound of the iterated range is almost always
excluded and most loops would subtract one from the upper bound:

for (0 to n-1) ...
for (n-1 downto 0) ...

It is probably better to break convention and exclude the upper bound by default, because it leads to more
concise code and becomes idiomatic with very little practise. The iterator combinators described below
exclude the upper bound by default.

Iterator combinators

While the simple for-function described in the previous section is probably good enough for many uses, it is
a bit cumbersome when one needs to iterate over a cartesian product. One might also want to iterate over more
than just consecutive integers. It turns out that one can provide a library of iterator combinators that allow one
to implement iterators more flexibly.

Since the types of the combinators may be a bit difficult to infer from their implementations, let's first take a
look at a signature of the iterator combinator library:

signature ITER =
sig
type 'a iter = ('a -> unit) -> unit

val to : int * int -> int iter
val downto : int * int -> int iter

val inList : 'a list -> 'a iter
val inVector : 'a Vector.vector -> 'a iter
val inArray : 'a Array.array -> 'a iter

val using : ('a -> ('b * 'a) option) -> 'a -> 'b iter

val when : 'a iter * ('a -> bool) -> 'a iter
val by : 'a iter * ('a -> 'b) -> 'b iter

val && : 'a iter * 'b iter -> ('a, 'b) product iter

val for : 'a -> 'a
end

Some of the above combinators are meant to be used as infix operators. Here is a set of suitable infix
declarations:

infix 2 to downto
infix 1 when by

MLton Guide (20051202) ForLoops

108

infix 0 &&

A few notes are in order:

The following implementation of to and downto will omit the upper bound of the range.•
for is the identity function. It is purely for syntactic sugar and is not strictly required.•
Probably the most interesting combinator is &&. Given two iterators, it produces an iterator for the
cartesian product of the iterators.

•

See ProductType for the type function ('a, 'b) product used in the type of the iterator
produced by &&.

♦

The using combinator allows one to iterate over slices, streams and many other kinds of sequences.•
when is the filtering combinator. The name when is inspired by OCaml's guard clauses.•
by is the mapping combinator.•

Here is a structure implementing the ITER signature:

structure Iter :> ITER =
struct
type 'a iter = ('a -> unit) -> unit

fun op to (a, b) f =
let fun loop a = if a < b then (f a; loop (a+1)) else ()
in loop a end

fun op downto (a, b) f =
let fun loop a = if a > b then (fn a => (f a; loop a)) (a-1) else ()
in loop a end

fun inList l f = List.app f l
fun inVector v f = Vector.app f v
fun inArray a f = Array.app f a

fun using get s f =
let fun loop s = case get s

of SOME (x, s) => (f x; loop s)
 | NONE => ()

in loop s end

fun op when (a, p) f = a (fn a => if p a then f a else ())
fun op by (a, g) f = a (f o g)

fun op && (a, b) f = a (fn a => b (fn b => f (op& (a, b))))

val for = fn x => x
end

To use the above combinators the Iter-structure needs to be opened

open Iter

and one usually also wants to declare the infix status of the operators as shown earlier.

Here is an example that illustrates most of the features:

for (0 to 10 when (fn x => x mod 3 <> 0) && inList ["a", "b"] && 2 downto 1 by real)
 (fn x & y & z =>
 print ("("^Int.toString x^", \""^y^"\", "^Real.toString z^")\n"))

MLton Guide (20051202) ForLoops

109

Last edited on 2005-12-02 04:20:07 by StephenWeeks.

MLton Guide (20051202) ForLoops

110

ForeignFunctionInterface
MLton's foreign function interface (FFI) extends Standard ML and makes it easy to take the address of C
global objects, access C global variables, call from SML to C, and call from C to SML.

Overview

Foreign Function Interface Types•
Foreign Function Interface Syntax•

Importing Code into SML

Calling From SML To C•
Calling From SML To C Function Pointer•

Exporting Code from SML

Calling From C To SML•

Last edited on 2005-12-02 04:19:50 by StephenWeeks.

MLton Guide (20051202) ForeignFunctionInterface

111

ForeignFunctionInterfaceSyntax
MLton extends the syntax of SML with expressions that enable a ForeignFunctionInterface to C. The
following description of the syntax uses some abbreviations.

C base type cBaseTy Foreign Function Interface types
C argument type cArgTy cBaseTy1 * ... * cBaseTyn or unit
C return type cRetTy cBaseTy or unit
C function type cFuncTy cArgTy -> cRetTy
C pointer type cPtrTy MLton.Pointer.t

The type annotation and the semicolon are not optional in the syntax of ForeignFunctionInterface expressions.
However, the type is lexed, parsed, and elaborated as an SML type, so any type (including type abbreviations)
may be used, so long as it elaborates to a type of the correct form.

Address

_address "C function or variable name" : cPtrTy;

Denotes the address of the C function or variable.

Symbol

_symbol "C variable name" attr... : (unit -> cBaseTy) * (cBaseTy -> unit);

Denotes the getter and setter for a C variable. The cBaseTys must be identical.

attr... denotes a (possibly empty) sequence of attributes.

alloc : allocate storage (and export a symbol) for the C variable•

_symbol * : cPtrTy -> (unit -> cBaseTy) * (cBaseTy -> unit);

Denotes the getter and setter for a C pointer to a variable. The cBaseTys must be identical.

Import

_import "CFunctionName" attr... : cFuncTy;

Denotes an SML function whose behavior is implemented by calling the C function. See Calling from SML
to C for more details.

_import * attr... : cPtrTy -> cFuncTy;

Denotes a SML function whose behavior is implemented by calling a C function through a C function pointer.

attr... denotes a (possibly empty) sequence of attributes.

cdecl : call with the cdecl calling convention.•

MLton Guide (20051202) ForeignFunctionInterfaceSyntax

112

stdcall : call with the stdcall calling convention.•

See Calling from SML to C function pointer for more details.

Export

_export "CFunctionName" attr... : cFuncTy -> unit;

Exports a C function with the name CFunctionName that can be used to call an SML function of the type
cFuncTy. When the function denoted by the export expression is applied to an SML function f, subsequent C
calls to CFunctionName will call f. It is an error to call CFunctionName before the export has been
applied. The export may be applied more than once, with each application replacing any previous definition of
CFunctionName.

attr... denotes a (possibly empty) sequence of attributes.

cdecl : call with the cdecl calling convention.•
stdcall : call with the stdcall calling convention.•

See Calling from C to SML for more details.

Last edited on 2005-12-01 04:25:23 by StephenWeeks.

MLton Guide (20051202) ForeignFunctionInterfaceSyntax

113

ForeignFunctionInterfaceTypes
MLton's ForeignFunctionInterface only allows values of certain SML types to be passed between SML and C.
The following types are allowed: bool, char, int, real, word. All of the different sizes of (fixed-sized)
integers, reals, and words are supported as well: Int8.int, Int16.int, Int32.int, Int64.int,
Real32.real, Real64.real, Word8.word, Word16.word, Word32.word, Word64.word.
There is a special type, MLton.Pointer.t, for passing C pointers -- see MLtonPointer for details.

Arrays, refs, and vectors of the above types are also allowed. Because in MLton monomorphic arrays and
vectors are exactly the same as their polymorphic counterpart, these are also allowed. Hence, string,
char vector, and CharVector.vector are also allowed. Strings are not null terminated, unless you
manually do so from the SML side.

Unfortunately, passing tuples or datatypes is not allowed because that would interfere with representation
optimizations.

The C header file that -export-header generates includes typedefs for the C types corresponding to
the SML types. Here is the mapping between SML types and C types.

SML type C typedef C type
array Pointer char *

bool Int32 long

char Int8 char

Int8.int Int8 char

Int16.int Int16 short

Int32.int Int32 long

Int64.int Int64 long long

int Int32 long

MLton.Pointer.t Pointer char *

Real32.real Real32 float

Real64.real Real64 double

real Real64 double

ref Pointer char *

string Pointer char * (read-only)
vector Pointer char * (read-only)
Word8.word Word8 unsigned char

Word16.word Word16 unsigned short

Word32.word Word32 unsigned long

Word64.word Word64 unsigned long long

word Word32 unsigned int

Because MLton assumes that vectors and strings are read-only (and will perform optimizations that, for
instance, cause them to share space), you must not modify the data pointed to by the char * in C code.

Although the C type of an array, ref, or vector is always Pointer, in reality, the object has the natural C
representation. Your C code should cast to the appropriate C type if you want to keep the C compiler from

MLton Guide (20051202) ForeignFunctionInterfaceTypes

114

complaining.

When calling an imported C function from SML that returns an array, ref, or vector result or when calling an
exported SML function from C that takes an array, ref, or string argument, then the object must be an ML
object allocated on the ML heap. (Although an array, ref, or vector object has the natural C representation, the
object also has an additional header used by the SML runtime system.)

Last edited on 2005-12-01 04:27:38 by StephenWeeks.

MLton Guide (20051202) ForeignFunctionInterfaceTypes

115

FrontEnd
FrontEnd is a translation pass from source to the AST IntermediateLanguage.

Description

This pass performs lexing and parsing to produce an abstract syntax tree.

Implementation

front-end.sig front-end.fun

Details and Notes

The lexer is produced by MLLex from ml.lex .

The parser is produced by MLYacc from ml.grm .

The specifications for the lexer and parser were originally taken from SML/NJ (version 109.32), but have
been heavily modified since then.

Last edited on 2005-12-02 04:20:24 by StephenWeeks.

MLton Guide (20051202) FrontEnd

116

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/front-end/front-end.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/front-end/front-end.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/front-end/front-end.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/front-end/front-end.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/front-end/ml.lex?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/front-end/ml.lex?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/front-end/ml.grm?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/front-end/ml.grm?view=markup

FunctionalRecordUpdate
Functional record update is the copying of a record while replacing the values of some of the fields. For
example, the functional update of

{a = 13, b = 14, c = 15}

with c = 16 yields a new record

{a = 13, b = 14, c = 16}

Functional record update also makes sense with multiple simultaneous updates. For example, the functional
update of the record above with a = 18, c = 19 yields a new record

{a = 18, b = 14, c = 19}

Standard ML does not have explicit syntax for functional record update. One could easily imagine an
extension of the SML that supported it. For example

e with {a = 16, b = 17}

would create a copy of the record denoted by e with field a replaced with 16 and b replaced with 17. Despite
the absence of special syntax, it is easy to emulate functional record update with a little boilerplate code.

Simple implementation

To support functional record update on the record type

{a: 'a, b: 'b, c: 'c}

first, define an update function for each component.

fun withA ({a = _, b, c}, a) = {a = a, b = b, c = c}
fun withB ({a, b = _, c}, b) = {a = a, b = b, c = c}
fun withC ({a, b, c = _}, c) = {a = a, b = b, c = c}

Then, one can express e with {a = 16, b = 17} as

withB (withA (e, 16), 17)

With infix notation

infix withA withB withC

the syntax is almost as concise as a language extension.

e withA 16 withB 17

MLton Guide (20051202) FunctionalRecordUpdate

117

Advanced implementation

The above approach suffers from the fact that the amount of boilerplate code is quadratic in the number of
record fields. Furthermore, changing, adding, or deleting a field requires time proportional to the number of
fields (because each with function must be changed). It is also annoying to have to define a with function,
possibly with a fixity declaration, for each field.

Fortunately, there is a solution to these problems. We can define a single function, set, use the existing SML
record selector syntax, and the left piping operator, so that

{a = 1, b = "foo", c = 3.0} >| set#a 13 >| set#b "bar"

will evaluate to

{a = 13, b = "bar", c = 3.0}

Here is the definition of set.

fun set f z {a, b, c} =
let

datatype t = A of 'a | B of 'b | C of 'c
fun g h z =

 {a = case h z of A a => a | _ => a,
 b = case h z of B b => b | _ => b,
 c = case h z of C c => c | _ => c}

in
 f {a = g A, b = g B, c = g C} z

end

Here is the type of set.

val set : ({a:'a -> {a:'a, b:'b, c:'c},
 b:'b -> {a:'a, b:'b, c:'c},
 c:'c -> {a:'a, b:'b, c:'c}} -> 'd -> 'e)
 -> 'd
 -> {a:'a, b:'b, c:'c}
 -> 'e

To change a field with this approach, we only have to change three things.

the variant in datatype t•
the field in the result of g•
the field in the argument to f•

There is a minor disadvantage, however. The type of the field being updated can not (easily) be changed:

{a=1, b=2, c=3} >| set#a "1" (* Type error! *)

While our definition of set is valid SML and works with MLton, unfortunately, most other SML compilers
mistakenly reject the program because of the free type variables in the datatype declaration. You can work
around this problem in such compilers by manually lifting datatype t to the toplevel and adding 'a, 'b,
and 'c as parameters to t.

MLton Guide (20051202) FunctionalRecordUpdate

118

Going Further

One can generalize the previous approach and define a function that performs functional record update on any
object that is isomorphic to a tuple (of the appropriate arity).

We first define a function to perform a functional 3-tuple update:

fun set3 f v (v1, v2, v3) =
let

datatype ('v1, 'v2, 'v3) t =
 V1 of 'v1 | V2 of 'v2 | V3 of 'v3

fun g h v =
 (case h v of V1 v1 => v1 | _ => v1,

case h v of V2 v2 => v2 | _ => v2,
case h v of V3 v3 => v3 | _ => v3)

in
 f (g V1, g V2, g V3) v

end

We also define a generic function for wrapping a tuple update given an isomorphism:

fun wrapSet (set, t2r, t2r', r2t) f v r = t2r (set (f o t2r') v (r2t r))

The isomorphism is specified by t2r, t2r', and r2t; t2r and t2r' are actually the same function - we
need to supply two copies because of the absence of FirstClassPolymorphism in SML.

Here's how to use set3 and wrapSet to define an update function for {a, b, c} and for {d, e, f}.

fun set f =
let

fun t2r (v1, v2, v3) = {a = v1, b = v2, c = v3}
fun r2t {a = v1, b = v2, c = v3} = (v1, v2, v3)

in
 wrapSet (set3, t2r, t2r, r2t) f

end

fun set f =
let

fun t2r (v1, v2, v3) = {d = v1, e = v2, f = v3}
fun r2t {d = v1, e = v2, f = v3} = (v1, v2, v3)

in
 wrapSet (set3, t2r, t2r, r2t) f

end

With this approach, changing a field name only requires changing the name in the t2r and r2t functions.

The MLton SVN contains Emacs functions in esml-gen.el to generate functional tuple update functions and
functional record update functions. For example, to generate a set function for the record {a, b, c} it is
sufficient to type M x esml-gen-fru-setter a b c.

Efficiency

With MLton, the efficiency of these approaches is as good as one would expect with the special syntax.
Namely a sequence of updates will be optimized into a single record construction that copies the unchanged

MLton Guide (20051202) FunctionalRecordUpdate

119

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/emacs/esml-gen.el?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/ide/emacs/esml-gen.el?view=markup

fields and fills in the changed fields with their new values.

Imperative approach

One can use ref cells under the hood to implement functional record update.

fun set f z {a, b, c} =
let

val a = ref a
val b = ref b
val c = ref c
val () = f {a = a, b = b, c = c} := z

in
 {a = !a, b = !b, c = !c}

end

Last edited on 2005-08-14 18:21:47 by VesaKarvonen.

MLton Guide (20051202) FunctionalRecordUpdate

120

GarbageCollection
For a good introduction and overview to garbage collection, see Jones99.

MLton's garbage collector uses copying, mark-compact, and generational collection, automatically switching
between them at run time based on the amount of live data relative to the amount of RAM. The runtime
system tries to keep the heap within RAM if at all possible.

MLton's copying collector is a simple, two-space, breadth-first, Cheney-style collector. The design for the
generational and mark-compact GC is based on Sansom91.

Design notes

http://mlton.org/pipermail/mlton/2002-May/012420.html
object layout and header word design

•

Also see

Regions•

Last edited on 2005-09-06 23:28:47 by MatthewFluet.

MLton Guide (20051202) GarbageCollection

121

http://mlton.org/pipermail/mlton/2002-May/012420.html
http://mlton.org/pipermail/mlton/2002-May/012420.html

GenerativeDatatype
In Standard ML, datatype declarations are said to be generative, because each time a datatype declaration is
evaluated, it yields a new type. Thus, any attempt to mix the types will lead to a type error at compile-time.
The following program, which does not type check, demonstrates this.

functor F () =
struct

datatype t = T
end

structure S1 = F ()
structure S2 = F ()
val _: S1.t -> S2.t = fn x => x

Generativity also means that two different datatype declarations define different types, even if they define
identical constructors. The following program does not type check due to this.

datatype t = A | B
val a1 = A
datatype t = A | B
val a2 = A
val _ = if true then a1 else a2

Last edited on 2005-01-26 20:34:48 by MatthewFluet.

MLton Guide (20051202) GenerativeDatatype

122

GenerativeException
In Standard ML, exception declarations are said to be generative, because each time an exception declaration
is evaluated, it yields a new exception.

The following program demonstrates the generativity of exceptions.

exception E
val e1 = E
fun isE1 (e: exn): bool =

case e of
 E => true
 | _ => false
exception E
val e2 = E
fun isE2 (e: exn): bool =

case e of
 E => true
 | _ => false
fun pb (b: bool): unit =
 print (concat [Bool.toString b, "\n"])
val () = (pb (isE1 e1)
 ;pb (isE1 e2)
 ; pb (isE2 e1)
 ; pb (isE2 e2))

In the above program, two different exception declarations declare an exception E and a corresponding
function that returns true only on that exception. Although declared by syntactically identical exception
declarations, e1 and e2 are different exceptions. The program, when run, prints true, false, false,
true.

A slight modification of the above program shows that even a single exception declaration yields a new
exception each time it is evaluated.

fun f (): exn * (exn -> bool) =
let

exception E
in

 (E, fn E => true | _ => false)
end

val (e1, isE1) = f ()
val (e2, isE2) = f ()
fun pb (b: bool): unit =
 print (concat [Bool.toString b, "\n"])
val () = (pb (isE1 e1)
 ; pb (isE1 e2)
 ; pb (isE2 e1)
 ; pb (isE2 e2))

Each call to f yields a new exception and a function that returns true only on that exception. The program,
when run, prints true, false, false, true.

MLton Guide (20051202) GenerativeException

123

Type Safety

Exception generativity is required for type safety. Consider the following valid SML program.

fun f (): ('a -> exn) * (exn -> 'a) =
let

exception E of 'a
in

 (E, fn E x => x | _ => raise Fail "f")
end

fun cast (a: 'a): 'b =
let

val (make: 'a -> exn, _) = f ()
val (_, get: exn -> 'b) = f ()

in
 get (make a)

end
val _ = ((cast 13): int -> int) 14

If exceptions weren't generative, then each call f () would yield the same exception constructor E. Then,
our cast function could use make: 'a -> exn to convert any value into an exception and then
get: exn -> 'b to convert that exception to a value of arbitrary type. If cast worked, then we could
cast an integer as a function and apply. Of course, because of generative exceptions, this program raises
Fail "f".

Last edited on 2005-01-26 20:34:34 by MatthewFluet.

MLton Guide (20051202) GenerativeException

124

Glade
Glade is a tool for generating Gtk user interfaces.

WesleyTerpstra is working on a Glade->mGTK converter.

http://mlton.org/pipermail/mlton/2004-December/016865.html•

Last edited on 2005-12-02 07:11:13 by StephenWeeks.

MLton Guide (20051202) Glade

125

http://glade.gnome.org/features.html
http://glade.gnome.org/features.html
http://mlton.org/pipermail/mlton/2004-December/016865.html
http://mlton.org/pipermail/mlton/2004-December/016865.html

Globalize
Globalize is an analysis pass for the SXML IntermediateLanguage, invoked from ClosureConvert.

Description

This pass marks values that are constant, allowing ClosureConvert to move them out to the top level so they
are only evaluated once and do not appear in closures.

Implementation

globalize.sig globalize.fun

Details and Notes

Last edited on 2005-12-01 04:31:24 by StephenWeeks.

MLton Guide (20051202) Globalize

126

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/closure-convert/globalize.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/closure-convert/globalize.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/closure-convert/globalize.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/closure-convert/globalize.fun?view=markup

GnuMP
The GnuMP (GNU multiprecision library) is a library for arbitrary precision integer arithmetic. MLton uses
the GnuMP to implement the SML Basis IntInf module.

There is a known problem with the GnuMP, where it requires a lot of stack space for some computations, e.g.
IntInf.toString of a million digit number. If you run with stack size limited, you may see a segfault in
such programs. This problem is mentioned in the GnuMP FAQ, where they describe two solutions.

Increase (or unlimit) your stack space. From your program, use setrlimit, or from the shell, use
ulimit.

•

Configure and rebuild libgmp with --disable-alloca, which will cause it to allocate
temporaries using malloc instead of on the stack.

•

Last edited on 2005-12-02 04:20:35 by StephenWeeks.

MLton Guide (20051202) GnuMP

127

http://www.gnu.org/software/gmp/gmp.html
http://www.gnu.org/software/gmp/gmp.html
http://www.swox.com/gmp/#FAQ
http://www.swox.com/gmp/#FAQ

HaMLet
Hamlet is a Standard ML Implementation. It is intended as reference implementation of the Definition of

Standard ML and not for serious practical work.

Last edited on 2005-12-01 04:32:39 by StephenWeeks.

MLton Guide (20051202) HaMLet

128

http://www.ps.uni-sb.de/hamlet/
http://www.ps.uni-sb.de/hamlet/

HenryCejtin
I was one of the original developers of Mathematica (actually employee #1). My background is a combination
of mathematics and computer science. Currently I am doing various things in Chicago.

Last edited on 2005-12-01 03:27:33 by HenryCejtin.

MLton Guide (20051202) HenryCejtin

129

History
In April 1997, Stephen Weeks wrote a defunctorizer for Standard ML and integrated it with SML/NJ. The
defunctorizer used SML/NJ's visible compiler and operated on the Ast intermediate representation produced
by the SML/NJ front end. Experiments showed that defunctorization gave a speedup of up to six times over
separate compilation and up to two times over batch compilation without functor expansion.

In August 1997, we began development of an independent compiler for SML. At the time the compiler was
called smlc. By October, we had a working monomorphiser. By November, we added a polyvariant
higher-order control-flow analysis. At that point, MLton was about 10,000 lines of code.

Over the next year and half, smlc morphed into a full-fledged compiler for SML. It was renamed MLton, and
first released in March 1999.

From the start, MLton has been driven by whole-program optimization and an emphasis on performance. Also
from the start, MLton has had a fast C FFI and IntInf based on the GNU multiprecision library. At its first
release, MLton was 48,006 lines.

Between the March 1999 and January 2002, MLton grew to 102,541 lines, as we added a native code
generator, mllex, mlyacc, a profiler, many optimizations, and many libraries including threads and signal
handling.

During 2002, MLton grew to 112,204 lines and we had releases in April and September. We added support
for cross compilation and used this to enable MLton to run on Cygwin/Windows and FreeBSD. We also made
improvements to the garbage collector, so that it now works with large arrays and up to 4G of memory and so
that it automatically uses copying, mark-compact, or generational collection depending on heap usage and
RAM size. We also continued improvements to the optimizer and libraries.

During 2003, MLton grew to 122,299 lines and we had releases in March and July. We extended the profiler
to support source-level profiling of time and allocation and to display call graphs. We completed the Basis
Library implementation, and added new MLton-specific libraries for weak pointers and finalization. We
extended the FFI to allow callbacks from C to SML. We added support for the Sparc/Solaris platform, and
made many improvements to the C code generator.

Last edited on 2005-12-02 04:23:16 by MatthewFluet.

MLton Guide (20051202) History

130

HowProfilingWorks
Here's how Profiling works. If profiling is on, the front end (elaborator) inserts Enter and Leave statements
into the source program for function entry and exit. For example,

fun f n = if n = 0 then 0 else 1 + f (n - 1)

becomes

fun f n =
let

val () = Enter "f"
val res = (if n = 0 then 0 else 1 + f (n - 1))

handle e => (Leave "f"; raise e)
val () = Leave "f"

in
 res

end

Actually there is a bit more information than just the source function name; there is also lexical nesting and
file position.

Most of the middle of the compiler ignores, but preserves, Enter and Leave. However, so that profiling
preserves tail calls, the Ssa shrinker has an optimization that notices when the only operations that cause a call
to be a nontail call are profiling operations, and if so, moves them before the call, turning it into a tail call. If
you observe a program that has a tail call that appears to be turned into a nontail when compiled with
profiling, please report a bug.

There is the checkProf function in type-check.fun , which checks that the Enter/Leave statements
match up.

In the backend, just before translating to the Machine IL, the profiler uses the Enter/Leave statements to
infer the "local" portion of the control stack at each program point. The profiler then removes the
Enters/Leaves and inserts different information depending on which kind of profiling is happening. For
time profiling, the profiler inserts labels that cover the code (i.e. each statement has a unique label in its basic
block that prefixes it) and associates each label with the local control stack. For allocation profiling, the
profiler inserts calls to a C function that will maintain byte counts. With stack profiling, the profiler also
inserts a call to a C function at each nontail call in order to maintain information at runtime about what SML
functions are on the stack.

At run time, the profiler associates counters (either clock ticks or byte counts) with source functions. When
the program finishes, the profiler writes the counts out to the mlmon.out file. Then, mlprof uses source
information stored in the executable to associate the counts in the mlmon.out file with source functions.

For time profiling, the profiler catches the SIGPROF signal 100 times per second and increments the
appropriate counter, determined by looking at the label prefixing the current program counter and mapping
that to the current source function.

Caveats

MLton Guide (20051202) HowProfilingWorks

131

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/type-check.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/type-check.fun?view=markup

There may be a few missed clock ticks or bytes allocated at the very end of the program after the data is
written.

Profiling has not been tested with signals or threads. In particular, stack profiling may behave strangely.

Last edited on 2005-12-01 04:35:20 by StephenWeeks.

MLton Guide (20051202) HowProfilingWorks

132

Identifier
In Standard ML, there are syntactically two kinds of identifiers.

Alphanumeric: starts with a letter or prime (') and is followed by letters, digits, primes and underbars
(_).

Examples: abc, ABC123, Abc_123, 'a.

•

Symbolic: a sequence of the following

 ! % & $ # + - / : < = > ? @ | ~ ` ^ | *

Examples: +=, <=, >>, $.

•

With the exception of =, reserved words can not be identifiers.

There are a number of different classes of identifiers, some of which have additional syntactic rules.

Identifiers not starting with a prime.•
value identifier (includes variables and constructors)♦
type constructor♦
structure identifier♦
signature identifier♦
functor identifier♦

Identifiers starting with a prime.•
type variable (must start with prime)♦

Identifiers + numeric labels (1, 2, ...).•
record label♦

Last edited on 2005-01-18 15:02:21 by MatthewFluet.

MLton Guide (20051202) Identifier

133

Immutable
Immutable means not mutable, and is an adjective meaning "can not be modified". Most values in Standard
ML are immutable. For example, constants, tuples, records, lists, and vectors are all immutable.

Last edited on 2004-12-08 18:51:10 by StephenWeeks.

MLton Guide (20051202) Immutable

134

ImperativeTypeVariable
In Standard ML, an imperative type variable is a type variable whose second character is a digit, as in '1a or
'2b. Imperative type variables were used as an alternative to the ValueRestriction in an earlier version of
SML, but no longer play a role. They are treated exactly as other type variables.

Last edited on 2004-11-29 22:58:32 by StephenWeeks.

MLton Guide (20051202) ImperativeTypeVariable

135

ImplementExceptions
ImplementExceptions is a pass for the SXML IntermediateLanguage, invoked from SXMLSimplify.

Description

This pass implements exceptions.

Implementation

implement-exceptions.sig implement-exceptions.fun

Details and Notes

Last edited on 2005-12-01 04:37:39 by StephenWeeks.

MLton Guide (20051202) ImplementExceptions

136

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/implement-exceptions.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/implement-exceptions.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/implement-exceptions.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/implement-exceptions.fun?view=markup

ImplementHandlers
ImplementHandlers is a pass for the RSSA IntermediateLanguage, invoked from RSSASimplify.

Description

This pass implements the (threaded) exception handler stack.

Implementation

implement-handlers.sig implement-handlers.fun

Details and Notes

Last edited on 2005-12-01 04:38:13 by StephenWeeks.

MLton Guide (20051202) ImplementHandlers

137

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/implement-handlers.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/implement-handlers.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/implement-handlers.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/implement-handlers.fun?view=markup

ImplementProfiling
ImplementProfiling is a pass for the RSSA IntermediateLanguage, invoked from RSSASimplify.

Description

This pass implements profiling.

Implementation

profile.sig profile.fun

Details and Notes

See HowProfilingWorks.

Last edited on 2005-12-01 04:38:54 by StephenWeeks.

MLton Guide (20051202) ImplementProfiling

138

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/profile.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/profile.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/profile.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/profile.fun?view=markup

ImplementSuffix
ImplementSuffix is a pass for the SXML IntermediateLanguage, invoked from SXMLSimplify.

Description

This pass implements the TopLevel_setSuffix primitive, which installs a function to exit the program.

Implementation

implement-suffix.sig implement-suffix.fun

Details and Notes

ImplementSuffix works by introducing a new ref cell to contain the function of type unit -> unit that
should be called on program exit.

The following code (appropriately alpha-converted) is appended to the beginning of the SXML
program:

 val z_0 =
 fn a_0 =>
 let
 val x_0 =
 "toplevel suffix not installed"
 val x_1 =
 MLton_bug (x_0)
 in
 x_1
 end
 val topLevelSuffixCell =
 Ref_ref (z_0)

•

Any occurrence of

 val x_0 =
 TopLevel_setSuffix (f_0)

is rewritten to

 val x_0 =
 Ref_assign (topLevelSuffixCell, f_0)

•

The following code (appropriately alpha-converted) is appended to the end of the SXML program:

 val f_0 =
 Ref_deref (topLevelSuffixCell)
 val z_0 =
 ()
 val x_0 =
 f_0 z_0

•

Last edited on 2005-12-02 04:20:49 by StephenWeeks.

MLton Guide (20051202) ImplementSuffix

139

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/implement-suffix.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/implement-suffix.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/implement-suffix.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/implement-suffix.fun?view=markup

InfixingOperators
Fixity specifications are not part of signatures in Standard ML. When one wants to use a module that provides
functions designed to be used as infix operators there are several obvious alternatives:

Use only prefix applications. Unfortunately there are situations where infix applications lead to
considerably more readable code.

•

Make the fixity declarations at the top-level. This may lead to collisions and may be unsustainable in
a large project. Pollution of the top-level should be avoided.

•

Make the fixity declarations at each scope where you want to use infix applications. The duplication
becomes inconvenient if the operators are widely used. Duplication of code should be avoided.

•

Use non-standard extensions, such as the ML Basis system to control the scope of fixity declarations.
This has the obvious drawback of reduced portability.

•

None of the obvious alternatives is best in every case. The following describes a slightly less obvious
alternative that can sometimes be useful. The idea is to approximate Haskell's special syntax for treating any
identifier enclosed in grave accents (backquotes) as an infix operator. In Haskell, instead of writing the prefix
application f x y one can write the infix application x `f` y.

Infixing operators

Let's first take a look at the definitions of the operators:

infix 3 <\ fun x <\ f = fn y => f (x, y) (* Left section *)
infix 3 \> fun f \> y = f y (* Left application *)
infixr 3 /> fun f /> y = fn x => f (x, y) (* Right section *)
infixr 3 </ fun x </ f = f x (* Right application *)

infix 2 o (* See motivation below *)
infix 0 :=

The left and right sectioning operators, <\ and />, are useful in SML for partial application of infix operators.
 ML For the Working Programmer describes curried functions secl and secr for the same purpose on
pages 179-181. For example,

List.map (op- /> y)

is a function for subtracting y from a list of integers and

List.exists (x <\ op=)

is a function for testing whether a list contains an x.

Together with the left and right application operators, \> and </, the sectioning operators provide a way to
treat any binary function (i.e. a function whose domain is a pair) as an infix operator. In general,

x0 <\f1\> x1 <\f2\> x2 ... <\fN\> xN = fN (... f2 (f1 (x0, x1), x2) ..., xN)

and

xN </fN/> ... x2 </f2/> x1 </f1/> x0 = fN (xN, ... f2 (x2, f1 (x1, x0)) ...)

MLton Guide (20051202) InfixingOperators

140

Examples

As a fairly realistic example, consider providing a function for sequencing comparisons:

structure Order (* ... *) =
struct

(* ... *)
val orWhenEq = fn (EQUAL, th) => th ()

 | (other, _) => other
(* ... *)

end

Using orWhenEq and the infixing operators, one can write a compare function for triples as

fun compare (fad, fbe, fcf) ((a, b, c), (d, e, f)) =
 fad (a, d) <\Order.orWhenEq\> `fbe (b, e) <\Order.orWhenEq\> `fcf (c, f)

where ` is defined as

fun `f x = fn () => f x

Although orWhenEq can be convenient (try rewriting the above without it), it is probably not useful enough
to be defined at the top level as an infix operator. Fortunately we can use the infixing operators and don't have
to.

Another fairly realistic example would be to use the infixing operators with the technique described on the
Printf page. Assuming that you would have a Printf module binding printf, `, and formatting
combinators named int and string, you could write

let open Printf in
 printf (`"Here's an int "<\int\>" and a string "<\string\>".") 13 "foo" end

without having to duplicate the fixity declarations. Alternatively, you could write

P.printf (P.`"Here's an int "<\P.int\>" and a string "<\P.string\>".") 13 "foo"

assuming you have the made the binding

structure P = Printf

Application and piping operators

The left and right application operators may also provide some notational convenience on their own. In
general,

f \> x1 \> ... \> xN = f x1 ... xN

and

xN </ ... </ x1 </ f = f x1 ... xN

If nothing else, both of them can eliminate parentheses. For example,

MLton Guide (20051202) InfixingOperators

141

foo (1 + 2) = foo \> 1 + 2

The left and right application operators are related to operators that could be described as the right and left
piping operators:

infix 1 >| val op>| = op</ (* Left pipe *)
infixr 1 |< val op|< = op\> (* Right pipe *)

As you can see, the left and right piping operators, >| and |<, are the same as the right and left application
operators, respectively, except the associativities are reversed and the binding strength is lower. They are
useful for piping data trough a sequence of operations. In general,

 x >| f1 >| ... >| fN
= fN (... (f1 x) ...)
= (fN o ... o f1) x

and

 fN |< ... |< f1 |< x
= fN (... (f1 x) ...)
= (fN o ... o f1) x

The right piping operator, |<, is provided by the Haskell prelude as $. It can be convenient in CPS or
continuation passing style.

A use for the left piping operator is with parsing combinators. In a strict language, like SML, eta-reduction is
generally unsafe. Using the left piping operator, parsing functions can be formatted conveniently as

fun parsingFunc input =
 input >| (* ... *)
 || (* ... *)
 || (* ... *)

where || is supposed to be a combinator provided by the parsing combinator library.

About precedences

You probably noticed that we redefined the precedences of the function composition operator o and the
assignment operator :=. Doing so is not strictly necessary, but can be convenient and should be relatively
safe. Consider the following motivating examples from Wesley W. Terpstra relying on the redefined
precedences:

Word8.fromInt o Char.ord o s <\String.sub
(* Combining sectioning and composition *)

x := s <\String.sub\> i
(* Assigning the result of an infixed application *)

In imperative languages, assignment usually has the lowest precedence (ignoring statement separators). The
precedence of := in the Basis library is perhaps unnecessarily high, because an expression of the form
r := x always returns a unit, which makes little sense to combine with anything. Dropping := to the lowest
precedence level makes it behave more like in other imperative languages.

MLton Guide (20051202) InfixingOperators

142

The case for o is different. With the exception of before and :=, it doesn't seem to make much sense to use
o with any of the operators defined by the Basis library in an unparenthesized expression. This is simply
because none of the other operators deal with functions. It would seem that the precedence of o could be
chosen completely arbitrarily from the set {1, ..., 9} without having any adverse effects with respect to
other infix operators defined by the Basis library.

Design of the symbols

The closest approximation of Haskell's x `f` y syntax achievable in Standard ML would probably be
something like x `f^ y, but ^ is already used for string concatenation by the Basis library. Other
combinations of the characters ` and ^ would be possible, but none seems clearly the best visually. The
symbols <\, \>, </ and /> are reasonably concise and have a certain self-documenting appearance and
symmetry, which can help to remember them. As the names suggest, the symbols of the piping operators >|
and |< are inspired by Unix shell pipelines.

Last edited on 2005-12-01 04:41:31 by StephenWeeks.

MLton Guide (20051202) InfixingOperators

143

Inline
Inline is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass inlines SSA functions using a size-based metric.

Implementation

inline.sig inline.fun

Details and Notes

The Inline pass can be invoked to use one of three metrics:

NonRecursive(product, small) -- inline any function satisfying
(numCalls - 1) * (size - small) <= product, where numCalls is the static
number of calls to the function and size is the size of the function.

•

Leaf(size) -- inline any leaf function smaller than size•
LeafNoLoop(size) -- inline any leaf function without loops smaller than size•

Last edited on 2005-12-01 04:42:09 by StephenWeeks.

MLton Guide (20051202) Inline

144

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/inline.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/inline.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/inline.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/inline.fun?view=markup

InsertLimitChecks
InsertLimitChecks is a pass for the RSSA IntermediateLanguage, invoked from RSSASimplify.

Description

This pass inserts limit checks.

Implementation

limit-check.sig limit-check.fun

Details and Notes

Last edited on 2005-12-01 04:42:38 by StephenWeeks.

MLton Guide (20051202) InsertLimitChecks

145

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/limit-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/limit-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/limit-check.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/limit-check.fun?view=markup

InsertSignalChecks
InsertSignalChecks is a pass for the RSSA IntermediateLanguage, invoked from RSSASimplify.

Description

This pass inserts signal checks.

Implementation

limit-check.sig limit-check.fun

Details and Notes

Last edited on 2005-12-02 04:21:03 by StephenWeeks.

MLton Guide (20051202) InsertSignalChecks

146

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/limit-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/limit-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/limit-check.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/limit-check.fun?view=markup

Installation
MLton runs on a variety of platforms and is distributed in both source and binary form. The format for the
binary package depends on the platform. The binary package will install under /usr or /usr/local,
depending on the platform. If you install MLton somewhere else, you must set the lib variable in the
/usr/bin/mlton script to the directory that contains the libraries (/usr/lib/mlton by default).

MLton requires that you have the GNU multiprecision library installed on your machine. MLton must be
able to find both the gmp.h include file and the libgmp.a or libgmp.so library. If you see the error
message gmp.h: No such file or directory, you should copy gmp.h to
/usr/lib/mlton/self/include. If you see the error message
/usr/bin/ld: cannot find -lgmp, you should add a -link-opt -L argument in the
/usr/bin/mlton script so that the linker can find libgmp. If, for example, libgmp.a is in /tmp, then
add -link-opt -L/tmp.

Installation of MLton creates the following files and directories.

/usr/bin/mllex•
The MLLex lexer generator.
/usr/bin/mlnlffigen•
The ML-NLFFI tool.
/usr/bin/mlprof•
A Profiling tool.
/usr/bin/mlton•
A script to call the compiler. This script may be moved anywhere, however, it makes use of files in
/usr/lib/mlton.
/usr/bin/mlyacc•
The MLYacc parser generator.
/usr/lib/mlton•
Directory containing libraries and include files needed during compilation.
/usr/share/man/man1/mllex.1, mlnlffigen.1, mlprof.1, mlton.1, mlyacc.1•
Man pages.
/usr/share/doc/mlton•

Directory containing the user guide for MLton, mllex, and mlyacc, as well as example SML programs (in the
examples dir), and license information.

Hello, World!

Once you have installed MLton, create a file called hello-world.sml with the following contents.

print "Hello, world!\n";

Now create an executable, hello-world, with the following command.

mlton hello-world.sml

You can now run hello-world to verify that it works. There are more small examples in
/usr/share/doc/mlton/examples.

MLton Guide (20051202) Installation

147

http://www.gnu.org/software/gmp/gmp.html
http://www.gnu.org/software/gmp/gmp.html

Last edited on 2005-12-01 04:45:57 by StephenWeeks.

MLton Guide (20051202) Installation

148

IntermediateLanguage
MLton uses a number of intermediate languages in translating from the input source program to low-level
code. Here is a list in the order which they are translated to.

AST. Pretty close to the source.•
CoreML. Explicitly typed, no module constructs.•
XML. Polymorphic, HigherOrder.•
SXML. SimplyTyped, HigherOrder.•
SSA. SimplyTyped, FirstOrder.•
SSA2. SimplyTyped, FirstOrder.•
RSSA. Explicit data representations.•
Machine. Untyped register transfer language.•

Last edited on 2004-11-29 02:16:14 by MatthewFluet.

MLton Guide (20051202) IntermediateLanguage

149

IntroduceLoops
IntroduceLoops is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass rewrites any SSA function that calls itself in tail position into one with a local loop and no self tail
calls.

A SSA function like

fun F (arg_0, arg_1) = L_0 ()
 ...
 L_16 (x_0)
 ...
 F (z_0, z_1) Tail
 ...

becomes

fun F (arg_0', arg_1') = loopS_0 ()
 loopS_0 ()
 loop_0 (arg_0', arg_1')
 loop_0 (arg_0, arg_1)
 L_0 ()
 ...
 L_16 (x_0)
 ...
 loop_0 (z_0, z_1)
 ...

Implementation

introduce-loops.sig introduce-loops.fun

Details and Notes

Last edited on 2005-12-01 04:46:37 by StephenWeeks.

MLton Guide (20051202) IntroduceLoops

150

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/introduce-loops.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/introduce-loops.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/introduce-loops.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/introduce-loops.fun?view=markup

JesperLouisAndersen

Jesper Louis Andersen

Jesper Louis Andersen is an undergraduate student at DIKU, the department of computer science,
Copenhagen university. His contributions to MLton are few, though he has made the port of MLton to the
NetBSD and OpenBSD platforms.

His general interests in computer science are compiler theory, language theory, algorithms and datastructures
and programming. His assets are his general knowledge of UNIX systems, knowledge of system
administration, knowledge of operating system kernels; NetBSD in particular.

He was employed by the university as a system administrator for 2 years, which has set him back somewhat in
his studies. Currently he is trying to learn mathematics (real analysis, general topology, complex functional
analysis and algebra).

Projects using MLton

A register allocator

For internal use at a compiler course at DIKU. It is written in the literate programming style and implements
the Iterated Register Coalescing algorithm by Lal George and Andrew Appel
http://citeseer.ist.psu.edu/george96iterated.html. The status of the project is that it is unfinished. Most of the

basic parts of the algorithm is done, but the interface to the students (simple) datatype takes some conversion.

A configuration management system in SML

At this time, only loose plans exists for this. The plan is to build a Configuration Management system on the
principles of the OpenCM system, see http://www.opencm.org/docs.html. The basic idea is to unify
"naming" and "identity" into one by uniquely identifying all objects managed in the repository by the use of
cryptographic checksums. This mantra guides the rest of the system, providing integrity, accessibility and
confidentiality.

Last edited on 2004-12-06 13:45:22 by JesperLouisAndersen.

MLton Guide (20051202) JesperLouisAndersen

151

http://citeseer.ist.psu.edu/george96iterated.html
http://citeseer.ist.psu.edu/george96iterated.html
http://www.opencm.org/docs.html
http://www.opencm.org/docs.html

JohnnyAndersen
Johnny Andersen (aka Anoq of the Sun)

Here is a picture in front of the academy building at the University of Athens, Greece, taken in September
2003.

image

Last edited on 2004-10-27 18:12:11 by eponym.

MLton Guide (20051202) JohnnyAndersen

152

http://mlton.org/pages/JohnnyAndersen/attachments/anoq.jpg?ts=1098900670

KnownCase
KnownCase is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass duplicates and simplifies Case transfers when the constructor of the scrutinee is known.

Uses Restore.

For example, the program

val rec last =
fn [] => 0

 | [x] => x
 | _ :: l => last l

val _ = 1 + last [2, 3, 4, 5, 6, 7]

gives rise to the SSA function

fun last_0 (x_142) = loopS_1 ()
 loopS_1 ()
 loop_11 (x_142)
 loop_11 (x_143)
 case x_143 of
 nil_1 => L_73 | ::_0 => L_74
 L_73 ()
 return global_5
 L_74 (x_145, x_144)
 case x_145 of
 nil_1 => L_75 | _ => L_76
 L_75 ()
 return x_144
 L_76 ()
 loop_11 (x_145)

which is simplified to

fun last_0 (x_142) = loopS_1 ()
 loopS_1 ()
 case x_142 of
 nil_1 => L_73 | ::_0 => L_118
 L_73 ()
 return global_5
 L_118 (x_230, x_229)
 L_74 (x_230, x_229, x_142)
 L_74 (x_145, x_144, x_232)
 case x_145 of
 nil_1 => L_75 | ::_0 => L_114
 L_75 ()
 return x_144
 L_114 (x_227, x_226)
 L_74 (x_227, x_226, x_145)

MLton Guide (20051202) KnownCase

153

Implementation

known-case.sig known-case.fun

Details and Notes

One interesting aspect of KnownCase, is that it often has the effect of unrolling list traversals by one iteration,
moving the nil/:: check to the end of the loop, rather than the beginning.

Last edited on 2005-12-02 04:21:19 by StephenWeeks.

MLton Guide (20051202) KnownCase

154

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/known-case.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/known-case.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/known-case.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/known-case.fun?view=markup

LambdaFree
LambdaFree is an analysis pass for the SXML IntermediateLanguage, invoked from ClosureConvert.

Description

This pass descends the entire SXML program and attaches a property to each Lambda PrimExp.t in the
program. Then, you can use lambdaFree and lambdaRec to get free variables of that Lambda.

Implementation

lambda-free.sig lambda-free.fun

Details and Notes

For Lambdas bound in a Fun dec, lambdaFree gives the union of the frees of the entire group of mutually
recursive functions. Hence, lambdaFree for every Lambda in a single Fun dec is the same. Furthermore,
for a Lambda bound in a Fun dec, lambdaRec gives the list of other functions bound in the same dec
defining that Lambda. For example:

val rec f = fn x => ... y ... g ... f ...
and g = fn z => ... f ... w ...

 * lambdaFree(fn x =>) = [y, w]
 * lambdaFree(fn z =>) = [y, w]
 * lambdaRec(fn x =>) = [g, f]
 * lambdaRec(fn z =>) = [f]

Last edited on 2005-12-02 04:21:28 by StephenWeeks.

MLton Guide (20051202) LambdaFree

155

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/closure-convert/lambda-free.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/closure-convert/lambda-free.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/closure-convert/lambda-free.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/closure-convert/lambda-free.fun?view=markup

LanguageChanges
We are sometimes asked to modify MLton to change the language it compiles. In short, we are very
conservative about making such changes. There are a number of reasons for this.

The Definition of Standard ML is an extremely high standard of specification. The value of the
Definition would be significantly diluted by changes that are not specified at an equally high level,
and the dilution increases with the complexity of the language change and its interaction with other
language features.

•

The SML community is small and there are a number of SML implementations. Without an
agreed-upon standard, it becomes very difficult to port programs between compilers, and the
community would be balkanized.

•

Our main goal is to enable programmers to be as effective as possible with MLton/SML. There are a
number of improvements other than language changes that we could spend our time on that would
provide more benefit to programmers.

•

The more the language that MLton compiles changes over time, the more difficult it is to use MLton
as a stable platform for serious program development.

•

Despite these drawbacks, we have extended SML in a couple of cases.

Foreign function interface•
ML Basis system•

We allow these language extensions because they provide functionality that is impossible to achieve without
them. The Definition does not define a foreign function interface. So, we must either extend the language or
greatly restrict the class of programs that can be written. Similarly, the Definition does not provide a
mechanism for namespace control at the module level, making it impossible to deliver packaged libraries and
have a hope of users using them without name clashes. The ML Basis system addresses this problem. We
have also provided a formal specification of the ML Basis system at the level of the Definition.

Also see

http://mlton.org/pipermail/mlton/2004-August/016165.html•
http://mlton.org/pipermail/mlton-user/2004-December/000320.html•

Last edited on 2005-09-06 23:28:57 by MatthewFluet.

MLton Guide (20051202) LanguageChanges

156

http://mlton.org/pipermail/mlton/2004-August/016165.html
http://mlton.org/pipermail/mlton/2004-August/016165.html
http://mlton.org/pipermail/mlton-user/2004-December/000320.html
http://mlton.org/pipermail/mlton-user/2004-December/000320.html

Lazy
In a lazy (or non-strict) language, the arguments to a function are not evaluated before calling the function.
Instead, the arguments are suspended and only evaluated by the function if needed.

Standard ML is an eager (or strict) language, not a lazy language. However, it is easy to delay evaluation of an
expression in SML by creating a thunk, which is a nullary function. In SML, a thunk is written
fn () => e. Another essential feature of laziness is memoization, meaning that once a suspended argument
is evaluated, subsequent references look up the value. We can express this in SML with a function that maps a
thunk to a memoized thunk.

signature LAZY =
sig

val lazy: (unit -> 'a) -> unit -> 'a
end

This is easy to implement in SML.

structure Lazy: LAZY =
struct

fun lazy (th: unit -> 'a): unit -> 'a =
let

val r: 'a option ref = ref NONE
in

fn () =>
case !r of

 NONE =>
let

val a = th ()
val () = r := SOME a

in
 a

end
 | SOME a => a

end
end

Last edited on 2005-01-26 20:33:55 by MatthewFluet.

MLton Guide (20051202) Lazy

157

Libraries
In theory every strictly conforming Standard ML program should run on MLton. However, often large SML
projects use implementation specific features so some "porting" is required. Here is a partial list of software
that is known to run on MLton.

Concurrency: ConcurrentML - distributed with MLton•
Graphics•

GTK: mGTK.♦
OpenGL♦

Lex-like lexer generator: MLLex - distributed with MLton.•
Regular expressions•

The SMLNJLibrary has a regexp module.♦
The internal MLton library has a regexp module which we hope to cleanup and make more
accessible someday. See regexp.sig regexp.sml

♦

SMLNJLibrary - distributed with MLton•
CKitLibrary - distributed with MLton•
ML-NLFFI - distributed with MLton•
sml-lib, a grab bag of libraries for MLton and other SML implementations.•

Swerve, an HTTP server.•
Twelf. The version in CVS should compile out of the box.•

XML: fxp•
Yacc-like parser generator: MLYacc - distributed with MLton.•

Ports in progress

Contact us for details on any of these.

MLRISC•
MLDoc http://people.cs.uchicago.edu/~jhr/tools/ml-doc.html•
Unicode•

More

More projects using MLton can be seen on the Users page.

Software for SML implementations other than MLton

PostgreSQL•
Moscow ML: http://www.dina.kvl.dk/~sestoft/mosmllib/Postgres.html♦
SML/NJ NLFFI: http://smlweb.sourceforge.net/smlsql/♦

Web:•
ML Kit: SMLserver (a plugin for AOLserver)♦
Moscow ML: ML Server Pages (support for PHP-style CGI scripting)♦
SML/NJ: smlweb♦

Last edited on 2005-12-02 03:33:52 by StephenWeeks.

MLton Guide (20051202) Libraries

158

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/mlton/basic/regexp.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/mlton/basic/regexp.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/mlton/basic/regexp.sml?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/mlton/basic/regexp.sml?view=markup
http://cvs.sourceforge.net/viewcvs.py/tom7misc/sml-lib/
http://cvs.sourceforge.net/viewcvs.py/tom7misc/sml-lib/
http://www.twelf.org/
http://www.twelf.org/
http://people.cs.uchicago.edu/~jhr/tools/ml-doc.html
http://people.cs.uchicago.edu/~jhr/tools/ml-doc.html
http://www.dina.kvl.dk/~sestoft/mosmllib/Postgres.html
http://www.dina.kvl.dk/~sestoft/mosmllib/Postgres.html
http://smlweb.sourceforge.net/smlsql/
http://smlweb.sourceforge.net/smlsql/
http://www.smlserver.org
http://www.smlserver.org
http://ellemose.dina.kvl.dk/~sestoft/msp/index.msp
http://ellemose.dina.kvl.dk/~sestoft/msp/index.msp
http://smlweb.sourceforge.net/
http://smlweb.sourceforge.net/

License

Web Site

In order to allow the maximum freedom for the future use of the content in this web site, we require that
contributions to the web site be dedicated to the public domain. That means that you can only add works that
are already in the public domain, or that you must hold the copyright on the work that you agree to dedicate
the work to the public domain.

By contributing to this web site, you agree to dedicate your contribution to the public domain.

Software

As of 20050812, The MLton software is licensed under the BSD-style license below. By contributing code to
the project, you agree to release the code under this license.

This is the license for MLton, a whole-program optimizing compiler for
the Standard ML programming language. Send comments and questions to
MLton@mlton.org.

MLton COPYRIGHT NOTICE, LICENSE AND DISCLAIMER.

Copyright (C) 1999-2005 Henry Cejtin, Matthew Fluet, Suresh
 Jagannathan, and Stephen Weeks.
Copyright (C) 1997-2000 by the NEC Research Institute

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both the copyright notice and this permission notice and warranty
disclaimer appear in supporting documentation, and that the name of
NEC, or any NEC entity not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

NEC disclaims all warranties with regard to this software, including
all implied warranties of merchantability and fitness. In no event
shall NEC be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits,
whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of this
software.

Last edited on 2005-08-12 17:57:33 by StephenWeeks.

MLton Guide (20051202) License

159

LineDirective
To aid in the debugging of code produced by program generators such as Noweb, MLton supports
comments with line directives of the form (*#line line.col "file"*). Here, line and col are sequences
of decimal digits and file is the source file. A line directive causes the front end to believe that the character
following the right parenthesis is at the line and column of the specified file. A line directive only affects the
reporting of error messages and does not affect program semantics (except for functions like
MLton.Exn.history that report source file positions). Syntactically invalid line directives are ignored. To
prevent incompatibilities with SML, the file name may not contain the character sequence *).

Last edited on 2005-12-02 04:21:37 by StephenWeeks.

MLton Guide (20051202) LineDirective

160

http://www.eecs.harvard.edu/~nr/noweb/
http://www.eecs.harvard.edu/~nr/noweb/

LocalFlatten
LocalFlatten is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass flattens arguments to SSA blocks.

A block argument is flattened as long as it only flows to selects and there is some tuple constructed in this
function that flows to it.

Implementation

local-flatten.sig local-flatten.fun

Details and Notes

Last edited on 2005-12-01 04:52:47 by StephenWeeks.

MLton Guide (20051202) LocalFlatten

161

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/local-flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/local-flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/local-flatten.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/local-flatten.fun?view=markup

LocalRef
LocalRef is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pas optimizes ref cells local to a SSA function:

global refs only used in one function are moved to the function•
refs only created, read from, and written to (i.e., don't escape) are converted into function local
variables

•

Uses Multi and Restore.

Implementation

local-ref.sig local-ref.fun

Details and Notes

Moving a global ref requires the Multi analysis, because a global ref can only be moved into a function
that is executed at most once.

Conversion of non-escaping refs is structured in three phases:

analysis -- a variable r = Ref_ref x escapes if•
r is used in any context besides Ref_assign (r, _) or Ref_deref r♦
all uses r reachable from a (direct or indirect) call to Thread_copyCurrent are of the
same flavor (either Ref_assign or Ref_deref); this also requires the Multi analysis.

♦

transformation•
rewrites r = Ref_ref x to r = x♦
rewrites _ = Ref_assign (r, y) to r = y♦
rewrites z = Ref_deref r to z = r Note that the resulting program violates the SSA
condition.

♦

Restore -- restore the SSA condition.•

Last edited on 2005-12-02 03:27:53 by StephenWeeks.

MLton Guide (20051202) LocalRef

162

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/local-ref.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/local-ref.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/local-ref.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/local-ref.fun?view=markup

LoopInvariant
LoopInvariant is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass removes loop invariant arguments to local loops.

 loop (x, y)
 ...
 ...
 loop (x, z)
 ...

becomes

 loop' (x, y)
 loop (y)
 loop (y)
 ...
 ...
 loop (z)
 ...

Implementation

loop-invariant.sig loop-invariant.fun

Details and Notes

Last edited on 2005-12-01 04:53:57 by StephenWeeks.

MLton Guide (20051202) LoopInvariant

163

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/loop-invariant.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/loop-invariant.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/loop-invariant.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/loop-invariant.fun?view=markup

ML
ML stands for meta language. ML was originally designed in the 1970s as a programming language to assist
theorem proving in the logic LCF. In the 1980s, ML split into two variants, Standard ML and OCaml, both of
which are still used today.

Last edited on 2004-12-06 06:00:35 by StephenWeeks.

MLton Guide (20051202) ML

164

MLBasis
The ML Basis system extends Standard ML to support programming-in-the-very-large, namespace
management at the module level, separate delivery of library sources, and more. While Standard ML modules
are a sophisticated language for programming-in-the-large, it is difficult, if not impossible, to accomplish a
number of routine namespace management operations when a program draws upon multiple libraries provided
by different vendors.

The ML Basis system is a simple, yet powerful, approach that builds upon the programmer's intuitive notion
(and the Definition of Standard ML's formal notion) of the top-level environment (a basis). The system is
designed as a natural extension of Standard ML; the formal specification of the ML Basis system (pdf) is
given in the style of the Definition.

Here are some of the key features of the ML Basis system:

Explicit file order: The order of files (and, hence, the order of evaluation) in the program is explicit.
The ML Basis system's semantics are structured in such a way that for any well-formed project, there
will be exactly one possible interpretation of the project's syntax, static semantics, and dynamic
semantics.

1.

Implicit dependencies: A source file (corresponding to a SML top-level declaration) is elaborated in
the environment described by preceding declarations. It is not necessary to explicitly list the
dependencies of a file.

2.

Scoping and renaming: The ML Basis system provides mechanisms for limiting the scope of (i.e,
hiding) and renaming identifiers.

3.

No naming convention for finding the file that defines a module. To import a module, its defining file
must appear in some ML Basis file.

4.

Next steps

MLBasisSyntaxAndSemantics•
MLBasisExamples•
MLBasisPathMap•
MLBasisAnnotations•
MLBasisAvailableLibraries•

Last edited on 2005-12-01 20:09:32 by StephenWeeks.

MLton Guide (20051202) MLBasis

165

http://mlton.org/pages/MLBasis/attachments/mlb-formal.pdf
http://mlton.org/pages/MLBasis/attachments/mlb-formal.pdf

MLBasisAnnotationExamples
Here are some example uses of MLBasisAnnotations.

Eliminate spurious warnings in automatically generated code

Programs that automatically generate source code can often produce nonexhaustive matches, relying on
invariants of the generated code to ensure that the matches never fail. A programmer may wish to elide the
nonexhaustive match warnings from this code, in order that legitimate warnings are not missed in a flurry of
false positives. To do so, the programmer simply annotates the generated code with the
nonexhaustiveMatch ignore annotation:

local
 $(GEN_ROOT)/gen-lib.mlb

 ann "nonexhaustiveMatch ignore" in
 foo.gen.sml
 end
in
 signature FOO
 structure Foo
end

Deliver a library

Standard ML libraries can be delivered via .mlb files. Authors of such libraries should strive to be mindful of
the ways in which programmers may choose to compile their programs. For example, although the defaults for
sequenceNonUnit and warnUnused are ignore and false, periodically compiling with these
annotations defaulted to warn and true can help uncover likely bugs. However, a programmer is unlikely to
be interested in unused modules from an imported library, and the behavior of sequenceNonUnit error
may be incompatible with some libraries. Hence, a library author may choose to deliver a library as follows:

ann
 "nonexhaustiveMatch warn" "redundantMatch warn"
 "sequenceNonUnit warn"
 "warnUnused true" "forceUsed"
in
 local
 file1.sml
 ...
 filen.sml
 in
 functor F1
 ...
 signature S1
 ...
 structure SN
 ...
 end
end

The annotations nonexhaustiveMatch warn, redundantMatch warn, and
sequenceNonUnit warn have the obvious effect on elaboration. The annotations warnUnused true
and forceUsed work in conjunction --- warning on any identifiers that do not contribute to the exported

MLton Guide (20051202) MLBasisAnnotationExamples

166

modules, and preventing warnings on exported modules that are not used in the remainder of the program.
Many of the available libraries are delivered with these annotations.

Last edited on 2005-12-01 19:45:40 by StephenWeeks.

MLton Guide (20051202) MLBasisAnnotationExamples

167

MLBasisAnnotations
ML Basis annotations control options that affect the elaboration of SML source files. Conceptually, a basis
file is elaborated in a default annotation environment (just as it is elaborated in an empty basis). The
declaration ann "ann" in basdec end merges the annotation ann with the "current" annotation
environment for the elaboration of basdec. To allow for future expansion, "ann" is lexed as a single SML
string constant. To conveniently specify multiple annotations, the following derived form is provided:

ann "ann" ("ann")+ in basdec end ==>
ann "ann" in ann ("ann")+ in basdec end end
Here are the available annotations. In the explanation below, for annotations that take an argument, the first
value listed is the default.

allowFFI {false|true}

If true, allow _address, _export, _import, and _symbol expressions to appear in source files. See
ForeignFunctionInterface.

forceUsed

Force all identifiers in the basis denoted by the body of the ann to be considered used; use in conjunction
with warnUnused true.

nonexhaustiveExnMatch {default|ignore}

If ignore, suppress errors and warnings about nonexhaustive matches that arise solely from unmatched
exceptions. If default, follow the behavior of nonexhaustiveMatch.

nonexhaustiveMatch {warn|error|ignore}

If error or warn, report nonexhaustive matches. An error will abort a compile, while a warning will not.

redundantMatch {warn|error|ignore}

If error or warn, report redundant matches. An error will abort a compile, while a warning will not.

sequenceNonUnit {ignore|error|warn}

If error or warn, report when e1 is not of type unit in the sequence expression (e1; e2). This can be
helpful in detecting curried applications that are mistakenly not fully applied. To silence spurious messages,
you can use ignore e1.

warnUnused {false|true}

Report unused identifiers.

Next Steps

MLBasisAnnotationExamples•

MLton Guide (20051202) MLBasisAnnotations

168

Last edited on 2005-12-01 19:50:46 by StephenWeeks.

MLton Guide (20051202) MLBasisAnnotations

169

MLBasisAvailableLibraries
MLton comes with the following ML Basis files available.

$(SML_LIB)/basis/basis.mlb

The Basis Library.

$(SML_LIB)/basis/basis-1997.mlb

The (deprecated) 1997 version of the Basis Library.

$(SML_LIB)/basis/mlton.mlb

The MLton structure and signatures.

$(SML_LIB)/basis/sml-nj.mlb

The SMLofNJ structure and signature.

$(SML_LIB)/basis/unsafe.mlb

The Unsafe structure and signature.

$(SML_LIB)/mlyacc-lib/mlyacc-lib.mlb

Modules used by parsers built with MLYacc.

$(SML_LIB)/cml/cml.mlb

ConcurrentML, a library for message-passing concurrency.

$(SML_LIB)/mlnlffi-lib/mlnlffi-lib.mlb

ML-NLFFI, a library for foreign function interfaces.

$(SML_LIB)/smlnj-lib/...

SMLNJLibrary, a collection of libraries distributed with SML/NJ.

$(SML_LIB)/ckit-lib/ckit-lib.mlb

CKitLibrary, a library for C source code.

Basis fragments

There are a number of specialized ML Basis files for importing fragments of the Basis Library that can not be
expressed within SML.

$(SML_LIB)/basis/pervasive-types.mlb

MLton Guide (20051202) MLBasisAvailableLibraries

170

The top-level types and constructors] of the Basis Library.

$(SML_LIB)/basis/pervasive-exns.mlb

The top-level exception constructors of the Basis Library.

$(SML_LIB)/basis/pervasive-vals.mlb

The top-level values of the Basis Library, without infix status.

$(SML_LIB)/basis/overloads.mlb

The top-level overloaded values of the Basis Library, without infix status.

$(SML_LIB)/basis/equal.mlb

The polymorphic equality = and inequality <> values, without infix status.

$(SML_LIB)/basis/infixes.mlb

The infix declarations of the Basis Library.

$(SML_LIB)/basis/pervasive.mlb

The entire top-level value and type environment of the Basis Library, with infix status. This is the same as
importing the above six MLB files.

Last edited on 2005-12-01 19:54:53 by StephenWeeks.

MLton Guide (20051202) MLBasisAvailableLibraries

171

MLBasisExamples
Here are some example uses of ML Basis files.

Complete program

Suppose your complete program consists of the files file1.sml, ..., filen.sml, which depend upon
libraries lib1.mlb, ..., libm.mlb.

(* import libraries *)
lib1.mlb
...
libm.mlb

(* program files *)
file1.sml
...
filen.sml

The bases denoted by lib1.mlb, ..., libm.mlb are merged (bindings of names in later bases take
precedence over bindings of the same name in earlier bases), producing a basis in which file1.sml, ...,
filen.sml are elaborated, adding additional bindings to the basis.

Export filter

Suppose you only want to export certain structures, signatures, and functors from a collection of files.

local
 file1.sml
 ...
 filen.sml
in
 (* export filter here *)
 functor F
 structure S
end

While file1.sml, ..., filen.sml may declare top-level identifiers in addition to F and S, such names are
not accessible to programs and libraries that import this .mlb.

Export filter with renaming

Suppose you want an export filter, but want to rename one of the modules.

local
 file1.sml
 ...
 filen.sml
in
 (* export filter, with renaming, here *)
 functor F
 structure S' = S
end

MLton Guide (20051202) MLBasisExamples

172

Note that functor F is an abbreviation for functor F = F, which simply exports an identifier under
the same name.

Import filter

Suppose you only want to import a functor F from one library and a structure S from another library.

local
 lib1.mlb
in
 (* import filter here *)
 functor F
end
local
 lib2.mlb
in
 (* import filter here *)
 structure S
end
file1.sml
...
filen.sml

Import filter with renaming

Suppose you want to import a structure S from one library and another structure S from another library.

local
 lib1.mlb
in
 (* import filter, with renaming, here *)
 structure S1 = S
end
local
 lib2.mlb
in
 (* import filter, with renaming, here *)
 structure S2 = S
end
file1.sml
...
filen.sml

Full Basis

Since the Modules level of SML is the natural means for organizing program and library components, MLB
files provide convenient syntax for renaming Modules level identifiers (in fact, renaming of functor identifiers
provides a mechanism that is not available in SML). However, please note that .mlb files elaborate to full
bases including top-level types and values (including infix status), in addition to structures, signatures, and
functors. For example, suppose you wished to extend the Basis Library with an ('a, 'b) either
datatype corresponding to a disjoint sum; the type and some operations should be available at the top-level;
additionally, a signature and structure provide the complete interface.

We could use the following files.

MLton Guide (20051202) MLBasisExamples

173

either-sigs.sml

signature EITHER_GLOBAL =
sig
datatype ('a, 'b) either = Left of 'a | Right of 'b
val & : ('a -> 'c) * ('b -> 'c) -> ('a, 'b) either -> 'c
val && : ('a -> 'c) * ('b -> 'd) -> ('a, 'b) either -> ('c, 'd) either

end

signature EITHER =
sig
include EITHER_GLOBAL
val isLeft : ('a, 'b) either -> bool
val isRight : ('a, 'b) either -> bool

 ...
end

either-strs.sml

structure Either : EITHER =
struct
datatype ('a, 'b) either = Left of 'a | Right of 'b
fun f & g = fn x =>
case x of Left z => f z | Right z => g z

fun f && g = (Left o f) & (Right o g)
fun isLeft x = ((fn _ => true) & (fn _ => false)) x
fun isRight x = (not o isLeft) x

 ...
end

structure EitherGlobal : EITHER_GLOBAL = Either

either-infixes.sml

infixr 3 & &&

either-open.sml

open EitherGlobal

either.mlb

either-infixes.sml
local
 (* import Basis Library *)
 $(SML_LIB)/basis/basis.mlb
 either-sigs.sml
 either-strs.sml
in
 signature EITHER
 structure Either
 either-open.sml
end

A client that imports either.mlb will have access to neither EITHER_GLOBAL nor EitherGlobal, but
will have access to the type either and the values & and && (with infix status) in the top-level environment.
Note that either-infixes.sml is outside the scope of the local, because we want the infixes available in
the implementation of the library and to clients of the library.

MLton Guide (20051202) MLBasisExamples

174

Last edited on 2005-12-02 04:21:48 by StephenWeeks.

MLton Guide (20051202) MLBasisExamples

175

MLBasisPathMap
An ML Basis path map describes a map from ML Basis path variables (of the form $(VAR)) to file system
paths. ML Basis path variables provide a flexible way to refer to libraries while allowing them to be moved
without changing their clients.

The format of an mlb-path-map file is a sequence of lines; each line consists of two, white-space delimited
tokens. The first token is a path variable VAR and the second token is the path to which the variable is
mapped. The path may include path variables, which are recursively expanded.

The mapping from path variables to paths is initialized by reading a system-wide configuration file:
/usr/lib/mlton/mlb-path-map. Additional path maps can be specified with -mlb-path-map (see
CompileTimeOptions). Configuration files are processed from first to last and from top to bottom, later
mappings take precedence over earlier mappings.

The compiler and system-wide configuration file makes the following path variables available.

MLB path variable Description
SML_LIB /usr/lib/mlton/sml

TARGET_ARCH string representation of target architecture
TARGET_OS string representation of target operating system

Last edited on 2005-12-02 03:48:35 by MatthewFluet.

MLton Guide (20051202) MLBasisPathMap

176

MLBasisSyntaxAndSemantics
An ML Basis (MLB) file should have the .mlb suffix and should contain a basis declaration.

Syntax

A basis declaration must be one of the following forms.

basis basid = basexp (and basid = basexp)*•
open basid1 ... basidn•
local basdec in basdec end•
basdec [;] basdec•
structure strid [= strid] (and strid[= strid])*•
signature sigid [= sigid] (and sigid [= sigid])*•
functor funid [= funid] (and funid [= funid])*•
path.sml, path.sig, or path.fun•
path.mlb•
ann "ann" in basdec end•

A basis expression basexp must be of one the following forms.

bas basdec end•
basid•
let basdec in basexp end•

Nested SML-style comments (enclosed with (* and *)) are ignored (but LineDirectives are recognized).

Paths can be relative or absolute. Relative paths are relative to the directory containing the MLB file. Paths
may include path variables and are expanded according to a path map. Unquoted paths may include
alpha-numeric characters and the symbols "-" and "_", along with the arc separator "/" and extension
separator ".". More complicated paths, including paths with spaces, may be included by quoting the path with
". A quoted path is lexed as a SML string constant.

Annotations allow a library author to control options that affect the elaboration of SML source files.

Semantics

There is a formal semantics for ML Basis files in the style of the Definition. Here, we give an informal
explanation.

An SML structure is a collection of types, values, and other structures. Similarly, a basis is a collection, but of
more kinds of objects: types, values, structures, fixities, signatures, functors, and other bases.

A basis declaration denotes a basis. A structure, signature, or functor declaration denotes a basis containing
the corresponding module. Sequencing of basis declarations merges bases, with later definitions taking
precedence over earlier ones, just like sequencing of SML declarations. Local declarations provide name
hiding, just like SML local declarations. A reference to an SML source file causes the file to be elaborated in
the basis extant at the point of reference. A reference to an MLB file causes the basis denoted by that MLB
file to be imported -- the basis at the point of reference does not affect the imported basis.

MLton Guide (20051202) MLBasisSyntaxAndSemantics

177

http://mlton.org/pages/MLBasis/attachments/mlb-formal.pdf
http://mlton.org/pages/MLBasis/attachments/mlb-formal.pdf

Basis expressions and basis identifiers allow binding a basis to a name.

An MLB file is elaborated starting in an empty basis. Each MLB file is elaborated and evaluated only once,
with the result being cached. Subsequent references use the cached value. Thus, any observable effects due to
evaluation are not duplicated if the MLB file is referred to multiple times.

Last edited on 2005-12-01 20:54:18 by StephenWeeks.

MLton Guide (20051202) MLBasisSyntaxAndSemantics

178

MLKit
The ML Kit is a Standard ML Compiler.

Last edited on 2004-12-30 20:11:56 by StephenWeeks.

MLton Guide (20051202) MLKit

179

http://www.it-c.dk/research/mlkit/
http://www.it-c.dk/research/mlkit/

MLNLFFI
ML-NLFFI is the no-longer-foreign-function interface library for SML.

As of 20050212, MLton has an initial port of ML-NLFFI from SML/NJ to MLton. All of the ML-NLFFI
functionality is present.

Additionally, MLton has an initial port of the mlnlffigen tool from SML/NJ to MLton. Due to low-level
details, the code generated by SML/NJ's ml-nlffigen is not compatible with MLton, and vice-versa.
However, the generated code has the same interface, so portable client code can be written. MLton's
mlnlffigen does not currently support C functions with struct or union arguments.

Usage

You can import the ML-NLFFI Library into an MLB file with
$(SML_LIB)/mlnlffi-lib/mlnlffi-lib.mlb

•

If you are porting a project from SML/NJ's CompilationManager to MLton's ML Basis system using
cm2mlb, note that the following maps are included by default:

$c/c.mlb $(SML_LIB)/mlnlffi-lib/mlnlffi-lib.mlb

This will automatically convert a $/c.cm import in an input .cm file into a
$(SML_LIB)/mlnlffi-lib/mlnlffi-lib.mlb import in the output .mlb file.

•

Also see

MLNLFFIImplementation•

Last edited on 2005-12-01 20:57:29 by StephenWeeks.

MLton Guide (20051202) MLNLFFI

180

MLNLFFIImplementation
MLton's implementation(s) of the MLNLFFI library differs from the SML/NJ implementation in two
important ways:

MLton cannot utilize the Unsafe.cast "cheat" described in Section 3.7 of Blume01. (MLton's
representation of closures and aggressive representation optimizations make an Unsafe.cast even
more "unsafe" than in other implementations.) We have considered two solutions:

•

One solution is to utilize an additional type parameter (as described in Section 3.7 of
Blume01):

♦

signature C = sig
type ('t, 'f, 'c) obj
eqtype ('t, 'f, 'c) obj'
...
type ('o, 'f) ptr
eqtype ('o, 'f) ptr'
...
type 'f fptr
type 'f ptr'
...
structure T : sig

type ('t, 'f) typ
...

end
end

The rule for ('t, 'f, 'c) obj,('t, 'f, 'c) ptr, and also
('t, 'f) T.typ is that whenever F fptr occurs within the instantiation of 't,
then 'f must be instantiated to F. In all other cases, 'f will be instantiated to unit.
(In the actual MLton implementation, an abstract type naf (not-a-function) is used
instead of unit.)

While this means that type-annotated programs may not type-check under both the SML/NJ
implementation and the MLton implementation, this should not be a problem in practice.
Tools, like ml-nlffigen, which are necessarily implementation dependent (in order to
make calls through a C function pointer), may be easily extended to emit the additional type
parameter. Client code which uses such generated glue-code (e.g., Section 1 of Blume01)
need rarely write type-annotations, thanks to the magic of type inference.
The above implementation suffers from two disadvantages. First, it changes the MLNLFFI
Library interface, meaning that the same program may not type-check under both the SML/NJ
implementation and the MLton implementation (though, in light of type inference and the
richer MLRep structure provided by MLton, this point is mostly moot).

Second, it appears to unecessarily duplicate type information. For example, an external C
variable of type int (* f[3])(int) (that is, an array of three function pointers), would
be represented by the SML type
(((sint -> sint) fptr, dec dg3) arr, sint -> sint, rw) obj. One
might well ask why the 'f instantiation (sint -> sint in this case) cannot be extracted
from the 't instantiation (((sint -> sint) fptr, dec dg3) arr in this case),
obviating the need for a separate function-type type argument. There are a number of
components to an complete answer to this question. Foremost is the fact that Standard ML
supports neither (general) type-level functions nor intensional polymorphism.

♦

MLton Guide (20051202) MLNLFFIImplementation

181

A more direct answer for MLNLFFI is that in the SML/NJ implemention, the definition of the
types ('t, 'c) obj and ('t, 'c) ptr are made in such a way that the type variables
't and 'c are phantom (not contributing to the run-time representation of an
('t, 'c) obj or ('t, 'c) ptr value), despite the fact that the types
((sint -> sint) fptr, rw) ptr and
((double -> double) fptr, rw) ptr necessarily carry distinct (and type
incompatible) run-time (C-)type information (RTTI), corresponding to the different calling
conventions of the two C functions. The Unsafe.cast "cheat" overcomes the type
incompatibility without introducing a new type variable (as in the first solution above).

Hence, the reason that function-type type cannot be extracted from the 't type variable
instantiation is that the type of the representation of RTTI doesn't even see the (phantom) 't
type variable. The solution which presents itself is to give up on the phantomness of the 't
type variable, making it available to the representation of RTTI.

This is not without some small drawbacks. Because many of the types used to instatiate 't
carry more structure than is strictly necessary for 't's RTTI, it is sometimes necessary to
wrap and unwrap RTTI to accomodate the additional structure. (In the other implementations,
the corresponding operations can pass along the RTTI unchanged.) However, these coercions
contribute miniscule overhead; in fact, in a majority of cases, MLton's optimizations will
completely eliminate the RTTI from the final program.

The implementation distributed with MLton uses the second solution.

Bonus question: Why can't one use a universal type to eliminate the use of Unsafe.cast?

Answer: ???♦
MLton (in both of the above implementations) provides a richer MLRep structure, utilizing Int<N>
and Word<N> structures.

structure MLRep = struct
structure Char =

struct
structure Signed = Int8
structure Unsigned = Word8
(* word-style bit-operations on integers... *)
structure SignedBitops = IntBitOps(structure I = Signed

structure W = Unsigned)
end

structure Short =
struct

structure Signed = Int16
structure Unsigned = Word16
(* word-style bit-operations on integers... *)
structure SignedBitops = IntBitOps(structure I = Signed

structure W = Unsigned)
end

structure Int =
struct

structure Signed = Int32
structure Unsigned = Word32
(* word-style bit-operations on integers... *)
structure SignedBitops = IntBitOps(structure I = Signed

structure W = Unsigned)
end

structure Long =

•

MLton Guide (20051202) MLNLFFIImplementation

182

struct
structure Signed = Int32
structure Unsigned = Word32
(* word-style bit-operations on integers... *)
structure SignedBitops = IntBitOps(structure I = Signed

structure W = Unsigned)
end

structure LongLong =
struct

structure Signed = Int64
structure Unsigned = Word64
(* word-style bit-operations on integers... *)
structure SignedBitops = IntBitOps(structure I = Signed

structure W = Unsigned)
end

structure Float = Real32
structure Double = Real64

end

This would appear to be a better interface, even when an implementation must choose Int32 and
Word32 as the representation for smaller C-types.

Last edited on 2005-12-02 05:11:01 by MatthewFluet.

MLton Guide (20051202) MLNLFFIImplementation

183

http://mlton.org/MatthewFluet

MLj
MLj is a Standard ML Compiler that targets Java bytecode. It is no longer maintained. It has morphed into

SML.NET.

BentonEtAl98 and BentonKennedy99 describe MLj.

Last edited on 2004-12-30 20:11:59 by StephenWeeks.

MLton Guide (20051202) MLj

184

http://www.dcs.ed.ac.uk/home/mlj/
http://www.dcs.ed.ac.uk/home/mlj/

MLtonArray
signature MLTON_ARRAY =

sig
val unfoldi: int * 'b * (int * 'b -> 'a * 'b) -> 'a array

end

unfoldi (n, b, f)•

constructs an array a of length n, whose elements ai are determined by the equations b0 = b and (ai, bi+1) = f
(i, bi).

Last edited on 2005-12-01 22:27:14 by StephenWeeks.

MLton Guide (20051202) MLtonArray

185

MLtonBinIO
signature MLTON_BIN_IO = MLTON_IO

See MLtonIO.

Last edited on 2005-12-01 21:00:20 by StephenWeeks.

MLton Guide (20051202) MLtonBinIO

186

MLtonCont
signature MLTON_CONT =

sig
type 'a t

val callcc: ('a t -> 'a) -> 'a
val prepend: 'a t * ('b -> 'a) -> 'b t
val throw: 'a t * 'a -> 'b
val throw': 'a t * (unit -> 'a) -> 'b

end

type 'a t•
the type of continuations that expect a value of type 'a.
callcc f•
applies f to the current continuation. This copies the entire stack; hence, callcc takes time
proportional to the current stack size.
prepend (k, f)•
composes a function f with a continuation k to create a continuation that first does f and then does k.
This is a constant time operation.
throw (k, v)•
throws value v to continuation k. This copies the entire stack of k; hence, throw takes time
proportional to the size of this stack.
throw' (k, th)•

a generalization of throw that evaluates th () in the context of k. Thus, for example, if th () raises an
exception or grabs another continuation, it will see k, not the current continuation.

Last edited on 2005-12-01 22:27:22 by StephenWeeks.

MLton Guide (20051202) MLtonCont

187

MLtonExn
signature MLTON_EXN =

sig
val addExnMessager: (exn -> string option) -> unit
val history: exn -> string list
val topLevelHandler: exn -> 'a

end

addExnMessager f•
adds f as a pretty-printer to be used by General.exnMessage for converting exceptions to
strings. Messagers are tried in order from most recently added to least recently added.
history e•

returns call stack at the point that e was first raised. Each element of the list is a file position.
The elements are in reverse chronological order, i.e. the function called last is at the front of
the list.

history e will return [] unless the program is compiled with
-const 'Exn.keepHistory true'.

topLevelHandler e•

behaves as if the top level handler received the exception e, that is, print out the unhandled exception message
for e and exit.

Last edited on 2005-12-02 04:22:01 by StephenWeeks.

MLton Guide (20051202) MLtonExn

188

MLtonFinalizable
signature MLTON_FINALIZABLE =

sig
type 'a t

val addFinalizer: 'a t * ('a -> unit) -> unit
val finalizeBefore: 'a t * 'b t -> unit
val new: 'a -> 'a t
val touch: 'a t -> unit
val withValue: 'a t * ('a -> 'b) -> 'b

end

A finalizable value is a value to which finalizers can be attached. A finalizer is a function that runs after a
garbage collection determines that the value to which it is attached is unreachable. Reachability is the same as
with weak pointers. The finalizer is treated like a signal handler, in that it runs asynchronously in a separate
thread, with signals blocked, and will not interrupt a critical section (see MLtonThread).

addFinalizer (v, f)•
adds f as a finalizer to v. This means that sometime after the last call to withValue on v completes
and v becomes unreachable, f will be called with the value of v.
finalizeBefore (v1, v2)•
ensures that v1 will be finalized before v2. A cycle of values v = v1, ..., vn = v with
finalizeBefore (vi, vi+1) will result in none of the vi being finalized.
new x•
creates a new finalizable value, v, with value x. The finalizers of v will run sometime after the last
call to withValue on v when the garbage collector determines that v is unreachable.
touch v•
ensures that v's finalizers will not run before the call to touch.
withValue (v, f)•

returns the result of applying f to the value of v and ensures that v's finalizers will not run before f
completes. The call to f is a nontail call.

Example

Suppose that finalizable.sml contains the following.

signature CLIST =
sig

type t

val cons: int * t -> t
val sing: int -> t
val sum: t -> int

end

functor CList (structure F: MLTON_FINALIZABLE
structure Prim:

sig
val cons: int * Word32.word -> Word32.word
val free: Word32.word -> unit
val sing: int -> Word32.word
val sum: Word32.word -> int

MLton Guide (20051202) MLtonFinalizable

189

end): CLIST =
struct

type t = Word32.word F.t

fun cons (n: int, l: t) =
 F.withValue
 (l, fn w' =>

let
val c = F.new (Prim.cons (n, w'))
val _ = F.addFinalizer (c, Prim.free)
val _ = F.finalizeBefore (c, l)

in
 c

end)

fun sing n =
let

val c = F.new (Prim.sing n)
val _ = F.addFinalizer (c, Prim.free)

in
 c

end

fun sum c = F.withValue (c, Prim.sum)
end

functor Test (structure CList: CLIST
structure MLton: sig

structure GC:
sig

val collect: unit -> unit
end

end) =
struct

fun f n =
if n = 1

then ()
else

let
val a = Array.tabulate (n, fn i => i)
val _ = Array.sub (a, 0) + Array.sub (a, 1)

in
 f (n - 1)

end

val l = CList.sing 2
val l = CList.cons (2,l)
val l = CList.cons (2,l)
val l = CList.cons (2,l)
val l = CList.cons (2,l)
val l = CList.cons (2,l)
val l = CList.cons (2,l)
val _ = MLton.GC.collect ()
val _ = f 100
val _ = print (concat ["listSum(l) = ",

 Int.toString (CList.sum l),
"\n"])

val _ = MLton.GC.collect ()
val _ = f 100

end

MLton Guide (20051202) MLtonFinalizable

190

structure CList =
 CList (structure F = MLton.Finalizable

structure Prim =
struct

val cons = _import "listCons": int * Word32.word -> Word32.word;
val free = _import "listFree": Word32.word -> unit;
val sing = _import "listSing": int -> Word32.word;
val sum = _import "listSum": Word32.word -> int;

end)

structure S = Test (structure CList = CList
structure MLton = MLton)

Suppose that cons.c contains the following.

#include <stdio.h>

typedef unsigned int uint;

typedef struct Cons {
 struct Cons *next;
 int value;
} *Cons;

Cons listCons (int n, Cons c) {
 Cons res;

 res = (Cons) malloc (sizeof(*res));
 fprintf (stderr, "0x%08x = listCons (%d)\n", (uint)res, n);
 res->next = c;
 res->value = n;
 return res;
}

Cons listSing (int n) {
 Cons res;

 res = (Cons) malloc (sizeof(*res));
 fprintf (stderr, "0x%08x = listSing (%d)\n", (uint)res, n);
 res->next = NULL;
 res->value = n;
 return res;
}

void listFree (Cons p) {
 fprintf (stderr, "listFree (0x%08x)\n", (uint)p);
 free (p);
}

int listSum (Cons c) {
 int res;

 fprintf (stderr, "listSum\n");
 res = 0;
 for (; c != NULL; c = c->next)
 res += c->value;
 return res;
}

We can compile these to create an executable with

MLton Guide (20051202) MLtonFinalizable

191

% mlton -default-ann 'allowFFI true' finalizable.sml cons.c

Running this executable will create output like the following.

% finalizable
0x08072890 = listSing (2)
0x080728a0 = listCons (2)
0x080728b0 = listCons (2)
0x080728c0 = listCons (2)
0x080728d0 = listCons (2)
0x080728e0 = listCons (2)
0x080728f0 = listCons (2)
listSum
listSum(l) = 14
listFree (0x080728f0)
listFree (0x080728e0)
listFree (0x080728d0)
listFree (0x080728c0)
listFree (0x080728b0)
listFree (0x080728a0)
listFree (0x08072890)

Synchronous Finalizers

Finalizers in MLton are asynchronous. That is, they run at an unspecified time, interrupting the user program.
It is also possible, and sometimes useful, to have synchronous finalizers, where the user program explicitly
decides when to run enabled finalizers. We have considered this in MLton, and it seems possible, but there are
some unresolved design issues. See the thread at

http://mlton.org/pipermail/mlton/2004-September/016570.html•

Also see Boehm03.

Last edited on 2005-12-02 03:43:20 by MatthewFluet.

MLton Guide (20051202) MLtonFinalizable

192

http://mlton.org/pipermail/mlton/2004-September/016570.html
http://mlton.org/pipermail/mlton/2004-September/016570.html

MLtonGC
signature MLTON_GC =

sig
val collect: unit -> unit
val pack: unit -> unit
val setMessages: bool -> unit
val setSummary: bool -> unit
val unpack: unit -> unit

end

collect ()•
causes a garbage collection to occur.
pack ()•
shrinks the heap as much as possible so that other processes can use available RAM.
setMessages b•
controls whether diagnostic messages are printed at the beginning and end of each garbage collection.
It is the same as the gc-messages runtime system option.
setSummary b•
controls whether a summary of garbage collection statistics is printed upon termination of the
program. It is the same as the gc-summary runtime system option.
unpack ()•

resizes a packed heap to the size desired by the runtime.

Last edited on 2004-11-02 04:24:34 by StephenWeeks.

MLton Guide (20051202) MLtonGC

193

MLtonIO
signature MLTON_IO =

sig
type instream
type outstream

val inFd: instream -> Posix.IO.file_desc
val mkstemp: string -> string * outstream
val mkstemps: {prefix: string, suffix: string} -> string * outstream
val newIn: Posix.IO.file_desc * string -> instream
val newOut: Posix.IO.file_desc * string -> outstream
val outFd: outstream -> Posix.IO.file_desc

end

inFd ins•
returns the file descriptor corresponding to ins.
mkstemp s•
like the C mkstemp function, generates and open a temporary file with prefix s.
mkstemps {prefix, suffix} •
like mkstemp, except it has both a prefix and suffix.
newIn (fd, name)•
creates a new instream from file descriptor fd, with name used in any Io exceptions later raised.
newOut (fd, name)•
creates a new outstream from file descriptor fd, with name used in any Io exceptions later raised.
outFd out•

returns the file descriptor corresponding to out.

Last edited on 2005-12-01 22:27:48 by StephenWeeks.

MLton Guide (20051202) MLtonIO

194

MLtonIntInf
signature MLTON_INT_INF =

sig
type t

val areSmall: t * t -> bool
val gcd: t * t -> t
val isSmall: t -> bool
datatype rep =

 Big of word vector
| Small of int
val rep: t -> rep

end

MLton represents an arbitrary precision integer either as an unboxed 32 bit word with the bottom bit set to 1
and the top 31 bits representing a small integer in [-230, 230), or as a pointer to a vector of words where the
first word indicates the sign and the rest are the limbs of GnuMP big integer.

type t•
the same as type IntInf.int.
areSmall (a, b)•
returns true iff both a and b are small.
gcd (a, b)•
uses the GnuMP's fast gcd implementation.
isSmall a•
returns true iff a is small.
datatype rep•
the underlying representation of an IntInf.int.
rep i•

returns the underlying representation of i.

Last edited on 2005-12-02 03:46:17 by MatthewFluet.

MLton Guide (20051202) MLtonIntInf

195

MLtonItimer
signature MLTON_ITIMER =

sig
datatype t =

 Prof
| Real
| Virtual

val set: t * {interval: Time.time, value: Time.time} -> unit
val signal: t -> Posix.Signal.signal

end

set (t, {interval, value})•
sets the interval timer (using setitimer) specified by t to the given interval and value.
signal t•

returns the signal corresponding to t.

Last edited on 2005-12-01 22:27:07 by StephenWeeks.

MLton Guide (20051202) MLtonItimer

196

MLtonPlatform
signature MLTON_PLATFORM =

sig
structure Arch:

sig
datatype t = Alpha | AMD64 | ARM | HPPA | IA64 | m68k

| MIPS | PowerPC | S390 | Sparc | X86

val fromString: string -> t option
val host: t
val toString: t -> string

end

structure OS:
sig

datatype t = Cygwin | Darwin | FreeBSD | Linux
| MinGW | NetBSD | OpenBSD | Solaris

val fromString: string -> t option
val host: t
val toString: t -> string

end
end

datatype Arch.t•
processor architectures
Arch.fromString a•
converts from string to architecture. Case insensitive.
Arch.host•
the architecture for which the program is compiled.
Arch.toString•
string for architecture.
datatype OS.t•
operating systems
OS.fromString•
converts from string to operating system. Case insensitive.
OS.host•
the operating system for which the program is compiled.
OS.toString•

string for operating system.

Last edited on 2005-12-01 22:27:55 by StephenWeeks.

MLton Guide (20051202) MLtonPlatform

197

MLtonPointer
signature MLTON_POINTER =

sig
eqtype t

val add: t * word -> t
val compare: t * t -> order
val diff: t * t -> word
val getInt8: t * int -> Int8.int
val getInt16: t * int -> Int16.int
val getInt32: t * int -> Int32.int
val getInt64: t * int -> Int64.int
val getPointer: t * int -> t
val getReal32: t * int -> Real32.real
val getReal64: t * int -> Real64.real
val getWord8: t * int -> Word8.word
val getWord16: t * int -> Word16.word
val getWord32: t * int -> Word32.word
val getWord64: t * int -> Word64.word
val null: t
val setInt8: t * int * Int8.int -> unit
val setInt16: t * int * Int16.int -> unit
val setInt32: t * int * Int32.int -> unit
val setInt64: t * int * Int64.int -> unit
val setPointer: t * int * t -> unit
val setReal32: t * int * Real32.real -> unit
val setReal64: t * int * Real64.real -> unit
val setWord8: t * int * Word8.word -> unit
val setWord16: t * int * Word16.word -> unit
val setWord32: t * int * Word32.word -> unit
val setWord64: t * int * Word64.word -> unit
val sub: t * word -> t

end

eqtype t•
the type of pointers, i.e. machine addresses.
add (p, w)•
returns the pointer w bytes after than p. Does not check for overflow.
compare (p1, p2)•
compares the pointer p1 to the pointer p2 (as addresses).
diff (p1, p2)•
returns the number of bytes w such that add (p2, w) = p1. Does not check for overflow.
getX (p, i)•
returns the object stored at index i of the array of {X objects pointed to by p. For example,
getWord32 (p, 7) returns the 32-bit word stored 28 bytes beyond p.
null•
the null pointer, i.e. 0.
setX (p, i, v)•
assigns v to the object stored at index i of the array of X objects pointed to by p. For example,
setWord32 (p, 7, w) stores the 32-bit word w at the address 28 bytes beyond p.
sub (p, w)•

returns the pointer w bytes before p. Does not check for overflow.

MLton Guide (20051202) MLtonPointer

198

Last edited on 2005-12-01 22:26:57 by StephenWeeks.

MLton Guide (20051202) MLtonPointer

199

MLtonProcEnv
signature MLTON_PROC_ENV =

sig
type gid

val setenv: {name: string, value: string} -> unit
val setgroups: gid list -> unit

end

setenv {name, value}•
like the C setenv function. Does not require name or value to be null terminated.
setgroups grps•

like the C setgroups function.

Last edited on 2005-12-01 22:28:03 by StephenWeeks.

MLton Guide (20051202) MLtonProcEnv

200

MLtonProcess
signature MLTON_PROCESS =

sig
type pid

val spawn: {args: string list, path: string} -> pid
val spawne: {args: string list, env: string list, path: string} -> pid
val spawnp: {args: string list, file: string} -> pid

structure Child:
sig
type ('use, 'dir) t

val binIn: (BinIO.instream, input) t -> BinIO.instream
val binOut: (BinIO.outstream, output) t -> BinIO.outstream
val fd: (Posix.FileSys.file_desc, 'dir) t -> Posix.FileSys.file_desc
val remember: (any, 'dir) t -> ('use, 'dir) t
val textIn: (TextIO.instream, input) t -> TextIO.instream
val textOut: (TextIO.outstream, output) t -> TextIO.outstream

end

structure Param:
sig
type ('use, 'dir) t

val child: (chain, 'dir) Child.t -> (none, 'dir) t
val fd: Posix.FileSys.file_desc -> (none, 'dir) t
val file: string -> (none, 'dir) t
val forget: ('use, 'dir) t -> (any, 'dir) t
val null: (none, 'dir) t
val pipe: ('use, 'dir) t
val self: (none, 'dir) t

end

type ('stdin, 'stdout, 'stderr) t
type any
type chain
type input
type none
type output

exception MisuseOfForget
exception DoublyRedirected

val create:
 {args: string list,
 env: string list option,
 path: string,
 stderr: ('stderr, output) Param.t,
 stdin: ('stdin, input) Param.t,
 stdout: ('stdout, output) Param.t}
 -> ('stdin, 'stdout, 'stderr) t

val getStderr: ('stdin, 'stdout, 'stderr) t -> ('stderr, input) Child.t
val getStdin: ('stdin, 'stdout, 'stderr) t -> ('stdin, output) Child.t
val getStdout: ('stdin, 'stdout, 'stderr) t -> ('stdout, input) Child.t
val kill: ('stdin, 'stdout, 'stderr) t * Posix.Signal.signal -> unit
val reap: ('stdin, 'stdout, 'stderr) t -> Posix.Process.exit_status

end

MLton Guide (20051202) MLtonProcess

201

Spawn

The spawn functions provide an alternative to the fork/exec idiom that is typically used to create a new
process. On most platforms, the spawn functions are simple wrappers around fork/exec. However, under
Windows, the spawn functions are primitive. All spawn functions return the process id of the spawned
process. They differ in how the executable is found and the environment that it uses.

spawn {args, path} •
starts a new process running the executable specified by path with the arguments args. Like
Posix.Process.exec.
spawne {args, env, path} •
starts a new process running the executable specified by path with the arguments args and
environment env. Like Posix.Process.exece.
spawnp {args, file} •

search the PATH environment variable for an executable named file, and start a new process running that
executable with the arguments args. Like Posix.Process.execp.

Create

MLton.Process.create provides functionality similar to Unix.executeInEnv, but provides more
control control over the input, output, and error streams. In addition, create works on all platforms,
including Cygwin and MinGW (Windows) where Posix.fork is unavailable. For greatest portability
programs should still use the standard Unix.execute, Unix.executeInEnv, and
OS.Process.system.

The following types and sub-structures are used by the create function. They provide static type checking
of correct stream usage.

Child

('use, 'dir) Child.t•
This represents a handle to one of a child's standard streams. The 'dir is viewed with respect to the
parent. Thus a ('a, input) Child.t handle means that the parent may input the output from
the child.
Child.{bin,text}{In,Out} h•
These functions take a handle and bind it to a stream of the named type. The type system will detect
attempts to reverse the direction of a stream or to use the same stream in multiple, incompatible ways.
Child.fd h•
This function behaves like the other Child.* functions; it opens a stream. However, it does not
enforce that you read or write from the handle. If you use the descriptor in an inappropriate direction,
the behavior is undefined. Furthermore, this function may potentially be unavailable on future MLton
host platforms.
Child.remember h•

This function takes a stream of use any and resets the use of the stream so that the stream may be used by
Child.*. An any stream may have had use none or 'use prior to calling Param.forget. If the stream
was none and is used, MisuseOfForget is raised.

MLton Guide (20051202) MLtonProcess

202

Param

('use, 'dir) Param.t•
This is a handle to an input/output source and will be passed to the created child process. The 'dir is
relative to the child process. Input means that the child process will read from this stream.
Param.child h•
Connect the stream of the new child process to the stream of a previously created child process. A
single child stream should be connected to only one child process or else DoublyRedirected will
be raised.
Param.fd fd•
This creates a stream from the provided file descriptor which will be closed when create is called.
This function may not be available on future MLton host platforms.
Param.forget h•
This hides the type of the actual parameter as any. This is useful if you are implementing an
application which conditionally attaches the child process to files or pipes. However, you must ensure
that your use after Child.remember matches the original type.
Param.file s•
Open the given file and connect it to the child process. Note that the file will be opened only when
create is called. So any exceptions will be raised there and not by this function. If used for input,
the file is opened read-only. If used for output, the file is opened read-write.
Param.null•
In some situations, the child process should have its output discarded. The null param when passed
as stdout or stderr does this. When used for stdin, the child process will either receive EOF or
a failure condition if it attempts to read from stdin.
Param.pipe•

This will connect the input/output of the child process to a pipe which the parent process holds. This may later
form the input to one of the Child.* functions and/or the Param.child function.

Process

type ('stdin, 'stdout, 'stderr) t•
represents a handle to a child process. The type arguments capture how the named stream of the child
process may be used.
type any•
bypasses the type system in situations where an application does not want the it to enforce correct
usage. See Child.remember and Param.forget.
type chain•
means that the child process's stream was connected via a pipe to the parent process. The parent
process may pass this pipe in turn to another child, thus chaining them together.
type input, output•
record the direction that a stream flows. They are used as a part of Param.t and Child.t and is
detailed there.
type none•

means that the child process's stream my not be used by the parent process. This happens when the child
process is connected directly to some source.

The types BinIO.instream, BinIO.outstream, TextIO.instream, TextIO.outstream, and
Posix.FileSys.file_desc are also valid types with which to instantiate child streams.

MLton Guide (20051202) MLtonProcess

203

exception MisuseOfForget•
may be raised if Child.remember and Param.forget are used to bypass the normal type
checking. This exception will only be raised in cases where the forget mechanism allows a misuse
that would be impossible with the type-safe versions.
exception DoublyRedirected•
raised if a stream connected to a child process is redirected to two separate child processes. It is safe,
though bad style, to use the a Child.t with the same Child.* function repeatedly.
create {args, path, env, stderr, stdin, stdout} •

starts a child process with the given command-line args (excluding the program name).
path should be an absolute path to the executable run in the new child process; relative paths
work, but are less robust. Optionally, the environment may be overridden with env where
each string element has the form "key=value". The std* options must be provided by the
Param.* functions documented above.

Processes which are created must be either reaped or killed.

getStd{in,out,err} proc•
gets a handle to the specified stream. These should be used by the Child.* functions. Failure to use
a stream connected via pipe to a child process may result in runtime dead-lock and elicits a compiler
warning.
kill (proc, sig)•
terminates the child process immediately. The signal may or may not mean anything depending on the
host platform. A good value is Posix.Signal.term.
reap proc•

waits for the child process to terminate and return its exit status.

Important usage notes

When building an application with many pipes between child processes, it is important to ensure that there are
no cycles in the undirected pipe graph. If this property is not maintained, deadlocks are a very serious
potential bug which may only appear under difficult to reproduce conditions.

The danger lies in that most operating systems implement pipes with a fixed buffer size. If process A has two
output pipes which process B reads, it can happen that process A blocks writing to pipe 2 because it is full
while process B blocks reading from pipe 1 because it is empty. This same situation can happen with any
undirected cycle formed between processes (vertexes) and pipes (undirected edges) in the graph.

It is possible to make this safe using low-level I/O primitives for polling. However, these primitives are not
very portable and difficult to use properly. A far better approach is to make sure you never create a cycle in
the first place.

For these reasons, the Unix.executeInEnv is a very dangerous function. Be careful when using it to
ensure that the child process only operates on either stdin or stdout, but not both.

Example use of MLton.Process.create

The following example program launches the ipconfig utility, pipes its output through grep, and then
reads the result back into the program.

MLton Guide (20051202) MLtonProcess

204

open MLton.Process
val p =
 create {args = ["/all"],
 env = NONE,
 path = "C:\\WINDOWS\\system32\\ipconfig.exe",
 stderr = Param.self,
 stdin = Param.null,
 stdout = Param.pipe}
val q =
 create {args = ["IP-Ad"],
 env = NONE,
 path = "C:\\msys\\bin\\grep.exe",
 stderr = Param.self,
 stdin = Param.child (getStdout p),
 stdout = Param.pipe}
fun suck h =

case TextIO.inputLine h of
 NONE => ()
 | SOME s => (print ("'" ^ s ^ "'\n"); suck h)

val () = suck (Child.textIn (getStdout q))

Last edited on 2005-12-02 04:22:19 by StephenWeeks.

MLton Guide (20051202) MLtonProcess

205

MLtonProfile
signature MLTON_PROFILE =

sig
structure Data:

sig
type t

val equals: t * t -> bool
val free: t -> unit
val malloc: unit -> t
val write: t * string -> unit

end

val isOn: bool
val withData: Data.t * (unit -> 'a) -> 'a

end

MLton.Profile provides Profiling control from within the program, allowing you to profile individual
portions of your program. With MLton.Profile, you can create many units of profiling data (essentially,
mappings from functions to counts) during a run of a program, switch between them while the program is
running, and output multiple mlmon.out files.

isOn•
a compile-time constant that is false only when compiling -profile no.
type Data.t•
the type of a unit of profiling data. In order to most efficiently execute non-profiled programs, when
compiling -profile no (the default), Data.t is equivalent to unit ref.
Data.equals (x, y)•
returns true if the x and y are the same unit of profiling data.
Data.free x•
frees the memory associated with the unit of profiling data x. It is an error to free the current unit of
profiling data or to free a previously freed unit of profiling data. When compiling -profile no,
Data.free x is a no-op.
Data.malloc ()•
returns a new unit of profiling data. Each unit of profiling data is allocated from the process address
space (but is not in the MLton heap) and consumes memory proportional to the number of source
functions. When compiling -profile no, Data.malloc () is equivalent to allocating a new
unit ref.
write (x, f)•
writes the accumulated ticks in the unit of profiling data x to file f. It is an error to write a previously
freed unit of profiling data. When compiling -profile no, write (x, f) is a no-op. A
profiled program will always write the current unit of profiling data at program exit to a file named
mlmon.out.
withData (d, f)•

runs f with d as the unit of profiling data, and returns the result of f after restoring the current unit of
profiling data. When compiling -profile no, withData (d, f) is equivalent to f ().

MLton Guide (20051202) MLtonProfile

206

Example

Here is an example, taken from the examples/profiling directory, showing how to profile the
executions of the fib and tak functions separately. Suppose that fib-tak.sml contains the following.

structure Profile = MLton.Profile

val fibData = Profile.Data.malloc ()
val takData = Profile.Data.malloc ()

fun wrap (f, d) x =
 Profile.withData (d, fn () => f x)

val rec fib =
fn 0 => 0

 | 1 => 1
 | n => fib (n - 1) + fib (n - 2)
val fib = wrap (fib, fibData)

fun tak (x,y,z) =
if not (y < x)

then z
else tak (tak (x - 1, y, z),

 tak (y - 1, z, x),
 tak (z - 1, x, y))
val tak = wrap (tak, takData)

val rec f =
fn 0 => ()

 | n => (fib 38; f (n-1))
val _ = f 2

val rec g =
fn 0 => ()

 | n => (tak (18,12,6); g (n-1))
val _ = g 500

fun done (data, file) =
 (Profile.Data.write (data, file)
 ; Profile.Data.free data)

val _ = done (fibData, "mlmon.fib.out")
val _ = done (takData, "mlmon.tak.out")

Compile and run the program.

% mlton -profile time fib-tak.sml
% ./fib-tak

Separately display the profiling data for fib

% mlprof fib-tak mlmon.fib.out
5.77 seconds of CPU time (0.00 seconds GC)
function cur
--------- -----
fib 96.9%
<unknown> 3.1%

MLton Guide (20051202) MLtonProfile

207

and for tak

% mlprof fib-tak mlmon.tak.out
0.68 seconds of CPU time (0.00 seconds GC)
function cur
-------- ------
tak 100.0%

Combine the data for fib and tak by calling mlprof with multiple mlmon.out files.

% mlprof fib-tak mlmon.fib.out mlmon.tak.out mlmon.out
6.45 seconds of CPU time (0.00 seconds GC)
function cur
--------- -----
fib 86.7%
tak 10.5%
<unknown> 2.8%

Last edited on 2005-12-01 22:21:31 by StephenWeeks.

MLton Guide (20051202) MLtonProfile

208

MLtonRandom
signature MLTON_RANDOM =

sig
val alphaNumChar: unit -> char
val alphaNumString: int -> string
val rand: unit -> word
val seed: unit -> word option
val srand: word -> unit
val useed: unit -> word option

end

alphaNumChar ()•
returns a random alphanumeric character.
alphaNumString n•
returns a string of length n of random alphanumeric characters.
rand ()•
returns the next pseudo-random number.
seed ()•
returns a random word from /dev/random. Useful as an arg to srand. If /dev/random can not
be read from, seed () returns NONE. A call to seed may block until enough random bits are
available.
srand w•
sets the seed used by rand to w.
useed ()•

returns a random word from /dev/urandom. Useful as an arg to srand. If /dev/urandom can not be
read from, useed () returns NONE. A call to useed will never block -- it will instead return lower quality
random bits.

Last edited on 2005-12-02 04:22:31 by StephenWeeks.

MLton Guide (20051202) MLtonRandom

209

MLtonRlimit
signature MLTON_RLIMIT =

sig
type rlim = word
type t

val coreFileSize: t (* CORE max core file size *)
val cpuTime: t (* CPU CPU time in seconds *)
val dataSize: t (* DATA max data size *)
val fileSize: t (* FSIZE Maximum filesize *)
val get: t -> {hard: rlim, soft: rlim}
val infinity: rlim
val lockedInMemorySize: t (* MEMLOCK max locked address space *)
val numFiles: t (* NOFILE max number of open files *)
val numProcesses: t (* NPROC max number of processes *)
val residentSetSize: t (* RSS max resident set size *)
val set: t * {hard: rlim, soft: rlim} -> unit
val stackSize: t (* STACK max stack size *)
val virtualMemorySize: t (* AS virtual memory limit *)

end

MLton.Rlimit provides a wrapper around the C getrlimit and setrlimit functions.

type rlim•
the type of resource limits.
type t•
the types of resources that can be inspected and modified.
get r•
returns the current hard and soft limits for resource r. May raise OS.SysErr.
infinity•
indicates that a resource is unlimited.
set (r, {hard, soft})•

sets the hard and soft limits for resource r. May raise OS.SysErr.

Last edited on 2005-12-01 22:54:25 by StephenWeeks.

MLton Guide (20051202) MLtonRlimit

210

MLtonRusage
signature MLTON_RUSAGE =

sig
type t = {utime: Time.time, (* user time *)

 stime: Time.time} (* system time *)

val measureGC: bool -> unit
val rusage: unit -> {children: t, gc: t, self: t}

end

type t•
corresponds to a subset of the C struct rusage.
measureGC b•
controls whether garbage collection time is measured during program execution. This affects the
behavior of both rusage and Timer.checkCPUTimes. Note that garbage collection time is
always measured when either gc-messages or gc-summary is given as a runtime system option.
rusage ()•

corresponds to the C getrusage function. It returns the resource usage of the exited children, the garbage
collector, and the process itself. The process time (self) includes the gc time.

Last edited on 2005-12-01 22:56:24 by StephenWeeks.

MLton Guide (20051202) MLtonRusage

211

MLtonSignal
signature MLTON_SIGNAL =

sig
type t
type signal = t

structure Handler:
sig

type t

val default: t
val handler: (Thread.Runnable.t -> Thread.Runnable.t) -> t
val ignore: t
val isDefault: t -> bool
val isIgnore: t -> bool
val simple: (unit -> unit) -> t

end

structure Mask:
sig

type t

val all: t
val allBut: signal list -> t
val block: t -> unit
val getBlocked: unit -> t
val isMember: t * signal -> bool
val none: t
val setBlocked: t -> unit
val some: signal list -> t
val unblock: t -> unit

end

val getHandler: t -> Handler.t
val handled: unit -> Mask.t
val prof: t
val restart: bool ref
val setHandler: t * Handler.t -> unit
val suspend: Mask.t -> unit
val vtalrm: t

end

Signals handlers are functions from (runnable) threads to (runnable) threads. When a signal arrives, the
corresponding signal handler is invoked, its argument being the thread that was interrupted by the signal. The
signal handler runs asynchronously, in its own thread. The signal handler returns the thread that it would like
to resume execution (this is often the thread that it was passed). It is an error for a signal handler to raise an
exception that is not handled within the signal handler itself.

A signal handler is never invoked while the running thread is in a critical section (see MLtonThread).
Invoking a signal handler implicitly enters a critical section and the normal return of a signal handler
implicitly exits the critical section; hence, a signal handler is never interrupted by another signal handler.

type t•
the type of signals.
type Handler.t•
the type of signal handlers.

MLton Guide (20051202) MLtonSignal

212

Handler.default•
handles the signal with the default action.
Handler.handler f•
returns a handler h such that when a signal s is handled by h, f will be passed the thread that was
interrupted by s and should return the thread that will resume execution.
Handler.ignore•
is a handler that will ignore the signal.
Handler.isDefault•
returns true if the handler is the default handler.
Handler.isIgnore•
returns true if the handler is the ignore handler.
Handler.simple f•
returns a handler that executes f () and does not switch threads.
type Mask.t•
the type of signal masks, which are sets of blocked signals.
Mask.all•
a mask of all signals.
Mask.allBut l•
a mask of all signals except for those in l.
Mask.block m•
blocks all signals in m.
Mask.getBlocked ()•
gets the signal mask m, i.e. a signal is blocked if and only if it is in m.
Mask.isMember (m, s)•
returns true if the signal s is in m.
Mask.none•
a mask of no signals.
Mask.setBlocked m•
sets the signal mask to m, i.e. a signal is blocked if and only if it is in m.
Mask.some l•
a mask of the signals in l.
Mask.unblock m•
unblocks all signals in m.
getHandler s•
returns the current handler for signal s.
handled ()•
returns the signal mask m corresponding to the currently handled signals; i.e., a signal is handled if
and only if it is in m.
prof•
SIGPROF, the profiling signal.
restart•
dynamically determines the behavior of interrupted system calls; when true, interrupted system calls
are restarted; when false, interrupted system calls raise OS.SysError.
setHandler (s, h)•
sets the handler for signal s to h.
suspend m•
temporarily sets the signal mask to m and suspends until an unmasked signal is received and handled,
at which point suspend resets the mask and returns.
vtalrm•

SIGVTALRM, the signal for virtual timers.

MLton Guide (20051202) MLtonSignal

213

Interruptible System Calls

Signal handling interacts in a non-trivial way with those functions in the Basis Library that correspond
directly to interruptible system calls (a subset of those functions that may raise OS.SysError). The desire is
that these functions should have predictable semantics. The principal concerns are:

System calls that are interrupted by signals should, by default, be restarted; the alternative is to raise

 OS.SysError (Posix.Error.errorMsg Posix.Error.intr,
 SOME Posix.Error.intr)

This behavior is determined dynamically by the value of Signal.restart.

1.

Signal handlers should always get a chance to run (when outside a critical region). If a system call is
interrupted by a signal, then the signal handler will run before the call is restarted or OS.SysError
is raised; that is, before the Signal.restart check.

2.

A system call that must be restarted while in a critical section will be restarted with the handled
signals blocked (and the previously blocked signals remembered). This encourages the system call to
complete, allowing the program to make progress towards leaving the critical section where the signal
can be handled. If the system call completes, the set of blocked signals are restored to those
previously blocked.

3.

Last edited on 2005-12-02 04:22:43 by StephenWeeks.

MLton Guide (20051202) MLtonSignal

214

MLtonSocket
signature MLTON_SOCKET =

sig
structure Address:

sig
type t = word

end
structure Ctl:

sig
val getERROR: ('a, 'b) Socket.sock -> (string * int option) option

end
structure Host:

sig
type t = {name: string}

val getByAddress: Address.t -> t option
val getByName: string -> t option

end
structure Port:

sig
type t = int

end

type t

val accept: t -> Address.t * Port.t * TextIO.instream * TextIO.outstream
val connect: string * Port.t -> TextIO.instream * TextIO.outstream
val fdToSock: Posix.FileSys.file_desc -> ('a, 'b) Socket.sock
val listen: unit -> Port.t * t
val listenAt: Port.t -> t
val shutdownRead: TextIO.instream -> unit
val shutdownWrite: TextIO.outstream -> unit

end

This module contains a bare minimum of functionality to do TCP/IP programming. This module is
implemented on top of the Socket module of the Standard Basis Library. We encourage you to use the
standard Socket module, since we may eliminate MLton.Socket some day.

type Address.t•
the type of IP addresses.
Ctl.getERROR s•
like the Basis Library's Socket.Ctl.getERROR, except that it returns more information. NONE
means that there was no error, and SOME means that there was an error, and provides the error
message and error code, if any.
Host.getByAddress a•
looks up the hostname (using gethostbyaddr) corresponding to a.
Host.getByName s•
looks up the hostname (using gethostbyname) corresponding to s.
type Port.t•
the type of TCP ports.
type t•
the type of sockets.
accept s•

MLton Guide (20051202) MLtonSocket

215

accepts a connection on socket s and return the address and port of the connecting socket, as well as
streams corresponding to the connection.
connect (h, p)•
connects to host h on port p, returning the streams corresponding to the connection.
fdToSock fd•
coerces a file descriptor to a socket.
listen ()•
listens to a port chosen by the system. Returns the port and the socket.
listenAt p•
listens to port p. Returns the socket.
shutdownRead ins•
causes the read part of the socket associated with ins to be shutdown.
shutdownWrite out•

causes the write part of the socket associated with out to be shutdown.

Last edited on 2005-12-01 23:07:28 by StephenWeeks.

MLton Guide (20051202) MLtonSocket

216

MLtonStructure
The MLton structure contains a lot of functionality that is not available in the Basis Library. As a warning,
please keep in mind that the MLton structure and its substructures do change from release to release of
MLton.

structure MLton:
sig

val eq: 'a * 'a -> bool
val isMLton: bool
val share: 'a -> unit
val shareAll: unit -> unit
val size: 'a -> int

structure Array: MLTON_ARRAY
structure BinIO: MLTON_BIN_IO
structure Cont: MLTON_CONT
structure Exn: MLTON_EXN
structure Finalizable: MLTON_FINALIZABLE
structure GC: MLTON_GC
structure IntInf: MLTON_INT_INF
structure Itimer: MLTON_ITIMER
structure Platform: MLTON_PLATFORM
structure Pointer: MLTON_POINTER
structure ProcEnv: MLTON_PROC_ENV
structure Process: MLTON_PROCESS
structure Profile: MLTON_PROFILE
structure Random: MLTON_RANDOM
structure Rlimit: MLTON_RLIMIT
structure Rusage: MLTON_RUSAGE
structure Signal: MLTON_SIGNAL
structure Socket: MLTON_SOCKET
structure Syslog: MLTON_SYSLOG
structure TextIO: MLTON_TEXT_IO
structure Thread: MLTON_THREAD
structure Vector: MLTON_VECTOR
structure Weak: MLTON_WEAK
structure Word: MLTON_WORD where type word = Word.word
structure Word8: MLTON_WORD where type word = Word8.word
structure World: MLTON_WORLD

end

Substructures

MLtonArray•
MLtonBinIO•
MLtonCont•
MLtonExn•
MLtonFinalizable•
MLtonGC•
MLtonIntInf•
MLtonIO•
MLtonItimer•
MLtonPlatform•
MLtonPointer•

MLton Guide (20051202) MLtonStructure

217

MLtonProcEnv•
MLtonProcess•
MLtonRandom•
MLtonRlimit•
MLtonRusage•
MLtonSignal•
MLtonSocket•
MLtonSyslog•
MLtonTextIO•
MLtonThread•
MLtonVector•
MLtonWeak•
MLtonWord•
MLtonWorld•

Values

eq (x, y)•
returns true if x and y are equal as pointers. For simple types like char, int, and word, this is the
same as equals. For arrays, datatypes, strings, tuples, and vectors, this is a simple pointer equality.
The semantics is a bit murky.
isMLton•
is always true in a MLton implementation, and is always false in a stub implementation.
share x•
maximizes sharing in the heap for the object graph reachable from x.
shareAll ()•
maximizes sharing in the heap by sharing space for equivalent immutable objects. A call to
shareAll performs a major garbage collection, and takes time proportional to the size of the heap.
size x•

returns the amount of heap space (in bytes) taken by the value of x, including all objects reachable from x by
following pointers. It takes time proportional to the size of x. See below for an example.

Example of MLton.size

This example, size.sml, demonstrates the application of MLton.size to many different kinds of objects.

fun 'a printSize (name: string, min: int, value: 'a): unit=
if MLton.size value >= min

then
 (print "The size of "
 ; print name
 ; print " is >= "
 ; print (Int.toString min)
 ; print " bytes.\n")

else ()

val l = [1, 2, 3, 4]

val _ =
 (
 printSize ("a char", 0, #"c")
 ; printSize ("an int list of length 4", 48, l)

MLton Guide (20051202) MLtonStructure

218

 ; printSize ("a string of length 10", 24, "0123456789")
 ; printSize ("an int array of length 10", 52, Array.tabulate (10, fn _ => 0))
 ; printSize ("a double array of length 10",

92, Array.tabulate (10, fn _ => 0.0))
 ; printSize ("an array of length 10 of 2-ples of ints",

92, Array.tabulate (10, fn i => (i, i + 1)))
 ; printSize ("a useless function", 0, fn _ => 13)
)

(* This is here so that the list is "useful".
 * If it were removed, then the optimizer (remove-unused-constructors)
 * would remove l entirely.
 *)
val _ = if 10 = foldl (op +) 0 l

then ()
else raise Fail "bug"

local
open MLton.Cont

in
val rc: int option t option ref = ref NONE
val _ =

case callcc (fn k: int option t => (rc := SOME k; throw (k, NONE))) of
 NONE => ()
 | SOME i => print (concat [Int.toString i, "\n"])
end

val _ =
 (print "The size of a continuation option ref is "
 ; if MLton.size rc > 1000

then print "> 1000.\n"
else print "< 1000.\n")

val _ =
case !rc of

 NONE => ()
 | SOME k => (rc := NONE; MLton.Cont.throw (k, SOME 13))

Compile and run as usual.

% mlton size.sml
% ./size
The size of a char is >= 0 bytes.
The size of an int list of length 4 is >= 48 bytes.
The size of a string of length 10 is >= 24 bytes.
The size of an int array of length 10 is >= 52 bytes.
The size of a double array of length 10 is >= 92 bytes.
The size of an array of length 10 of 2-ples of ints is >= 92 bytes.
The size of a useless function is >= 0 bytes.
The size of a continuation option ref is > 1000.
13
The size of a continuation option ref is < 1000.

Last edited on 2005-12-01 23:10:46 by StephenWeeks.

MLton Guide (20051202) MLtonStructure

219

MLtonSyslog
signature MLTON_SYSLOG =

sig
type openflag

val CONS : openflag
val NDELAY : openflag
val PERROR : openflag
val PID : openflag

type facility

val AUTHPRIV : facility
val CRON : facility
val DAEMON : facility
val KERN : facility
val LOCAL0 : facility
val LOCAL1 : facility
val LOCAL2 : facility
val LOCAL3 : facility
val LOCAL4 : facility
val LOCAL5 : facility
val LOCAL6 : facility
val LOCAL7 : facility
val LPR : facility
val MAIL : facility
val NEWS : facility
val SYSLOG : facility
val USER : facility
val UUCP : facility

type loglevel

val EMERG : loglevel
val ALERT : loglevel
val CRIT : loglevel
val ERR : loglevel
val WARNING : loglevel
val NOTICE : loglevel
val INFO : loglevel
val DEBUG : loglevel

val closelog: unit -> unit
val log: loglevel * string -> unit
val openlog: string * openflag list * facility -> unit

end

MLton.Syslog is a complete interface to the system logging facilities. See man 3 syslog for more
details.

closelog ()•
closes the connection to the system logger.
log (l, s)•
logs message s at a loglevel l.
openlog (name, flags, facility)•

MLton Guide (20051202) MLtonSyslog

220

opens a connection to the system logger. name will be prefixed to each message, and is typically set to the
program name.

Last edited on 2005-12-01 23:11:30 by StephenWeeks.

MLton Guide (20051202) MLtonSyslog

221

MLtonTextIO
signature MLTON_TEXT_IO = MLTON_IO

See MLtonIO.

Last edited on 2005-12-01 23:11:52 by StephenWeeks.

MLton Guide (20051202) MLtonTextIO

222

MLtonThread
signature MLTON_THREAD =

sig
structure AtomicState:

sig
datatype t = NonAtomic | Atomic of int

end

val atomically: (unit -> 'a) -> 'a
val atomicBegin: unit -> unit
val atomicEnd: unit -> unit
val atomicState: unit -> AtomicState.t

structure Runnable:
sig

type t
end

type 'a t

val atomicSwitch: ('a t -> Runnable.t) -> 'a
val new: ('a -> unit) -> 'a t
val prepend: 'a t * ('b -> 'a) -> 'b t
val prepare: 'a t * 'a -> Runnable.t
val switch: ('a t -> Runnable.t) -> 'a

end

MLton.Thread provides access to MLton's user-level thread implementation (i.e. not OS-level threads).
Threads are lightweight data structures that represent a paused computation. Runnable threads are threads that
will begin or continue computing when switched to. MLton.Thread does not include a default
scheduling mechanism, but it can be used to implement both preemptive and non-preemptive threads.

type AtomicState.t•
the type of atomic states.
atomically f•
runs f in a critical section.
atomicBegin ()•
begins a critical section.
atomicEnd ()•
ends a critical section.
atomicState ()•
returns the current atomic state.
type Runnable.t•
the type of threads that can be resumed.
type 'a t•
the type of threads that expect a value of type 'a.
atomicSwitch f•
like switch, but assumes an atomic calling context. Upon switching back to the current thread, an
implicit atomicEnd is performed.
new f•
creates a new thread that, when run, applies f to the value given to the thread. f must terminate by
switching to another thread or exiting the process.
prepend (t, f)•

MLton Guide (20051202) MLtonThread

223

creates a new thread (destroying t in the process) that first applies f to the value given to the thread
and then continues with t. This is a constant time operation.
prepare (t, v)•
prepares a new runnable thread (destroying t in the process) that will evaluate t on v.
switch f•

applies f to the current thread to get rt, and then start running thread rt. It is an error for f to perform
another switch. f is guaranteed to run atomically.

Example of non-preemptive threads

structure Queue:
sig

type 'a t

val new: unit -> 'a t
val enque: 'a t * 'a -> unit
val deque: 'a t -> 'a option

end =
struct

datatype 'a t = T of {front: 'a list ref, back: 'a list ref}

fun new() = T{front = ref [], back = ref []}

fun enque(T{back, ...}, x) = back := x :: !back

fun deque(T{front, back}) =
case !front of

 [] => (case !back of
 [] => NONE
 | l => let val l = rev l

in case l of
 [] => raise Fail "deque"
 | x :: l => (back := []; front := l; SOME x)

end)
 | x :: l => (front := l; SOME x)

end

structure Thread:
sig

val exit: unit -> 'a
val run: unit -> unit
val spawn: (unit -> unit) -> unit
val yield: unit -> unit

end =
struct

open MLton
open Thread

val topLevel: Thread.Runnable.t option ref = ref NONE

local
val threads: Thread.Runnable.t Queue.t = Queue.new()

in
fun ready (t: Thread.Runnable.t) : unit =

 Queue.enque(threads, t)
fun next () : Thread.Runnable.t =

case Queue.deque threads of

MLton Guide (20051202) MLtonThread

224

 NONE => valOf(!topLevel)
 | SOME t => t

end

fun 'a exit(): 'a = switch(fn _ => next())

fun new(f: unit -> unit): Thread.Runnable.t =
 Thread.prepare
 (Thread.new (fn () => ((f() handle _ => exit())
 ; exit())),
 ())

fun schedule t = (ready t; next())

fun yield(): unit = switch(fn t => schedule (Thread.prepare (t, ())))

val spawn = ready o new

fun run(): unit =
 (switch(fn t =>
 (topLevel := SOME (Thread.prepare (t, ()))
 ; next()))
 ; topLevel := NONE)

end

val rec loop =
fn 0 => ()

 | n => (print(concat[Int.toString n, "\n"])
 ; Thread.yield()
 ; loop(n - 1))

val rec loop' =
fn 0 => ()

 | n => (Thread.spawn(fn () => loop n); loop'(n - 2))

val _ = Thread.spawn(fn () => loop' 10)

val _ = Thread.run()

val _ = print "success\n"

Example of preemptive threads

structure Queue:
sig

type 'a t

val new: unit -> 'a t
val enque: 'a t * 'a -> unit
val deque: 'a t -> 'a option

end =
struct

datatype 'a t = T of {front: 'a list ref, back: 'a list ref}

fun new () = T {front = ref [], back = ref []}

fun enque (T {back, ...}, x) = back := x :: !back

fun deque (T {front, back}) =
case !front of

MLton Guide (20051202) MLtonThread

225

 [] => (case !back of
 [] => NONE
 | l => let val l = rev l

in case l of
 [] => raise Fail "deque"
 | x :: l => (back := []; front := l; SOME x)

end)
 | x :: l => (front := l; SOME x)

end

structure Thread:
sig

val exit: unit -> 'a
val run: unit -> unit
val spawn: (unit -> unit) -> unit
val yield: unit -> unit

end =
struct

open Posix.Signal
open MLton
open Itimer Signal Thread

val topLevel: Thread.Runnable.t option ref = ref NONE

local
val threads: Thread.Runnable.t Queue.t = Queue.new ()

in
fun ready t = Queue.enque (threads, t)
fun next () =

case Queue.deque threads of
 NONE => valOf (!topLevel)
 | SOME t => t

end

fun 'a exit (): 'a = switch (fn _ => next ())

fun new (f: unit -> unit): Thread.Runnable.t =
 Thread.prepare
 (Thread.new (fn () => ((f () handle _ => exit ())
 ; exit ())),
 ())

fun schedule t = (ready t; next ())

fun yield (): unit = switch (fn t => schedule (Thread.prepare (t, ())))

val spawn = ready o new

fun setItimer t =
 Itimer.set (Itimer.Real,
 {value = t,
 interval = t})

fun run (): unit =
 (switch (fn t =>
 (topLevel := SOME (Thread.prepare (t, ()))
 ; new (fn () => (setHandler (alrm, Handler.handler schedule)
 ; setItimer (Time.fromMilliseconds 20)))))
 ; setItimer Time.zeroTime
 ; ignore alrm
 ; topLevel := NONE)

MLton Guide (20051202) MLtonThread

226

end

val rec delay =
fn 0 => ()

 | n => delay (n - 1)

val rec loop =
fn 0 => ()

 | n => (delay 500000; loop (n - 1))

val rec loop' =
fn 0 => ()

 | n => (Thread.spawn (fn () => loop n); loop' (n - 1))

val _ = Thread.spawn (fn () => loop' 10)

val _ = Thread.run ()

val _ = print "success\n"

Last edited on 2005-12-02 03:52:11 by MatthewFluet.

MLton Guide (20051202) MLtonThread

227

MLtonVector
signature MLTON_VECTOR =

sig
val unfoldi: int * 'b * (int * 'b -> 'a * 'b) -> 'a vector

end

unfoldi (n, b, f)•

constructs a vector v of a length n, whose elements vi are determined by the equations b0 = b and (vi, bi+1) = f
(i, bi).

Last edited on 2005-12-01 23:14:39 by StephenWeeks.

MLton Guide (20051202) MLtonVector

228

MLtonWeak
signature MLTON_WEAK =

sig
type 'a t

val get: 'a t -> 'a option
val new: 'a -> 'a t

end

A weak pointer is a pointer to an object that is nulled if the object becomes unreachable due to garbage
collection. The weak pointer does not itself cause the object it points to be retained by the garbage collector --
only other strong pointers can do that. For objects that are not allocated in the heap, like integers, a weak
pointer will always be nulled. So, if w: int Weak.t then Weak.get w = NONE.

type 'a t•
the type of weak pointers to objects of type 'a
get w•
returns NONE if the object pointed to by w no longer exists. Otherwise, returns SOME of the object
pointed to by w.
new x•

returns a weak pointer to x.

Last edited on 2004-11-02 04:31:46 by StephenWeeks.

MLton Guide (20051202) MLtonWeak

229

MLtonWord
signature MLTON_WORD =

sig
type t

val rol: t * word -> t
val ror: t * word -> t

end

type t•
the type of words. For MLton.Word this is Word.word, for MLton.Word8 this is Word8.word.
rol (w, w')•
rotates left (circular).
ror (w, w')•

rotates right (circular).

Last edited on 2005-12-01 23:15:27 by StephenWeeks.

MLton Guide (20051202) MLtonWord

230

MLtonWorld
signature MLTON_WORLD =

sig
datatype status = Clone | Original

val load: string -> 'a
val save: string -> status
val saveThread: string * Thread.Runnable.t -> unit

end

datatype status•
specifies whether a world is original or restarted (a clone).
load f•
loads the saved computation from file f.
save f•
saves the entire state of the computation to the file f. The computation can then be restarted at a later
time using World.load or the load-world runtime option. The call to save in the original
computation returns Original and the call in the restarted world returns Clone.
saveThread (f, rt)•

saves the entire state of the computation to the file f that will resume with thread rt upon restart.

Example

Suppose that save-world.sml contains the following.

open MLton.World
val _ =

case save "world" of
 Original => print "I am the original\n"
 | Clone => print "I am the clone\n"

Then, if we compile save-world.sml and run it, the Original branch will execute, and a file named
world will be created.

% mlton save-world.sml
% save-world
I am the original

We can then load world using the load-world run time option.

% save-world @MLton load-world world --
I am the clone

Last edited on 2005-12-01 23:17:27 by StephenWeeks.

MLton Guide (20051202) MLtonWorld

231

Machine
Machine is an IntermediateLanguage, translated from RSSA by ToMachine and used as input by the Codegen.

Description

Machine is an Untyped IntermediateLanguage, corresponding to a abstract register machine.

Implementation

machine.sig machine.fun

Type Checking

The Machine IntermediateLanguage has a primitive type checker, which only checks some liveness
properties.

machine.sig machine.fun

Details and Notes

Last edited on 2005-12-01 19:27:42 by StephenWeeks.

MLton Guide (20051202) Machine

232

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/machine.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/machine.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/machine.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/machine.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/machine.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/machine.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/machine.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/machine.fun?view=markup

ManualPage
MLton is run from the command line with a collection of options followed by a file name and a list of files to
compile, assemble, and link with.

mlton [option ...] file.{c|cm|mlb|o|sml} [file.{c|o|s|S} ...]

The simplest case is to run mlton foo.sml, where foo.sml contains a valid SML program, in which
case MLton compiles the program to produce an executable foo. Since MLton does not support separate
compilation, the program must be the entire program you wish to compile. However, the program may refer to
signatures and structures defined in the Basis Library.

Larger programs, spanning many files, can be compiled with the ML Basis system. In this case,
mlton foo.mlb will compile the complete SML program described by the basis foo.mlb, which may
specify both SML files and additional bases.

MLton also supports a limited subset of SML/NJ CompilationManager (CM) files. For example,
mlton foo.cm will compile the complete SML program consisting of the concatenation of all the SML
files referred to (either directly or indirectly) by foo.cm.

Next Steps

CompileTimeOptions•
RunTimeOptions•

Last edited on 2005-12-01 19:31:43 by StephenWeeks.

MLton Guide (20051202) ManualPage

233

MatchCompilation
Match compilation is the process of translating an SML match into a nested tree (or dag) of simple case
expressions and tests.

MLton's match compiler is described here.

Match compilation in other compilers

BaudinetMacqueen85•
Leroy90, pages 60-69.•
Scott00•
Sestoft96•

Last edited on 2005-07-26 18:19:23 by StephenWeeks.

MLton Guide (20051202) MatchCompilation

234

MatchCompile
MatchCompile is a translation pass, agnostic in the IntermediateLanguages between which it translates.

Description

Match compilation converts a case expression with nested patterns into a case expression with flat patterns.

Implementation

match-compile.sig match-compile.fun

Details and Notes

val matchCompile:
 {caseType: Type.t, (* type of entire expression *)
 cases: (NestedPat.t * ((Var.t -> Var.t) -> Exp.t)) vector,
 conTycon: Con.t -> Tycon.t,
 region: Region.t,
 test: Var.t,
 testType: Type.t,
 tyconCons: Tycon.t -> {con: Con.t, hasArg: bool} vector}
 -> Exp.t * (unit -> ((Layout.t * {isOnlyExns: bool}) vector) vector)

matchCompile is complicated by the desire for modularity between the match compiler and its caller. Its
caller is responsible for building the right hand side of a rule p => e. On the other hand, the match compiler
is responsible for destructing the test and binding new variables to the components. In order to connect the
new variables created by the match compiler with the variables in the pattern p, the match compiler passes an
environment back to its caller that maps each variable in p to the corresponding variable introduced by the
match compiler.

The match compiler builds a tree of n-way case expressions by working from outside to inside and left to right
in the patterns. For example,

case x of
 (_, C1 a) => e1
| (C2 b, C3 c) => e2

is translated to

let
 fun f1 a = e1
 fun f2 (b, c) = e2
in
 case x of
 (x1, x2) =>
 (case x1 of
 C2 b' => (case x2 of
 C1 a' => f1 a'
 | C3 c' => f2(b',c')
 | _ => raise Match)
 | _ => (case x2 of
 C1 a'' => f1 a''

MLton Guide (20051202) MatchCompile

235

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/match-compile/match-compile.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/match-compile/match-compile.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/match-compile/match-compile.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/match-compile/match-compile.fun?view=markup

 | _ => raise Match))
end

Here you can see the necessity of abstracting out the ride hand sides of the cases in order to avoid code
duplication. Right hand sides are always abstracted. The simplifier cleans things up. You can also see the new
(primed) variables introduced by the match compiler and how the renaming works. Finally, you can see how
the match compiler introduces the necessary default clauses in order to make a match exhaustive, i.e. cover all
the cases.

The match compiler uses numCons and tyconCons to determine the exhaustivity of matches against
constructors.

Last edited on 2005-12-01 19:33:22 by StephenWeeks.

MLton Guide (20051202) MatchCompile

236

MatthewFluet
Matthew Fluet (mfluet@acm.org , http://www.cs.cornell.edu/People/fluet) is a PhD student in the
Computer Science Department at Cornell University.

Current MLton projects:

Migrating SSA optimizations to SSA2•
Improving CML implementation•
Porting ML-Doc•
Porting ML-NLFFI•
Porting ML-RISC•

Last edited on 2005-12-01 19:37:05 by StephenWeeks.

MLton Guide (20051202) MatthewFluet

237

mailto:mfluet@acm.org
mailto:mfluet@acm.org
http://www.cs.cornell.edu/People/fluet
http://www.cs.cornell.edu/People/fluet
http://www.cs.cornell.edu
http://www.cs.cornell.edu
http://www.cornell.edu
http://www.cornell.edu

MichaelNorrish
I am a researcher at NICTA, with a web-page here.

I'm interested in MLton because of the chance that it might be a good vehicle for future implementations of
the HOL theorem-proving system. It's beginning to look as if one route forward will be to embed an SML
interpreter into a MLton-compiled executable. I don't know if an extensible interpreter of the kind we're
looking for already exists.

Last edited on 2005-04-05 06:48:34 by MichaelNorrish.

MLton Guide (20051202) MichaelNorrish

238

http://nicta.com.au
http://nicta.com.au
http://web.rsise.anu.edu.au/~michaeln/
http://web.rsise.anu.edu.au/~michaeln/
http://hol.sf.net
http://hol.sf.net

MikeThomas
Here is a picture at home in Brisbane, Queensland, Australia, taken in January 2004.

image

Last edited on 2004-10-27 18:15:50 by StephenWeeks.

MLton Guide (20051202) MikeThomas

239

http://mlton.org/pages/MikeThomas/attachments/picture.jpg?ts=1098900911

MoinMoin
MoinMoin is the wiki engine used to implement this site.

You can find out technical specifics about this particular instance of MoinMoin at the SystemInfo page.

Last edited on 2004-10-25 20:51:11 by StephenWeeks.

MLton Guide (20051202) MoinMoin

240

http://moinmoin.wikiwikiweb.de/
http://moinmoin.wikiwikiweb.de/

Monomorphise
Monomorphise is a translation pass from the XML IntermediateLanguage to the SXML
IntermediateLanguage.

Description

Monomorphisation eliminates polymorphic values and datatype declarations by duplicating them for each
type at which they are used.

Consider the following XML program.

datatype 'a t = T of 'a
fun 'a f (x: 'a) = T x
val a = f 1
val b = f 2
val z = f (3, 4)

The result of monomorphising this program is the following SXML program:

datatype t1 = T1 of int
datatype t2 = T2 of int * int
fun f1 (x: t1) = T1 x
fun f2 (x: t2) = T2 x
val a = f1 1
val b = f1 2
val z = f2 (3, 4)

Implementation

monomorphise.sig monomorphise.fun

Details and Notes

The monomorphiser works by making one pass over the entire program. On the way down, it creates a cache
for each variable declared in a polymorphic declaration that maps a lists of type arguments to a new variable
name. At a variable reference, it consults the cache (based on the types the variable is applied to). If there is
already an entry in the cache, it is used. If not, a new entry is created. On the way up, the monomorphiser
duplicates a variable declaration for each entry in the cache.

As with variables, the monomorphiser records all of the type at which constructors are used. After the entire
program is processed, the monomorphiser duplicates each datatype declaration and its associated constructors.

The monomorphiser duplicates all of the functions declared in a fun declaration as a unit. Consider the
following program

fun 'a f (x: 'a) = g x
and g (y: 'a) = f y
val a = f 13
val b = g 14
val c = f (1, 2)

MLton Guide (20051202) Monomorphise

241

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/monomorphise.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/monomorphise.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/monomorphise.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/monomorphise.fun?view=markup

and its monomorphisation

fun f1 (x: int) = g1 x
and g1 (y: int) = f1 y
fun f2 (x : int * int) = g2 x
and g2 (y : int * int) = f2 y
val a = f1 13
val b = g1 14
val c = f2 (1, 2)

Pathological datatype declarations

SML allows a pathological polymorphic datatype declaration in which recursive uses of the defined type
constructor are applied to different type arguments than the definition. This has been disallowed by others on
type theoretic grounds. A canonical example is the following.

datatype 'a t = A of 'a | B of ('a * 'a) t
val z : int t = B (B (A ((1, 2), (3, 4))))

The presence of the recursion in the datatype declaration might appear to cause the need for the
monomorphiser to create an infinite number of types. However, due to the absence of polymorphic recursion
in SML, there are in fact only a finite number of instances of such types in any given program. The
monomorphiser translates the above program to the following one.

datatype t1 = B1 of t2
datatype t2 = B2 of t3
datatype t3 = A3 of (int * int) * (int * int)
val z : int t = B1 (B2 (A3 ((1, 2), (3, 4))))

It is crucial that the monomorphiser be allowed to drop unused constructors from datatype declarations in
order for the translation to terminate.

Last edited on 2005-12-02 04:22:52 by StephenWeeks.

MLton Guide (20051202) Monomorphise

242

MoscowML
Moscow ML is a Standard ML Compiler. It is a byte-code compiler, so it compiles code quickly, but the

code runs slowly. See Performance.

Last edited on 2004-12-30 20:11:52 by StephenWeeks.

MLton Guide (20051202) MoscowML

243

http://www.dina.kvl.dk/~sestoft/mosml.html
http://www.dina.kvl.dk/~sestoft/mosml.html

Multi
Multi is an analysis pass for the SSA IntermediateLanguage, invoked from ConstantPropagation and
LocalRef.

Description

This pass analyzes the control flow of a SSA program to determine which SSA functions and blocks might be
executed more than once or by more than one thread. It also determines when a program uses threads and
when functions and blocks directly or indirectly invoke Thread_copyCurrent.

Implementation

multi.sig multi.fun

Details and Notes

Last edited on 2005-12-01 23:18:59 by StephenWeeks.

MLton Guide (20051202) Multi

244

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/multi.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/multi.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/multi.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/multi.fun?view=markup

Mutable
Mutable is an adjective meaning can be modified. In Standard ML, ref cells and arrays are mutable, while all
other values are immutable.

Last edited on 2004-12-08 18:51:14 by StephenWeeks.

MLton Guide (20051202) Mutable

245

OCaml
OCaml is a variant of ML and is similar to Standard ML.

OCaml and SML

Here's a comparison of some aspects of the OCaml and SML languages.

Standard ML has a formal Definition, while OCaml is specified by its lone implementation and
informal documentation.

•

Standard ML has a number of compilers, while OCaml has only one.•
OCaml has built-in support for object-oriented programming, while Standard ML does not (however,
see ObjectOrientedProgramming).

•

Andreas Rossberg has a side-by-side comparison of the syntax of SML and OCaml.•

OCaml and MLton

Here's a comparison of some aspects of OCaml and MLton.

Performance•
Both OCaml and MLton have excellent performance.♦
MLton performs extensive WholeProgramOptimization, which can provide substantial
improvements in large, modular programs.

♦

MLton uses native types, like 32-bit integers, without any penalty due to tagging or boxing.
OCaml uses 31-bit integers with a penalty due to tagging, and 32-bit integers with a penalty
due to boxing.

♦

MLton uses native types, like 64-bit floats, without any penalty due to boxing. OCaml, in
some situations, boxes 64-bit floats.

♦

MLton represents arrays of all types unboxed. In OCaml, only arrays of 64-bit floats are
unboxed, and then only when it is syntactically apparent.

♦

MLton represents records compactly by reordering and packing the fields.♦
In MLton, polymorphic and monomorphic code have the same performance. In OCaml,
polymorphism can introduce a performance penalty.

♦

In MLton, module boundaries have no impact on performance. In OCaml, moving code
between modules can cause a performance penalty.

♦

MLton's ForeignFunctionInterface is simpler than OCaml's.•
Tools•

OCaml has a debugger, while MLton does not.♦
OCaml supports separate compilation, while MLton does not.♦
OCaml compiles faster than MLton.♦
MLton supports profiling of both time and allocation.♦

Libraries•
OCaml has more available libraries.♦

Community•
OCaml has a larger community than MLton.♦
MLton has a very responsive developer list.♦

Last edited on 2005-12-02 04:23:05 by StephenWeeks.

MLton Guide (20051202) OCaml

246

http://caml.inria.fr/
http://caml.inria.fr/
http://www.ps.uni-sb.de/~rossberg/SMLvsOcaml.html
http://www.ps.uni-sb.de/~rossberg/SMLvsOcaml.html
http://www.mlton.org/mailman/listinfo/mlton
http://www.mlton.org/mailman/listinfo/mlton

ObjectOrientedProgramming
Standard ML does not have explicit support for object-oriented programming. Here are some papers that show
how to express certain object-oriented concepts in SML.

OO Programming styles in ML•
Object-oriented programming and Standard ML•
mGTK: An SML binding of Gtk+•

Last edited on 2005-12-01 23:20:26 by StephenWeeks.

MLton Guide (20051202) ObjectOrientedProgramming

247

OpenGL
There are at least two interfaces to OpenGL for MLton/SML, both of which should be considered alpha
quality.

MikeThomas built a low-level interface, directly translating many of the functions, covering GL,
GLU, and GLUT. This is available in the MLton Sources: opengl . The code contains a number of
small, standard OpenGL examples translated to SML.

•

ChrisClearwater has written at least an interface to GL, and possibly more. See•

http://mlton.org/pipermail/mlton/2005-January/026669.html

Contact us for more information or an update on the status of these projects.

Last edited on 2005-09-06 23:29:26 by MatthewFluet.

MLton Guide (20051202) OpenGL

248

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/opengl
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/opengl
http://mlton.org/pipermail/mlton/2005-January/026669.html
http://mlton.org/pipermail/mlton/2005-January/026669.html

OperatorPrecedence
Standard ML has a built in notion of precedence for certain symbols. Every program that includes the Basis
Library automatically gets the following infix declarations. Higher number indicates higher precedence.

infix 7 * / mod div
infix 6 + - ^
infixr 5 :: @
infix 4 = <> > >= < <=
infix 3 := o
infix 0 before

Last edited on 2005-12-02 04:23:19 by StephenWeeks.

MLton Guide (20051202) OperatorPrecedence

249

OptionalArguments
Optional arguments are function parameters which may be omitted from applications of the function, in which
case the parameters take on default values.

Standard ML does not have built-in support for optional arguments (unlike OCaml). Despite the absence of
built-in support, it is easy to emulate optional arguments.

For example, consider the function

fun f x {a, b, c} = a * (real c) + b * (real x)

for which the parameters a, b, and c should take on the default values specified by

val defs = {a = 0.0, b = 0.0, c = 0}

We wish to provide an (optionalized) function f' and two (general) functions $ and ` such that

val X = f' 1 $
val Y = f' 1 (` #b 1.0) $
val Z = f' 1 (` #a 1.0) (` #c 2) (` #b 1.0) $
val () = print (concat ["X = ", Real.toString X,

", Y = ", Real.toString Y,
", Z = ", Real.toString Z, "\n"])

prints out the following:

X = 0, Y = 1, Z = 3

Here is the signature for the two general supporting functions, as well as two additional functions:

signature OPTIONAL =
sig

type ('upds, 'opts, 'res) t
type ('upds, 'opts, 'res, 'k) u =

 (('upds, 'opts, 'res) t -> 'k) -> 'k

val $: ('upds, 'opts, 'res) t -> 'res

val ` : ('upds -> ('opts -> 'x -> 'opts)) ->
 'x ->
 ('upds, 'opts, 'res) t ->
 ('upds, 'opts, 'res, 'k) u

val `` : 'opts ->
 ('upds, 'opts, 'res) t ->
 ('upds, 'opts, 'res, 'k) u

val make : 'upds ->
 'opts ->
 ('opts -> 'res) ->
 ('upds, 'opts, 'res, 'k) u

end

MLton Guide (20051202) OptionalArguments

250

Our intention is that the type ('upds, 'opts, 'res) t represents the type of functions returning the
type 'res and whose optional arguments are given by the (record) type 'opts; supporting the optional
arguments is the (record) type 'upds of update functions. The function ` introduces an override for an
optional argument,while $ marks the end of optional arguments. The function `` provides a convenient way
to simultaneously set all optional arguments; it can also be useful when the 'opts type is kept abstract, in
which case the defining module may provide values of type 'opts that may be used with `` to install a new
set of default values, while ` may continue to be used to override these new defaults. Finally, the make
function transforms a function to use optional arguments:

A structure matching OPTIONAL could be used as follows.

functor MakeF (S: OPTIONAL) :>
sig

type opts
type 'a upd = opts -> 'a -> opts
type upds = {a: real upd, b: real upd, c: int upd}
val f' : int -> (upds, opts, real, 'k) S.u
val opts_def2 : opts

end =
struct

open S

(* define the function and defaults *)
fun f x {a, b, c} = a * (real c) + b * (real x)
type opts = {a: real, b: real, c: int}
val opts_def1 (* : opts *) = {a = 0.0, b = 0.0, c = 0}
val opts_def2 (* : opts *) = {a = 1.0, b = 1.0, c = 1}

(* define the update functions *)
type 'a upd = opts -> 'a -> opts
val upda (* : real upd *) = fn {a, b, c} => fn a' => {a = a', b = b, c = c}
val updb (* : real upd *) = fn {a, b, c} => fn b' => {a = a, b = b', c = c}
val updc (* : int upd *) = fn {a, b, c} => fn c' => {a = a, b = b, c = c'}
type upds = {a: real upd, b: real upd, c: int upd}
val upds = {a = upda, b = updb, c = updc}

fun f' x (* : (upds, opts, real, 'k) u *) =
 make upds opts_def1 (f x)

end

functor TestOptionalF (S: OPTIONAL) =
struct

structure F = MakeF (S)
open F S

val X = f' 1 $
val Y = f' 1 (` #b 1.0) $
val Z = f' 1 (` #a 1.0) (` #c 2) (` #b 1.0) $
val () = print (concat ["X = ", Real.toString X,

", Y = ", Real.toString Y,
", Z = ", Real.toString Z, "\n"])

val X = f' 1 (`` opts_def2) $
val Y = f' 1 (`` opts_def2) (` #b 1.0) $
val Z = f' 1 (`` opts_def2) (` #a 1.0) (` #c 2) (` #b 1.0) $
val () = print (concat ["X = ", Real.toString X,

", Y = ", Real.toString Y,
", Z = ", Real.toString Z, "\n"])

MLton Guide (20051202) OptionalArguments

251

end

The implementation of OPTIONAL is actually quite straightforward:

structure Optional :> OPTIONAL =
struct

type ('upds, 'opts, 'res) t =
 'upds * 'opts * ('opts -> 'res)

type ('upds, 'opts, 'res, 'k) u =
 (('upds, 'opts, 'res) t -> 'k) -> 'k

val make =
fn upds =>
fn defs =>
fn f =>
fn k => k (upds, defs, f)

fun `` opts =
fn (upds, opts, f) =>
fn k =>

 k (upds, opts, f)

fun ` sel v =
fn (upds, opts, f) =>
fn k =>

 k (upds, sel upds opts v, f)

val $ =
fn (upds, opts, f) =>

 f opts
end

One may also mix sequences of required and optional arguments.

functor MakeG (S: OPTIONAL) :>
sig

type optsABC
type 'x updABC = optsABC -> 'x -> optsABC
type updsABC = {a: real updABC, b: real updABC, c: int updABC}
type optsDEF
type 'x updDEF = optsDEF -> 'x -> optsDEF
type updsDEF = {d: int updDEF, e: int updDEF, f: real updDEF}
val g' : int -> (updsABC, optsABC,

 real -> (updsDEF, optsDEF, string -> unit, 'kDEF) S.u,
 'kABC) S.u

end =
struct

open S

(* define the function and defaults *)
fun g x {a, b, c} y {d, e, f} s =

let
val z1 = a * (real c) + b * (real x)
val z2 = (real d) * f + (real e) * y

in
 print (concat [s, Real.toString (z1 + z2), s, "\n"])

end
type optsABC = {a: real, b: real, c: int}
val optsABC_def (* : optsABC *) = {a = 0.0, b = 0.0, c = 0}
type optsDEF = {d: int, e: int, f: real}

MLton Guide (20051202) OptionalArguments

252

val optsDEF_def (* : optsDEF *) = {d = 1, e = 1, f = 1.0}

(* define the update functions *)
type 'a updABC = optsABC -> 'a -> optsABC
val upda (* : real updABC *) = fn {a, b, c} => fn a' => {a = a', b = b, c = c}
val updb (* : real updABC *) = fn {a, b, c} => fn b' => {a = a, b = b', c = c}
val updc (* : int updABC *) = fn {a, b, c} => fn c' => {a = a, b = b, c = c'}
type updsABC = {a: real updABC, b: real updABC, c: int updABC}
val updsABC = {a = upda, b = updb, c = updc}

type 'a updDEF = optsDEF -> 'a -> optsDEF
val updd (* : real updDEF *) = fn {d, e, f} => fn d' => {d = d', e = e, f = f}
val upde (* : real updDEF *) = fn {d, e, f} => fn e' => {d = d, e = e', f = f}
val updf (* : int updDEF *) = fn {d, e, f} => fn f' => {d = d, e = e, f = f'}
type updsDEF = {d: int updDEF, e: int updDEF, f: real updDEF}
val updsDEF = {d = updd, e = upde, f = updf}

val g' (* : (upds, opts, real, 'k) u *) = (fn x =>
 make updsABC optsABC_def (fn optsABC => fn y =>
 make updsDEF optsDEF_def (fn optsDEF => fn s =>
 g x optsABC y optsDEF s)))

end

functor TestOptionalG (S: OPTIONAL) =
struct

structure G = MakeG (S)
open G S

val () = g' 1 (` #a 3.0) $ 1.0 (` #e 2) $ " ** "
end

To make a complete program and test the above code, we can apply the TestOptionalF and
TestOptionalG functors to our implementation.

structure TestF = TestOptionalF (Optional)
structure TestG = TestOptionalG (Optional)

Running the complete code prints out the following.

X = 0, Y = 1, Z = 3
X = 2, Y = 2, Z = 3
 ** 3 **

Download

optionalargs.sml•

Notes

The ability to pass a record selector as a first-class function value is key to the succinctness of this
technique.

•

Last edited on 2005-12-02 04:23:32 by StephenWeeks.

MLton Guide (20051202) OptionalArguments

253

http://mlton.org/pages/OptionalArguments/attachments/optionalargs.sml
http://mlton.org/pages/OptionalArguments/attachments/optionalargs.sml

OrphanedPages
Pages that no other page links to. Also see WantedPages.

Identifier1.
LanguageChanges2.
Survey3.
SurveyDone4.
Variant5.
ZZZOrphanedPages6.

Last edited on 2004-11-09 14:46:17 by StephenWeeks.

MLton Guide (20051202) OrphanedPages

254

OtherSites
Other sites that have a MLton page (or more).

Advogato•
Debian GNU/Linux (developer)•
FreeBSD•
freshmeat•
freshports•
GNU•
icewalkers•
wikipedi•

Last edited on 2005-09-06 23:19:23 by MatthewFluet.

MLton Guide (20051202) OtherSites

255

http://www.advogato.org/proj/mlton/
http://www.advogato.org/proj/mlton/
http://packages.debian.org/mlton
http://packages.debian.org/mlton
http://packages.qa.debian.org/m/mlton.html
http://packages.qa.debian.org/m/mlton.html
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
http://freshmeat.net/projects/mlton/
http://freshmeat.net/projects/mlton/
http://www.freshports.org/lang/mlton/
http://www.freshports.org/lang/mlton/
http://www.gnu.org/directory/all/mlton.html
http://www.gnu.org/directory/all/mlton.html
http://www.icewalkers.com/
http://www.icewalkers.com/
http://en.wikipedia.org/wiki/MLton
http://en.wikipedia.org/wiki/MLton

Overloading
In Standard ML, constants (like 13, 0w13, 13.0) are overloaded, meaning that they can denote a constant of
the appropriate type as determined by context. SML defines the overloading classes Int, Real, and Word,
which denote the sets of types that integer, real, and word constants may take on. In MLton, these are defined
as follows.

Int Int2.int, Int3.int, ... Int32.int, Int64.int, LargeInt.int, IntInf.int
Real Real32.real, Real64.real, LargeReal.real
Word Word2.word, Word3.word, ... Word32.word, Word64.int, LargeWord.word

The Definition allows flexibility in how much context is used to resolve overloading. It says that the context is
no larger than the smallest enclosing structure-level declaration, but that an implementation may require that
a smaller context determines the type. MLton uses the largest possible context allowed by SML in resolving
overloading. If the type of a constant is not determined by context, then it takes on a default type. In MLton,
these are defined as follows.

Int Int32.int
Real Real64.real
Word Word64.word

Other implementations may use a smaller context or different default types.

Also see

discussion of overloading in the Basis Library•

Examples

The following program is rejected.

structure S:
sig

val x: Word8.word
end =
struct

val x = 0w0
end

The smallest enclosing structure declaration for 0w0 is val x = 0w0. Hence, 0w0 receives the
default type for words, which is Word32.word.

•

Last edited on 2005-12-02 01:19:19 by StephenWeeks.

MLton Guide (20051202) Overloading

256

http://mlton.org/basis/top-level-chapter.html
http://mlton.org/basis/top-level-chapter.html

PackedRepresentation
PackedRepresentation is an analysis pass for the SSA2 IntermediateLanguage, invoked from ToRSSA.

Description

This pass analyzes a SSA2 program to compute a packed representation for each object.

Implementation

representation.sig packed-representation.fun

Details and Notes

Has a special case to make sure that true is represented as 1 and false is represented as 0.

Last edited on 2005-12-01 23:24:19 by StephenWeeks.

MLton Guide (20051202) PackedRepresentation

257

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/representation.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/representation.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/packed-representation.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/packed-representation.fun?view=markup

PageSize
List of all pages, sorted by their size:

 18913 References1.
 17504 VesaKarvonen/MoinEditorBackup2.
 14012 BasisLibrary3.
 11993 WesleyTerpstra/MoinEditorBackup4.
 11878 Performance5.
 11462 MLtonProcess6.
 11164 CommonArg7.
 10772 ConcurrentMLImplementation8.
 8502 CompileTimeOptions9.
 8492 ValueRestriction10.
 8321 SyntacticConventions11.
 8291 PrintfGentle12.
 7950 InfixingOperators13.
 7789 OptionalArguments14.
 6725 MLtonThread15.
 6422 MLNLFFIImplementation16.
 6382 Bugs2004110917.
 6066 FunctionalRecordUpdate18.
 6051 Elaborate19.
 5995 SMLNJDeviations20.
 5951 PolymorphicEquality21.
 5832 PortingMLton22.
 5831 ForLoops23.
 5754 MLtonFinalizable24.
 5713 AdmitsEquality25.
 5553 MLtonSignal26.
 5326 CompilationManager27.
 5234 Features28.
 5162 XML29.
 5094 MLtonStructure30.
 4709 Regions31.
 4702 CallGraph32.
 4651 TypeChecking33.
 4484 Credits34.
 4456 TypeVariableScope35.
 4440 MLBasisExamples36.
 4301 SelfCompiling37.
 4212 MLtonProfile38.
 4096 MatthewFluet/MoinEditorBackup39.
 3997 SMLNJLibrary40.
 3961 UniversalType41.
 3560 Printf42.
 3518 EqualityTypeVariable43.
 3497 Enscript44.
 3321 Users45.
 3284 ForeignFunctionInterfaceTypes46.

MLton Guide (20051202) PageSize

258

http://mlton.org/VesaKarvonen_2fMoinEditorBackup
http://mlton.org/VesaKarvonen_2fMoinEditorBackup
http://mlton.org/WesleyTerpstra_2fMoinEditorBackup
http://mlton.org/WesleyTerpstra_2fMoinEditorBackup
http://mlton.org/MatthewFluet_2fMoinEditorBackup
http://mlton.org/MatthewFluet_2fMoinEditorBackup

 3193 MLBasisSyntaxAndSemantics47.
 3114 RunTimeOptions48.
 2971 FirstClassPolymorphism49.
 2967 Monomorphise50.
 2965 ForeignFunctionInterfaceSyntax51.
 2910 HowProfilingWorks52.
 2821 PropertyList53.
 2574 CompilerOverview54.
 2572 MLtonSocket55.
 2547 UnresolvedBugs56.
 2501 MatchCompile57.
 2495 CrossCompiling58.
 2493 GenerativeException59.
 2451 ProfilingTime60.
 2450 ChrisClearwater/MoinEditorBackup61.
 2433 ShowBasis62.
 2355 OCaml63.
 2354 Installation64.
 2342 CallingFromCToSML65.
 2322 MLBasisAnnotations66.
 2288 History67.
 2281 Download68.
 2239 MLtonPointer69.
 2212 RefFlatten70.
 2159 MLBasisAnnotationExamples71.
 2147 RunningOnMinGW72.
 2146 ProfilingCounts73.
 2129 LanguageChanges74.
 2086 CKitLibrary75.
 2022 MLBasisAvailableLibraries76.
 1976 SimplifyTypes77.
 1923 JesperLouisAndersen/MoinEditorBackup78.
 1921 WikiTool79.
 1919 MLBasis80.
 1918 XMLShrink81.
 1883 FAQ82.
 1868 Libraries83.
 1853 SMLofNJStructure84.
 1845 Unicode85.
 1841 Emacs86.
 1831 ConcurrentML87.
 1810 RunningOnNetBSD88.
 1798 CallingFromSMLToC89.
 1791 Overloading90.
 1787 Defunctorize91.
 1751 JesperLouisAndersen92.
 1665 CallingFromSMLToCFunctionPointer93.
 1600 MLtonSyslog94.
 1562 DefineTypeBeforeUse95.
 1554 SSA296.
 1523 ScopeInference97.

MLton Guide (20051202) PageSize

259

http://mlton.org/ChrisClearwater_2fMoinEditorBackup
http://mlton.org/ChrisClearwater_2fMoinEditorBackup
http://mlton.org/Download
http://mlton.org/Download
http://mlton.org/JesperLouisAndersen_2fMoinEditorBackup
http://mlton.org/JesperLouisAndersen_2fMoinEditorBackup

 1497 Shrink98.
 1485 Contact99.
 1474 MLtonWorld100.
 1470 Zone101.
 1441 KnownCase102.
 1434 EqualityType103.
 1423 MLtonRlimit104.
 1423 ProductType105.
 1419 Sources106.
 1403 ProfilingAllocation107.
 1392 LocalRef108.
 1348 TypeConstructor109.
 1339 SSA110.
 1330 ToMachine111.
 1314 Preferences112.
 1280 Projects113.
 1259 ProfilingTheStack114.
 1251 MLBasisPathMap115.
 1213 ManualPage116.
 1212 Restore117.
 1209 WebSite118.
 1209 MLNLFFI119.
 1203 Useless120.
 1203 StandardMLPortability121.
 1194 ImplementSuffix122.
 1157 MLtonPlatform123.
 1139 SSASimplify124.
 1133 DeadCode125.
 1129 MLtonCont126.
 1118 RunningOnCygwin127.
 1116 Lazy128.
 1110 LambdaFree129.
 1106 CommonBlock130.
 1104 Closure131.
 1103 MLtonRandom132.
 1102 MLtonIO133.
 1044 WikiMacros134.
 1038 SXML135.
 1024 RSSA136.
 1003 CommonSubexp137.
 1002 WikiSandBox138.
 998 WholeProgramOptimization139.
 972 MLtonIntInf140.
 951 MLtonExn141.
 946 UnsafeStructure142.
 940 Identifier143.
 938 PolyEqual144.
 922 StandardML145.
 917 MLtonRusage146.
 861 Flatten147.
 860 MLtonGC148.

MLton Guide (20051202) PageSize

260

http://mlton.org/Preferences
http://mlton.org/Preferences
http://mlton.org/WikiSandBox
http://mlton.org/WikiSandBox

 847 MLtonWeak149.
 837 GnuMP150.
 835 VesaKarvonen151.
 827 LineDirective152.
 827 SXMLSimplify153.
 813 SSA2Simplify154.
 798 ReleaseChecklist155.
 792 RunningOnSparc156.
 787 Documentation157.
 784 WesleyTerpstra158.
 784 TalkMLtonHistory159.
 784 XMLSimplifyTypes160.
 757 Inline161.
 757 GenerativeDatatype162.
 751 Profiling163.
 722 Drawbacks164.
 720 Contify165.
 717 RemoveUnused166.
 717 RayRacine167.
 700 License168.
 686 IntroduceLoops169.
 686 RayRacine/MoinEditorBackup170.
 682 GarbageCollection171.
 678 Redundant172.
 677 RSSASimplify173.
 670 AST174.
 660 SureshJagannathan/MoinEditorBackup175.
 659 RunningOnSolaris176.
 654 EditingPages177.
 645 CompilerPassTemplate178.
 644 ToSSA2179.
 617 OpenGL180.
 614 StandardMLBooks181.
 613 FrontEnd182.
 612 Swerve183.
 607 XMLSimplify184.
 590 DefinitionOfStandardML185.
 583 MichaelNorrish/MoinEditorBackup186.
 576 Machine187.
 571 ForeignFunctionInterface188.
 562 Developers189.
 561 RedundantTests190.
 551 SureshJagannathan191.
 551 Multi192.
 533 OtherSites193.
 523 Bug194.
 521 IntermediateLanguage195.
 520 CreatingPages196.
 507 StandardMLImplementations197.
 505 SMLNJ198.
 503 ClosureConvert199.

MLton Guide (20051202) PageSize

261

http://mlton.org/RayRacine_2fMoinEditorBackup
http://mlton.org/RayRacine_2fMoinEditorBackup
http://mlton.org/SureshJagannathan_2fMoinEditorBackup
http://mlton.org/SureshJagannathan_2fMoinEditorBackup
http://mlton.org/MichaelNorrish_2fMoinEditorBackup
http://mlton.org/MichaelNorrish_2fMoinEditorBackup

 501 DeepFlatten200.
 495 AccessControl201.
 494 PhantomType202.
 485 mGTK203.
 480 MichaelNorrish204.
 479 Chunkify205.
 477 PackedRepresentation206.
 463 LoopInvariant207.
 462 CoreML208.
 456 MLtonItimer209.
 453 RSSAShrink210.
 438 LocalFlatten211.
 433 Globalize212.
 432 PlatformSpecificNotes213.
 431 ConstantPropagation214.
 421 Poplog215.
 412 StandardMLTutorials216.
 410 AndreiFormiga/MoinEditorBackup217.
 401 RunningOnPowerPC218.
 400 TalkStandardML219.
 400 RecentChanges220.
 397 TalkMLtonFeatures221.
 387 MatthewFluet222.
 386 Polyvariance223.
 382 PrecedenceParse224.
 379 Home225.
 374 MLtonWord226.
 370 MLtonProcEnv227.
 369 TalkWholeProgram228.
 369 RunningOnOpenBSD229.
 367 ParallelMove230.
 364 OperatorPrecedence231.
 364 ObjectOrientedProgramming232.
 361 ToRSSA233.
 359 Development234.
 358 AllocateRegisters235.
 351 RunningOnFreeBSD236.
 347 SXMLShrink237.
 340 MatchCompilation238.
 329 ImperativeTypeVariable239.
 324 ImplementHandlers240.
 323 MLtonVector241.
 319 MLtonArray242.
 309 AndreiFormiga243.
 306 TalkMLtonApproach244.
 302 ImplementProfiling245.
 295 ImplementExceptions246.
 292 StephenWeeks/MoinEditorBackup247.
 289 HenryCejtin/MoinEditorBackup248.
 284 InsertSignalChecks249.
 281 InsertLimitChecks250.

MLton Guide (20051202) PageSize

262

http://mlton.org/AndreiFormiga_2fMoinEditorBackup
http://mlton.org/AndreiFormiga_2fMoinEditorBackup
http://mlton.org/RecentChanges
http://mlton.org/RecentChanges
http://mlton.org/StephenWeeks_2fMoinEditorBackup
http://mlton.org/StephenWeeks_2fMoinEditorBackup
http://mlton.org/HenryCejtin_2fMoinEditorBackup
http://mlton.org/HenryCejtin_2fMoinEditorBackup

 278 Eclipse251.
 277 TalkFolkLore252.
 270 TalkHowHigherOrder253.
 266 Pronounce254.
 265 ML255.
 263 Subversion256.
 261 MLj257.
 257 SMLNET258.
 254 StandardMLHistory259.
 244 TalkFromSMLTo260.
 242 HaMLet261.
 242 TalkHowPolymorphism262.
 238 RunningOnDarwin263.
 234 eXene264.
 230 Immutable265.
 230 TalkHowModules266.
 220 CoreMLSimplify267.
 218 MoscowML268.
 209 fxp269.
 209 Glade270.
 200 Talk271.
 196 MoinMoin272.
 193 Experimental273.
 192 HenryCejtin274.
 190 Variant275.
 188 TomMurphy276.
 184 SpaceSafety277.
 184 ZZZOrphanedPages278.
 177 Serialization279.
 176 TalkDiveIn280.
 176 StephenWeeks281.
 175 JohnnyAndersen282.
 165 Mutable283.
 152 StyleGuide284.
 145 TemporaryUpload285.
 136 Survey286.
 136 TalkTemplate287.
 125 WantedPages288.
 120 WikiName289.
 118 Alice290.
 112 MikeThomas291.
 106 MLKit292.
 103 TILT293.
 100 TrustedGroup294.
 90 PolyML295.
 86 OldPages296.
 78 OrphanedPages297.
 73 MLtonTextIO298.
 72 MLtonBinIO299.
 69 PageSize300.
 46 RunningOnLinux301.

MLton Guide (20051202) PageSize

263

http://mlton.org/TemporaryUpload
http://mlton.org/TemporaryUpload
http://mlton.org/OldPages
http://mlton.org/OldPages

 45 SurveyDone302.
 30 SystemInfo303.
 15 Index304.
 1 ChrisClearwater305.

(last modified 2004-10-25 16:35:07)

MLton Guide (20051202) PageSize

264

ParallelMove
ParallelMove is a rewrite pass, agnostic in the IntermediateLanguage which it produces.

Description

This function computes a sequence of individual moves to effect a parallel move (with possibly overlapping
froms and tos).

Implementation

parallel-move.sig parallel-move.fun

Details and Notes

Last edited on 2005-12-01 23:25:40 by StephenWeeks.

MLton Guide (20051202) ParallelMove

265

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/parallel-move.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/parallel-move.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/parallel-move.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/parallel-move.fun?view=markup

Performance
The Computer Language Shootout has a performance comparison of many different languages, including
MLton.

This page compares the performance of the following SML compilers on a range of benchmarks.

MLton 20041109•
ML Kit 4.1.1•
Moscow ML 2.00•
Poly/ML 4.1.3•
SML/NJ 110.49•

There are tables for run time, compile time, and code size.

Setup

All benchmarks were compiled and run on a 1.6 GHz dual Athlon with 4G of RAM. The benchmarks were
compiled with the default settings for all the compilers, except for Moscow ML, which was passed the
-orthodox -standalone -toplevel switches. The Poly/ML executables were produced by useing
the file, followed by a PolyML.commit. The SML/NJ executables were produced by wrapping the entire
program in a local declaration whose body performs an SMLofNJ.exportFn.

For more details, or if you want to run the benchmarks yourself, please see the benchmark directory of the
MLton Sources.

All of the benchmarks are available for download from this page. Some of the benchmarks were obtained
from the SML/NJ benchmark suite. Some of the benchmarks expect certain input files to exist in the DATA
subdirectory.

hamlet.sml (hamlet-input.sml)•
ray.sml (ray)•
raytrace.sml (chess.gml)•
vliw.sml (ndotprod.s)•

Run-time ratio

The following table gives the ratio of the run time of each benchmark when compiled by another compiler to
the run time when compiled by MLton. That is, the larger the number, the slower the generated code runs. A
number larger than one indicates that the corresponding compiler produces code that runs more slowly than
MLton. If an entry is *, that means that the corresponding compiler failed to compile the benchmark or that
the benchmark failed to run.

benchmark MLton ML-Kit Moscow-ML Poly/ML SML/NJ
barnes-hut 1.0 * * * 1.1
boyer 1.0 * 9.0 2.3 3.0
checksum 1.0 * * * *
count-graphs 1.0 7.6 44.6 7.8 2.9

MLton Guide (20051202) Performance

266

http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/benchmark.php?test=all&lang=all&sort=cpu
http://shootout.alioth.debian.org/benchmark.php?test=all&lang=all&sort=cpu
http://shootout.alioth.debian.org/benchmark.php?test=all&lang=mlton&sort=cpu
http://shootout.alioth.debian.org/benchmark.php?test=all&lang=mlton&sort=cpu
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/hamlet-input.sml
http://mlton.org/pages/Performance/attachments/hamlet-input.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/ray
http://mlton.org/pages/Performance/attachments/ray
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/chess.gml
http://mlton.org/pages/Performance/attachments/chess.gml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/ndotprod.s
http://mlton.org/pages/Performance/attachments/ndotprod.s
http://mlton.org/pages/Performance/attachments/barnes-hut.sml
http://mlton.org/pages/Performance/attachments/barnes-hut.sml
http://mlton.org/pages/Performance/attachments/boyer.sml
http://mlton.org/pages/Performance/attachments/boyer.sml
http://mlton.org/pages/Performance/attachments/checksum.sml
http://mlton.org/pages/Performance/attachments/checksum.sml
http://mlton.org/pages/Performance/attachments/count-graphs.sml
http://mlton.org/pages/Performance/attachments/count-graphs.sml

DLXSimulator 1.0 * * * *
fft 1.0 2.7 * 46.4 1.0
fib 1.0 1.3 5.4 1.0 1.3
flat-array 1.0 1.4 10.8 130.1 4.2
hamlet 1.0 * * * 2.2
imp-for 1.0 4.2 66.1 10.7 6.0
knuth-bendix 1.0 * 18.6 8.5 3.6
lexgen 1.0 2.2 6.2 2.1 1.7
life 1.0 2.8 25.9 10.2 1.5
logic 1.0 * 6.6 1.5 1.1
mandelbrot 1.0 13.9 45.5 71.3 1.5
matrix-multiply 1.0 5.3 49.7 16.0 5.2
md5 1.0 * * * *
merge 1.0 * * 1.5 5.8
mlyacc 1.0 * 6.2 1.3 1.4
model-elimination 1.0 * * * 1.7
mpuz 1.0 2.5 53.3 5.5 3.4
nucleic 1.0 * * 22.9 0.6
output1 1.0 20.9 33.2 3.1 7.2
peek 1.0 21.5 127.2 20.8 15.7
psdes-random 1.0 7.7 * * 3.4
ratio-regions 1.0 2.2 25.7 2.8 4.8
ray 1.0 * 22.4 35.8 1.4
raytrace 1.0 * * * 2.8
simple 1.0 1.9 14.4 7.4 1.6
smith-normal-form 1.0 * * * >3000
tailfib 1.0 1.3 35.5 2.4 2.4
tak 1.0 2.4 9.6 0.8 1.6
tensor 1.0 * * * 15.6
tsp 1.0 3.4 25.9 * 56.7
tyan 1.0 * 14.0 1.6 0.9
vector-concat 1.0 1.7 16.4 1.7 9.6
vector-rev 1.0 2.1 21.8 3.0 73.0
vliw 1.0 * * * 1.3
wc-input1 1.0 14.8 * 6.6 8.7
wc-scanStream 1.0 21.4 * 352.5 9.4
zebra 1.0 7.0 30.6 7.2 8.6
zern 1.0 * * * 2.8

Note: for SML/NJ, the smith-normal-form benchmark was killed after running for over 60,000 seconds.

MLton Guide (20051202) Performance

267

http://mlton.org/pages/Performance/attachments/DLXSimulator.sml
http://mlton.org/pages/Performance/attachments/DLXSimulator.sml
http://mlton.org/pages/Performance/attachments/fft.sml
http://mlton.org/pages/Performance/attachments/fft.sml
http://mlton.org/pages/Performance/attachments/fib.sml
http://mlton.org/pages/Performance/attachments/fib.sml
http://mlton.org/pages/Performance/attachments/flat-array.sml
http://mlton.org/pages/Performance/attachments/flat-array.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/imp-for.sml
http://mlton.org/pages/Performance/attachments/imp-for.sml
http://mlton.org/pages/Performance/attachments/knuth-bendix.sml
http://mlton.org/pages/Performance/attachments/knuth-bendix.sml
http://mlton.org/pages/Performance/attachments/lexgen.sml
http://mlton.org/pages/Performance/attachments/lexgen.sml
http://mlton.org/pages/Performance/attachments/life.sml
http://mlton.org/pages/Performance/attachments/life.sml
http://mlton.org/pages/Performance/attachments/logic.sml
http://mlton.org/pages/Performance/attachments/logic.sml
http://mlton.org/pages/Performance/attachments/mandelbrot.sml
http://mlton.org/pages/Performance/attachments/mandelbrot.sml
http://mlton.org/pages/Performance/attachments/matrix-multiply.sml
http://mlton.org/pages/Performance/attachments/matrix-multiply.sml
http://mlton.org/pages/Performance/attachments/md5.sml
http://mlton.org/pages/Performance/attachments/md5.sml
http://mlton.org/pages/Performance/attachments/merge.sml
http://mlton.org/pages/Performance/attachments/merge.sml
http://mlton.org/pages/Performance/attachments/mlyacc.sml
http://mlton.org/pages/Performance/attachments/mlyacc.sml
http://mlton.org/pages/Performance/attachments/model-elimination.sml
http://mlton.org/pages/Performance/attachments/model-elimination.sml
http://mlton.org/pages/Performance/attachments/mpuz.sml
http://mlton.org/pages/Performance/attachments/mpuz.sml
http://mlton.org/pages/Performance/attachments/nucleic.sml
http://mlton.org/pages/Performance/attachments/nucleic.sml
http://mlton.org/pages/Performance/attachments/output1.sml
http://mlton.org/pages/Performance/attachments/output1.sml
http://mlton.org/pages/Performance/attachments/peek.sml
http://mlton.org/pages/Performance/attachments/peek.sml
http://mlton.org/pages/Performance/attachments/psdes-random.sml
http://mlton.org/pages/Performance/attachments/psdes-random.sml
http://mlton.org/pages/Performance/attachments/ratio-regions.sml
http://mlton.org/pages/Performance/attachments/ratio-regions.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/simple.sml
http://mlton.org/pages/Performance/attachments/simple.sml
http://mlton.org/pages/Performance/attachments/smith-normal-form.sml
http://mlton.org/pages/Performance/attachments/smith-normal-form.sml
http://mlton.org/pages/Performance/attachments/tailfib.sml
http://mlton.org/pages/Performance/attachments/tailfib.sml
http://mlton.org/pages/Performance/attachments/tak.sml
http://mlton.org/pages/Performance/attachments/tak.sml
http://mlton.org/pages/Performance/attachments/tensor.sml
http://mlton.org/pages/Performance/attachments/tensor.sml
http://mlton.org/pages/Performance/attachments/tsp.sml
http://mlton.org/pages/Performance/attachments/tsp.sml
http://mlton.org/pages/Performance/attachments/tyan.sml
http://mlton.org/pages/Performance/attachments/tyan.sml
http://mlton.org/pages/Performance/attachments/vector-concat.sml
http://mlton.org/pages/Performance/attachments/vector-concat.sml
http://mlton.org/pages/Performance/attachments/vector-rev.sml
http://mlton.org/pages/Performance/attachments/vector-rev.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/wc-input1.sml
http://mlton.org/pages/Performance/attachments/wc-input1.sml
http://mlton.org/pages/Performance/attachments/wc-scanStream.sml
http://mlton.org/pages/Performance/attachments/wc-scanStream.sml
http://mlton.org/pages/Performance/attachments/zebra.sml
http://mlton.org/pages/Performance/attachments/zebra.sml
http://mlton.org/pages/Performance/attachments/zern.sml
http://mlton.org/pages/Performance/attachments/zern.sml

Compile time

The following table gives the compile time of each benchmark in seconds. A * in an entry means that the
compiler failed to compile the benchmark.

benchmark MLton ML-Kit Moscow-ML Poly/ML SML/NJ
barnes-hut 7.06 * * * 1.09
boyer 8.08 9.73 0.39 0.14 3.46
checksum 4.96 * * * *
count-graphs 5.73 2.17 0.13 0.08 0.72
DLXSimulator 7.67 * * * *
fft 5.00 1.54 0.12 0.06 0.66
fib 4.67 0.91 0.04 0.03 0.16
flat-array 4.60 0.91 0.03 0.02 0.18
hamlet 46.86 * * * 53.12
imp-for 4.63 0.99 0.04 0.02 0.19
knuth-bendix 6.12 4.21 0.18 0.15 1.36
lexgen 9.09 6.47 0.38 0.33 3.22
life 5.09 2.43 0.09 0.07 0.53
logic 6.52 4.77 0.21 0.11 1.43
mandelbrot 4.63 0.97 0.05 0.03 0.23
matrix-multiply 4.68 1.03 0.06 0.03 0.26
md5 5.26 * * * *
merge 4.64 0.93 0.07 0.01 0.24
mlyacc 22.42 36.94 3.63 1.45 14.63
model-elimination 23.07 * * * 24.06
mpuz 4.75 1.27 0.06 0.04 0.35
nucleic 65.13 31.26 * 0.48 2.56
output1 5.28 0.94 0.04 0.02 0.17
peek 5.19 0.97 0.04 0.03 0.19
psdes-random 4.65 0.99 * * 65.07
ratio-regions 5.73 3.80 0.19 0.13 1.38
ray 7.94 3.21 0.13 0.10 0.81
raytrace 12.32 * * * 5.16
simple 10.03 11.79 0.43 0.27 3.19
smith-normal-form 8.45 * * 0.13 2.39
tailfib 4.59 0.92 0.04 0.02 0.18
tak 4.60 0.89 0.04 0.01 0.17
tensor 7.34 * * * 2.06
tsp 5.51 2.40 0.14 * 0.51
tyan 7.38 5.87 0.27 0.20 1.97
vector-concat 4.66 0.91 0.04 0.03 0.19

MLton Guide (20051202) Performance

268

http://mlton.org/pages/Performance/attachments/barnes-hut.sml
http://mlton.org/pages/Performance/attachments/barnes-hut.sml
http://mlton.org/pages/Performance/attachments/boyer.sml
http://mlton.org/pages/Performance/attachments/boyer.sml
http://mlton.org/pages/Performance/attachments/checksum.sml
http://mlton.org/pages/Performance/attachments/checksum.sml
http://mlton.org/pages/Performance/attachments/count-graphs.sml
http://mlton.org/pages/Performance/attachments/count-graphs.sml
http://mlton.org/pages/Performance/attachments/DLXSimulator.sml
http://mlton.org/pages/Performance/attachments/DLXSimulator.sml
http://mlton.org/pages/Performance/attachments/fft.sml
http://mlton.org/pages/Performance/attachments/fft.sml
http://mlton.org/pages/Performance/attachments/fib.sml
http://mlton.org/pages/Performance/attachments/fib.sml
http://mlton.org/pages/Performance/attachments/flat-array.sml
http://mlton.org/pages/Performance/attachments/flat-array.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/imp-for.sml
http://mlton.org/pages/Performance/attachments/imp-for.sml
http://mlton.org/pages/Performance/attachments/knuth-bendix.sml
http://mlton.org/pages/Performance/attachments/knuth-bendix.sml
http://mlton.org/pages/Performance/attachments/lexgen.sml
http://mlton.org/pages/Performance/attachments/lexgen.sml
http://mlton.org/pages/Performance/attachments/life.sml
http://mlton.org/pages/Performance/attachments/life.sml
http://mlton.org/pages/Performance/attachments/logic.sml
http://mlton.org/pages/Performance/attachments/logic.sml
http://mlton.org/pages/Performance/attachments/mandelbrot.sml
http://mlton.org/pages/Performance/attachments/mandelbrot.sml
http://mlton.org/pages/Performance/attachments/matrix-multiply.sml
http://mlton.org/pages/Performance/attachments/matrix-multiply.sml
http://mlton.org/pages/Performance/attachments/md5.sml
http://mlton.org/pages/Performance/attachments/md5.sml
http://mlton.org/pages/Performance/attachments/merge.sml
http://mlton.org/pages/Performance/attachments/merge.sml
http://mlton.org/pages/Performance/attachments/mlyacc.sml
http://mlton.org/pages/Performance/attachments/mlyacc.sml
http://mlton.org/pages/Performance/attachments/model-elimination.sml
http://mlton.org/pages/Performance/attachments/model-elimination.sml
http://mlton.org/pages/Performance/attachments/mpuz.sml
http://mlton.org/pages/Performance/attachments/mpuz.sml
http://mlton.org/pages/Performance/attachments/nucleic.sml
http://mlton.org/pages/Performance/attachments/nucleic.sml
http://mlton.org/pages/Performance/attachments/output1.sml
http://mlton.org/pages/Performance/attachments/output1.sml
http://mlton.org/pages/Performance/attachments/peek.sml
http://mlton.org/pages/Performance/attachments/peek.sml
http://mlton.org/pages/Performance/attachments/psdes-random.sml
http://mlton.org/pages/Performance/attachments/psdes-random.sml
http://mlton.org/pages/Performance/attachments/ratio-regions.sml
http://mlton.org/pages/Performance/attachments/ratio-regions.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/simple.sml
http://mlton.org/pages/Performance/attachments/simple.sml
http://mlton.org/pages/Performance/attachments/smith-normal-form.sml
http://mlton.org/pages/Performance/attachments/smith-normal-form.sml
http://mlton.org/pages/Performance/attachments/tailfib.sml
http://mlton.org/pages/Performance/attachments/tailfib.sml
http://mlton.org/pages/Performance/attachments/tak.sml
http://mlton.org/pages/Performance/attachments/tak.sml
http://mlton.org/pages/Performance/attachments/tensor.sml
http://mlton.org/pages/Performance/attachments/tensor.sml
http://mlton.org/pages/Performance/attachments/tsp.sml
http://mlton.org/pages/Performance/attachments/tsp.sml
http://mlton.org/pages/Performance/attachments/tyan.sml
http://mlton.org/pages/Performance/attachments/tyan.sml
http://mlton.org/pages/Performance/attachments/vector-concat.sml
http://mlton.org/pages/Performance/attachments/vector-concat.sml

vector-rev 4.62 0.93 0.04 0.02 0.18
vliw 16.68 * * * 13.44
wc-input1 5.86 0.96 0.05 0.02 0.21
wc-scanStream 6.10 0.96 0.05 0.03 0.21
zebra 7.01 2.57 0.09 0.06 0.64
zern 5.21 * * * 0.50

Code size

The following table gives the code size of each benchmark in bytes. The size for MLton and the ML Kit is the
sum of text and data for the standalone executable as reported by size. The size for Moscow ML is the size
in bytes of the executable a.out. The size for Poly/ML is the difference in size of the database before the
session start and after the commit. The size for SML/NJ is the size of the heap file created by exportFn and
does not include the size of the SML/NJ runtime system (approximately 100K). A * in an entry means that the
compiler failed to compile the benchmark.

benchmark MLton ML-Kit Moscow-ML Poly/ML SML/NJ
barnes-hut 157,305 * * * 422,976
boyer 154,559 156,737 116,300 122,880 516,136
checksum 70,489 * * * *
count-graphs 81,555 88,601 84,613 98,304 450,680
DLXSimulator 185,925 * * * *
fft 79,955 85,433 84,046 65,536 424,016
fib 64,227 16,101 79,892 49,152 405,248
flat-array 64,271 24,413 80,034 49,152 416,528
hamlet 1,301,021 * * * 1,411,336
imp-for 64,115 16,869 80,040 57,344 390,184
knuth-bendix 160,857 97,177 88,439 180,224 420,904
lexgen 258,994 215,729 104,883 196,608 491,584
life 81,591 79,253 83,390 65,536 404,520
logic 125,587 115,217 87,251 114,688 430,120
mandelbrot 64,175 77,905 81,340 57,344 394,280
matrix-multiply 65,435 96,137 82,417 57,344 422,968
md5 129,249 * * * *
merge 65,835 25,601 80,090 49,152 390,192
mlyacc 558,018 502,081 148,286 2,850,816 801,904
model-elimination 686,584 * * * 1,028,344
mpuz 66,895 75,925 82,382 81,920 398,376
nucleic 218,271 268,237 * 221,184 477,240
output1 139,243 61,465 80,187 49,152 405,248
peek 133,953 60,829 81,621 57,344 409,392
psdes-random 64,851 25,529 * * 411,704
ratio-regions 89,779 98,489 87,482 73,728 433,208
ray 239,069 112,309 89,859 147,456 483,472

MLton Guide (20051202) Performance

269

http://mlton.org/pages/Performance/attachments/vector-rev.sml
http://mlton.org/pages/Performance/attachments/vector-rev.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/wc-input1.sml
http://mlton.org/pages/Performance/attachments/wc-input1.sml
http://mlton.org/pages/Performance/attachments/wc-scanStream.sml
http://mlton.org/pages/Performance/attachments/wc-scanStream.sml
http://mlton.org/pages/Performance/attachments/zebra.sml
http://mlton.org/pages/Performance/attachments/zebra.sml
http://mlton.org/pages/Performance/attachments/zern.sml
http://mlton.org/pages/Performance/attachments/zern.sml
http://mlton.org/pages/Performance/attachments/barnes-hut.sml
http://mlton.org/pages/Performance/attachments/barnes-hut.sml
http://mlton.org/pages/Performance/attachments/boyer.sml
http://mlton.org/pages/Performance/attachments/boyer.sml
http://mlton.org/pages/Performance/attachments/checksum.sml
http://mlton.org/pages/Performance/attachments/checksum.sml
http://mlton.org/pages/Performance/attachments/count-graphs.sml
http://mlton.org/pages/Performance/attachments/count-graphs.sml
http://mlton.org/pages/Performance/attachments/DLXSimulator.sml
http://mlton.org/pages/Performance/attachments/DLXSimulator.sml
http://mlton.org/pages/Performance/attachments/fft.sml
http://mlton.org/pages/Performance/attachments/fft.sml
http://mlton.org/pages/Performance/attachments/fib.sml
http://mlton.org/pages/Performance/attachments/fib.sml
http://mlton.org/pages/Performance/attachments/flat-array.sml
http://mlton.org/pages/Performance/attachments/flat-array.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/hamlet.sml
http://mlton.org/pages/Performance/attachments/imp-for.sml
http://mlton.org/pages/Performance/attachments/imp-for.sml
http://mlton.org/pages/Performance/attachments/knuth-bendix.sml
http://mlton.org/pages/Performance/attachments/knuth-bendix.sml
http://mlton.org/pages/Performance/attachments/lexgen.sml
http://mlton.org/pages/Performance/attachments/lexgen.sml
http://mlton.org/pages/Performance/attachments/life.sml
http://mlton.org/pages/Performance/attachments/life.sml
http://mlton.org/pages/Performance/attachments/logic.sml
http://mlton.org/pages/Performance/attachments/logic.sml
http://mlton.org/pages/Performance/attachments/mandelbrot.sml
http://mlton.org/pages/Performance/attachments/mandelbrot.sml
http://mlton.org/pages/Performance/attachments/matrix-multiply.sml
http://mlton.org/pages/Performance/attachments/matrix-multiply.sml
http://mlton.org/pages/Performance/attachments/md5.sml
http://mlton.org/pages/Performance/attachments/md5.sml
http://mlton.org/pages/Performance/attachments/merge.sml
http://mlton.org/pages/Performance/attachments/merge.sml
http://mlton.org/pages/Performance/attachments/mlyacc.sml
http://mlton.org/pages/Performance/attachments/mlyacc.sml
http://mlton.org/pages/Performance/attachments/model-elimination.sml
http://mlton.org/pages/Performance/attachments/model-elimination.sml
http://mlton.org/pages/Performance/attachments/mpuz.sml
http://mlton.org/pages/Performance/attachments/mpuz.sml
http://mlton.org/pages/Performance/attachments/nucleic.sml
http://mlton.org/pages/Performance/attachments/nucleic.sml
http://mlton.org/pages/Performance/attachments/output1.sml
http://mlton.org/pages/Performance/attachments/output1.sml
http://mlton.org/pages/Performance/attachments/peek.sml
http://mlton.org/pages/Performance/attachments/peek.sml
http://mlton.org/pages/Performance/attachments/psdes-random.sml
http://mlton.org/pages/Performance/attachments/psdes-random.sml
http://mlton.org/pages/Performance/attachments/ratio-regions.sml
http://mlton.org/pages/Performance/attachments/ratio-regions.sml
http://mlton.org/pages/Performance/attachments/ray.sml
http://mlton.org/pages/Performance/attachments/ray.sml

raytrace 321,782 * * * 605,360
simple 276,608 202,561 94,396 475,136 746,600
smith-normal-form 239,321 * * 131,072 547,984
tailfib 63,899 16,301 79,943 57,344 405,248
tak 64,311 16,093 79,908 57,344 401,152
tensor 155,108 * * * 440,432
tsp 133,549 99,497 86,146 * 414,784
tyan 192,229 146,101 91,586 196,608 467,032
vector-concat 65,483 24,517 80,194 49,152 416,528
vector-rev 64,735 24,697 80,078 57,344 416,528
vliw 445,446 * * * 730,280
wc-input1 160,129 132,765 85,771 49,152 394,280
wc-scanStream 163,633 133,261 85,947 49,152 407,296
zebra 176,181 44,741 83,422 90,112 409,656
zern 146,473 * * * 468,120

Last edited on 2005-01-06 04:28:40 by StephenWeeks.

MLton Guide (20051202) Performance

270

http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/raytrace.sml
http://mlton.org/pages/Performance/attachments/simple.sml
http://mlton.org/pages/Performance/attachments/simple.sml
http://mlton.org/pages/Performance/attachments/smith-normal-form.sml
http://mlton.org/pages/Performance/attachments/smith-normal-form.sml
http://mlton.org/pages/Performance/attachments/tailfib.sml
http://mlton.org/pages/Performance/attachments/tailfib.sml
http://mlton.org/pages/Performance/attachments/tak.sml
http://mlton.org/pages/Performance/attachments/tak.sml
http://mlton.org/pages/Performance/attachments/tensor.sml
http://mlton.org/pages/Performance/attachments/tensor.sml
http://mlton.org/pages/Performance/attachments/tsp.sml
http://mlton.org/pages/Performance/attachments/tsp.sml
http://mlton.org/pages/Performance/attachments/tyan.sml
http://mlton.org/pages/Performance/attachments/tyan.sml
http://mlton.org/pages/Performance/attachments/vector-concat.sml
http://mlton.org/pages/Performance/attachments/vector-concat.sml
http://mlton.org/pages/Performance/attachments/vector-rev.sml
http://mlton.org/pages/Performance/attachments/vector-rev.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/vliw.sml
http://mlton.org/pages/Performance/attachments/wc-input1.sml
http://mlton.org/pages/Performance/attachments/wc-input1.sml
http://mlton.org/pages/Performance/attachments/wc-scanStream.sml
http://mlton.org/pages/Performance/attachments/wc-scanStream.sml
http://mlton.org/pages/Performance/attachments/zebra.sml
http://mlton.org/pages/Performance/attachments/zebra.sml
http://mlton.org/pages/Performance/attachments/zern.sml
http://mlton.org/pages/Performance/attachments/zern.sml

PhantomType
A phantom type is a type that has no run-time representation, but is used to force the type checker to ensure
invariants at compile time. This is done by augmenting a type with additional arguments (phantom type
variables) and expressing constraints by choosing phantom types to stand for the phantom types in the types
of values.

References

Blume01•
dimensions♦
C type system♦

FluetPucella02•
subtyping♦

socket module in Basis Library•

Last edited on 2005-12-02 04:23:48 by StephenWeeks.

MLton Guide (20051202) PhantomType

271

PlatformSpecificNotes
Here are notes about using MLton on the following platforms.

Operating Systems

Cygwin•
Darwin•
FreeBSD•
Linux•
MinGW•
NetBSD•
OpenBSD•
Solaris•

Architectures

PowerPC•
Sparc•

Also see

PortingMLton•

Last edited on 2005-12-01 23:27:45 by StephenWeeks.

MLton Guide (20051202) PlatformSpecificNotes

272

PolyEqual
PolyEqual is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass implements polymorphic equality.

Implementation

poly-equal.sig poly-equal.fun

Details and Notes

For each datatype, tycon, and vector type, it builds and equality function and translates calls to
MLton_equal into calls to that function.

Also generates calls to IntInf_equal and Word_equal.

For tuples, it does the equality test inline; i.e., it does not create a separate equality function for each tuple
type.

All equality functions are created only if necesary, i.e., if equality is actually used at a type.

Optimizations:

for datatypes that are enumerations, do not build a case dispatch, just use MLton_eq, as the backend
will represent these as ints

•

deep equality always does an MLton_eq test first•

Last edited on 2005-12-01 23:28:42 by StephenWeeks.

MLton Guide (20051202) PolyEqual

273

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/poly-equal.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/poly-equal.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/poly-equal.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/poly-equal.fun?view=markup

PolyML
Poly/ML is a Standard ML Compiler.

Last edited on 2004-12-30 20:11:39 by StephenWeeks.

MLton Guide (20051202) PolyML

274

http://www.polyml.org/
http://www.polyml.org/

PolymorphicEquality
Polymorphic equality is a built-in function in Standard ML that compares two values of the same type for
equality. It is specified as

val = : ''a * ''a -> bool

The ''a in the specification are equality type variables, and indicate that polymorphic equality can only be
applied to values of an equality type. It is not allowed in SML to rebind =, so a programmer is guaranteed that
= always denotes polymorphic equality.

Equality of ground types1.
Equality of reals2.
Equality of functions3.
Equality of immutable types4.
Equality of mutable values5.
Equality of datatypes6.
Implementation7.
Also see8.

Equality of ground types

Ground types like char, int, and word may be compared (to values of the same type). For example,
13 = 14 is type correct and yields false.

Equality of reals

The one ground type that can not be compared is real. So, 13.0 = 14.0 is not type correct. One can use
Real.== to compare reals for equality, but beware that this has different algebraic properties than
polymorphic equality.

See http://mlton.org/basis/real.html for a discussion of why real is not an equality type.

Equality of functions

Comparison of functions is not allowed.

Equality of immutable types

Polymorphic equality can be used on immutable values like tuples, records, lists, and vectors. For example,

(1, 2, 3) = (4, 5, 6)

is a type-correct expression yielding false, while

[1, 2, 3] = [1, 2, 3]

is type correct and yields true.

MLton Guide (20051202) PolymorphicEquality

275

http://mlton.org/basis/real.html
http://mlton.org/basis/real.html

Equality on immutable values is computed by structure, which means that values are compared by recursively
descending the data structure until ground types are reached, at which point the ground types are compared
with primitive equality tests (like comparison of characters). So, the expression

[1, 2, 3] = [1, 1 + 1, 1 + 1 + 1]

is guaranteed to yield true, even though the lists may occupy different locations in memory.

Because of structural equality, immutable values can only be compared if their components can be compared.
For example, [1, 2, 3] can be compared, but [1.0, 2.0, 3.0] can not. The SML type system uses
equality types to ensure that structural equality is only applied to valid values.

Equality of mutable values

In contrast to immutable values, polymorphic equality of mutable values (like ref cells and arrays) is
performed by pointer comparison, not by structure. So, the expression

ref 13 = ref 13

is guaranteed to yield false, even though the ref cells hold the same contents.

Because equality of mutable values is not structural, arrays and refs can be compared even if their components
are not equality types. Hence, the following expression is type correct (and yields true).

let
val r = ref 13.0

in
 r = r
end

Equality of datatypes

Polymorphic equality of datatypes is structural. Two values of the same datatype are equal if they are of the
same variant and if the variant's arguments are equal (recursively). So, with the datatype

datatype t = A | B of t

then B (B A) = B A is type correct and yields false, while A = A and B A = B A yield true.

As polymorphic equality descends two values to compare them, it uses pointer equality whenever it reaches a
mutable value. So, with the datatype

datatype t = A of int ref | ...

then A (ref 13) = A (ref 13) is type correct and yields false, because the pointer equality on the
two ref cells yields false.

One weakness of the SML type system is that datatypes do not inherit the special property of the ref and
array type constructors that allows them to be compared regardless of their component type. For example,
after declaring

datatype 'a t = A of 'a ref

MLton Guide (20051202) PolymorphicEquality

276

one might expect to be able to compare two values of type real t, because pointer comparison on a ref cell
would suffice. Unfortunately, the type system can only express that a user-defined datatype admits equality or
not. In this case, t admits equality, which means that int t can be compared but that real t can not. We
can confirm this with the program

datatype 'a t = A of 'a ref
fun f (x: real t, y: real t) = x = y

on which MLton reports the following error.

Error: z.sml 2.34.
 Function applied to incorrect argument.
 expects: [<equality>] * [<equality>]
 but got: [<non-equality>] * [<non-equality>]
 in: = (x, y)

Implementation

Polymorphic equality is implemented by recursively descending the two values being compared, stopping as
soon as they are determined to be unequal, or exploring the entire values to determine that they are equal.
Hence, polymorphic equality can take time proportional to the size of the smaller value.

MLton uses some optimizations to improve performance.

When computing structural equality, first do a pointer comparison. If the comparison yields true,
then stop and return true, since the structural comparison is guaranteed to do so. If the pointer
comparison fails, then recursively descend the values.

•

If a datatype is an enum (e.g. datatype t = A | B | C), then a single comparison suffices to
compare values of the datatype. No case dispatch is required to determine whether the two values are
of the same variant.

•

When comparing a known constant non-value-carrying variant, use a single comparison. For example,
the following code will compile into a single comparison for A = x.

 datatype t = A | B | C of ...
 ... if A = x then ...

•

When comparing a small constant IntInf.int to another IntInf.int, use a single comparison
against the constant. No case dispatch is required.

•

Also see

AdmitsEquality•
EqualityType•
EqualityTypeVariable•

Last edited on 2005-12-01 23:31:02 by StephenWeeks.

MLton Guide (20051202) PolymorphicEquality

277

Polyvariance
Polyvariance is an optimization pass for the SXML IntermediateLanguage, invoked from SXMLSimplify.

Description

This pass duplicates a higher-order, let bound function at each variable reference, if the cost is smaller than
some threshold.

Implementation

polyvariance.sig polyvariance.fun

Details and Notes

Last edited on 2005-12-01 23:31:34 by StephenWeeks.

MLton Guide (20051202) Polyvariance

278

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/polyvariance.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/polyvariance.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/polyvariance.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/polyvariance.fun?view=markup

Poplog
POPLOG is a development environment that includes implementations of a number of languages, including

Standard ML.

While POPLOG is actively developed, the ML support predates SML'97, and there is no support for the
BasisLibrary.

Here is a document on Mixed-language programming in ML and Pop-11.

Last edited on 2005-10-09 23:12:14 by StephenWeeks.

MLton Guide (20051202) Poplog

279

http://www.cs.bham.ac.uk/research/poplog/poplog.info.html
http://www.cs.bham.ac.uk/research/poplog/poplog.info.html
http://www.cs.bham.ac.uk/research/poplog/doc/pmlhelp/mlinpop
http://www.cs.bham.ac.uk/research/poplog/doc/pmlhelp/mlinpop

PortingMLton
Porting MLton to a new target platform (architecture or OS) involves the following steps.

Make the necessary changes to the scripts, runtime system, Basis Library implementation, and
compiler.

1.

Get the regressions working using a cross compiler.2.
Cross compile MLton and bootstrap on the target.3.

MLton has a native code generator only for X86, so, if you are porting to another architecture, you must use
the C code generator. These notes do not cover building a new native code generator.

What code to change

Scripts•
In bin/platform, add a new case to handle the output of uname.♦
In bin/upgrade-basis,♦

add new stubs in structure MLton.Platform.OS.◊
add a new case to set $os.◊
add a new case to set MLton.Platform.Arch.t and all◊

Runtime system

The goal of this step is to be able to successfully run make in the runtime directory on the target
machine.

•

In platform.h, add a new case to include platform/<os>.h♦
In platform/<os>.[ch], implement any platform-dependent functions that the runtime
needs.

♦

In basis/Real/class.c, add the architecture specific code to implement
Real<N>.class (i.e. to determine the class of a floating point number. It would be nice to
implement this code (portably) in the Basis Library implementation some day.

♦

Add rounding mode control to IEEEReal.c for the new arch.♦
Compile and install the GnuMP. This varies from platform to platform. In
platform/<os>.h, you need to include the appropriate gmp.h.

♦

Make sure the definition of ReturnToC in include/x86-main.h is correct.♦
Basis Library implementation (basis-library/*)•

In misc/primitive.sml,♦
If necessary, add a new variant to the MLton.Platform.Arch.t datatype.◊
If necessary, add a new variant to the MLton.Platform.OS.t datatype.◊
modify the constants that define host to match with
MLton_Platform_OS_host, as set in runtime/platform/<os>.h.

◊

In mlton/platform.{sig,sml} add a new variant.♦
Look at all the uses of MLton.Platform in the Basis Library implementation and see if
you need to do anything special. You might use the following command to see where to look.

 find basis-library -type f | xargs grep 'MLton\.Platform'

If in doubt, leave the code alone and wait to see what happens when you run the regression
tests. Here's some that will likely need to be modified.

♦

real/pack-real.sml: definition of isBigEndian◊
Compiler•

MLton Guide (20051202) PortingMLton

280

In lib/mlton-stubs/, update mlton.sml and platform.sig to add any new
variants.

♦

In mlton/main/main.fun, add code to set linkWithGmp.♦

Running the regressions with a cross compiler

When porting to a new platform, it is always best to get all (or as many as possible) of the regressions working
before moving to a self compile. It is easiest to do this by modifying and rebuilding the compiler on a working
machine and then running the regressions with a cross compiler. It is not easy to build a gcc cross compiler, so
we recommend generating the C and assembly on a working machine (using MLton's -target and
-stop g flags, copying the generated files to the target machine, then compiling and linking there.

Remake the compiler on a working machine.1.
Use bin/add-cross to add support for the new target. In particular, this should create
build/lib/<target>/ with the platform-specific necessary cross-compilation information.

2.

Run the regression tests with the cross-compiler. To cross-compile all the tests, do

 bin/regression -cross <target>

This will create all the executables. Then, copy bin/regression and the regression directory
to the target machine, and do

 bin/regression -run-only

This should run all the tests.

3.

Repeat this step, interleaved with appropriate compiler modifications, until all the regressions pass.

Bootstrap

Once you've got all the regressions working, you can build MLton for the new target. As with the regressions,
the idea for bootstrapping is to generate the C and assembly on a working machine, copy it to the target
machine, and then compile and link there. Here's the sequence of steps.

On a working machine, with the newly rebuilt compiler, in the mlton directory, do:

 mlton -stop g -target i386-mingw mlton.cm

1.

Copy to the target machine.2.
On the target machine, move the libraries to the right place. That is, in build/lib, do:

 rm -rf self target-map
 mv i386-mingw self

3.

On the target machine, compile and link MLton. That is, in the mlton directory, do something like:

 gcc -c -Ibuild/lib/include -O1 -w mlton/mlton.*.[cS]
 gcc -o build/lib/mlton-compile \
 -Lbuild/lib/self \
 -L/usr/local/lib \
 mlton.*.o \
 -lmlton -lgmp -lgdtoa -lm

4.

At this point, MLton should be working and you can finish the rest of a usual make on the target
machine.

5.

MLton Guide (20051202) PortingMLton

281

 make script world targetmap tools install

There are other details to get right, like making sure that the tools directories were clean so that the tools are
rebuilt on the new platform, but hopefully this structure works. Once you've got a compiler on the target
machine, you should test it by running all the regressions normally (i.e. without the -cross flag) and by
running a couple rounds of self compiles.

Also see

The above description is based on the following emails sent to the MLton list.

http://mlton.org/pipermail/mlton/2002-October/013110.html•
http://mlton.org/pipermail/mlton/2004-July/016029.html•

Last edited on 2005-12-01 23:34:15 by StephenWeeks.

MLton Guide (20051202) PortingMLton

282

http://mlton.org/pipermail/mlton/2002-October/013110.html
http://mlton.org/pipermail/mlton/2002-October/013110.html
http://mlton.org/pipermail/mlton/2004-July/016029.html
http://mlton.org/pipermail/mlton/2004-July/016029.html

PrecedenceParse
PrecedenceParse is an analysis/rewrite pass for the AST IntermediateLanguage, invoked from Elaborate.

Description

This pass rewrites AST function clauses, expressions, and patterns to resolve OperatorPrecedence.

Implementation

precedence-parse.sig precedence-parse.fun

Details and Notes

Last edited on 2005-12-01 23:34:53 by StephenWeeks.

MLton Guide (20051202) PrecedenceParse

283

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/precedence-parse.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/precedence-parse.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/precedence-parse.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/precedence-parse.fun?view=markup

Printf
Programmers coming from C or Java often ask if Standard ML has a printf function. It does not. However,
it is possible to write your own. In practice, however, it is not so important to do so - it is much more common
to use a style in which you convert values to strings and concatenate to form the final the string, as in

val () = print (concat ["var = ", Int.toString var, "\n"])

Here is the signature for a printf function with user definable formats (defined by newFormat).

signature PRINTF =
sig

type ('a, 'b) t

val ` : string -> ('a, 'a) t
val newFormat: ('a -> string) -> ('a -> 'b, 'c) t * string -> ('b, 'c) t
val printf: (unit, 'a) t -> 'a

end

A structure matching PRINTF could be used as follows.

functor TestPrintf (S: PRINTF) =
struct

open S

(* define some formats (the names are mnemonics of C's %c %d %s %f) *)
fun C z = newFormat Char.toString z
fun D z = newFormat Int.toString z
fun S z = newFormat (fn s => s) z
fun F z = newFormat Real.toString z

infix C F D S

val () = printf (`"here's a string "S" and an int "D".\n") "foo" 13
val () = printf (`"here's a char "C".\n") #"c"
val () = printf (`"here's a real "F".\n") 13.0

end

With no special compiler support, SML's type system ensures that the format characters (C, D, F, S) are
supplied the correct type of argument. Try modifying the above code to see what error you get if you pass the
wrong type.

The real trick is in implementing PRINTF. Here is an implementation based on Functional Unparsing.

structure Printf:> PRINTF =
struct

type out = TextIO.outstream
val output = TextIO.output

type ('a, 'b) t = (out -> 'a) -> (out -> 'b)

fun fprintf (out, f) = f (fn _ => ()) out

fun printf f = fprintf (TextIO.stdOut, f)

fun ` s k = fn out => (output (out, s); k out)

MLton Guide (20051202) Printf

284

fun newFormat f (a, b) k =
 a (fn out => fn s =>
 (output (out, f s)
 ; output (out, b)
 ; k out))

end

To make a complete program and test the above code, we can apply the TestPrintf functor to our
implementation.

structure S = TestPrintf (Printf)

Running the complete code prints out the following.

here's a string foo and an int 13.
here's a char c.
here's a real 13.

Efficiency

printf is rarely a bottleneck in programs. However, you may be curious how the above implementation
performs compared with the string-based C one. Fortunately, MLton's aggressive optimization inlines away
all the wrapper functions, leaving only the coercions interspersed with calls to print. Thus, with MLton, the
processing of the format characters occurs at compile time, which should be even faster than C's approach of
processing the format characters at run time.

For example, MLton expands the above program into something like the following.

(print "here's a string "
 ; print "foo"
 ; print " and an int "
 ; print (Int.toString 13)
 ; print ".\n"
 ; print "here's a char "
 ; print (Char.toString #"c")
 ; print ".\n"
 ; print "here's a real "
 ; print (Real.toString 13.0)
 ; print ".\n")

If you're fluent in MLton's intermediate languages, you can compile the program with
-keep-pass polyvariance and look at the IL to confirm this.

Download

printf.sml•

Also see

PrintfGentle•

Last edited on 2005-01-30 23:56:46 by MatthewFluet.

MLton Guide (20051202) Printf

285

http://mlton.org/pages/Printf/attachments/printf.sml
http://mlton.org/pages/Printf/attachments/printf.sml

PrintfGentle
This page provides a gentle introduction and derivation of Printf, with sections and arrangement more suitable
to a talk.

Introduction

SML does not have printf. Could we define it ourselves?

val () = printf ("here's an int %d and a real %f.\n", 13, 17.0)
val () = printf ("here's three values (%d, %f, %f).\n", 13, 17.0, 19.0)

What could the type of printf be?

This obviously can't work, because SML functions take a fixed number of arguments. Actually they take one
argument, but if that's a tuple, it can only have a fixed number of components.

From tupling to currying

What about currying to get around the typing problem?

val () = printf "here's an int %d and a real %f.\n" 13 17.0
val () = printf "here's three values (%d, %f, %f).\n" 13 17.0 19.0

That fails for a similar reason. We need two types for printf.

val printf: string -> int -> real -> unit
val printf: string -> int -> real -> real -> unit

This can't work, because printf can only have one type. SML doesn't support programmer-defined
overloading.

Overloading and dependent types

Even without worrying about number of arguments, there is another problem. The type of printf depends
on the format string.

val () = printf "here's an int %d and a real %f.\n" 13 17.0
val () = printf "here's a real %f and an int %d.\n" 17.0 13

Now we need

val printf: string -> int -> real -> unit
val printf: string -> real -> int -> unit

Again, this can't possibly working because SML doesn't have overloading, and types can't depend on values.

MLton Guide (20051202) PrintfGentle

286

Idea: express type information in the format string

If we express type information in the format string, then different uses of printf can have different types.

type 'a t (* the type of format strings *)
val printf: 'a t -> 'a
infix D F
val fs1: (int -> real -> unit) t = "here's an int "D" and a real "F".\n"
val fs2: (int -> real -> real -> unit) t =

"here's three values ("D", "F", "F").\n"
val () = printf fs1 13 17.0
val () = printf fs2 13 17.0 19.0

Now, our two calls to printf type check, because the format string specializes printf to the appropriate
type.

The types of format characters

What should the type of format characters D and F be? Each format character requires an additional argument
of the appropriate type to be supplied to printf.

Idea: guess the final type that will be needed for printf the format string and verify it with each format
character.

type ('a, 'b) t (* 'a = rest of type to verify, 'b = final type *)
val ` : string -> ('a, 'a) t (* guess the type, which must be verified *)
val D: (int -> 'a, 'b) t * string -> ('a, 'b) t (* consume an int *)
val F: (real -> 'a, 'b) t * string -> ('a, 'b) t (* consume a real *)
val printf: (unit, 'a) t -> 'a

Don't worry. In the end, type inference will guess and verify for us.

Understanding guess and verify

Now, let's build up a format string and a specialized printf.

infix D F
val f0 = `"here's an int "
val f1 = f0 D " and a real "
val f2 = f1 F ".\n"
val p = printf f2

These definitions yield the following types.

val f0: (int -> real -> unit, int -> real -> unit) t
val f1: (real -> unit, int -> real -> unit) t
val f2: (unit, int -> real -> unit) t
val p: int -> real -> unit

So, p is a specialized printf function. We could use it as follows

val () = p 13 17.0
val () = p 14 19.0

MLton Guide (20051202) PrintfGentle

287

Type checking this using a functor

signature PRINTF =
sig

type ('a, 'b) t
val ` : string -> ('a, 'a) t
val D: (int -> 'a, 'b) t * string -> ('a, 'b) t
val F: (real -> 'a, 'b) t * string -> ('a, 'b) t
val printf: (unit, 'a) t -> 'a

end

functor Test (P: PRINTF) =
struct

open P
infix D F

val () = printf (`"here's an int "D" and a real "F".\n") 13 17.0
val () = printf (`"here's three values ("D", "F ", "F").\n") 13 17.0 19.0

end

Implementing Printf

Think of a format character as a formatter transformer. It takes the formatter for the part of the format string
before it and transforms it into a new formatter that first does the left hand bit, then does its bit, then continues
on with the rest of the format string.

structure Printf: PRINTF =
struct

datatype ('a, 'b) t = T of (unit -> 'a) -> 'b

fun printf (T f) = f (fn () => ())

fun ` s = T (fn a => (print s; a ()))

fun D (T f, s) =
 T (fn g => f (fn () => fn i =>
 (print (Int.toString i); print s; g ())))

fun F (T f, s) =
 T (fn g => f (fn () => fn i =>
 (print (Real.toString i); print s; g ())))

end

Testing printf

structure Z = Test (Printf)

User-definable formats

The definition of the format characters is pretty much the same. Within the Printf structure we can define a
format character generator.

val newFormat: ('a -> string) -> ('a -> 'b, 'c) t * string -> ('b, 'c) t =
fn toString => fn (T f, s) =>

 T (fn th => f (fn () => fn a => (print (toString a); print s ; th ())))

MLton Guide (20051202) PrintfGentle

288

val D = fn z => newFormat Int.toString z
val F = fn z => newFormat Real.toString z

A core Printf

We can now have a very small PRINTF signature, and define all the format strings externally to the core
module.

signature PRINTF =
sig

type ('a, 'b) t
val ` : string -> ('a, 'a) t
val newFormat: ('a -> string) -> ('a -> 'b, 'c) t * string -> ('b, 'c) t
val printf: (unit, 'a) t -> 'a

end

structure Printf: PRINTF =
struct

datatype ('a, 'b) t = T of (unit -> 'a) -> 'b

fun printf (T f) = f (fn () => ())

fun ` s = T (fn a => (print s; a ()))

fun newFormat toString (T f, s) =
 T (fn th =>
 f (fn () => fn a =>
 (print (toString a)
 ; print s
 ; th ())))

end

Extending to fprintf

One can implement fprintf by threading the outstream through all the transformers.

signature PRINTF =
sig

type ('a, 'b) t
val ` : string -> ('a, 'a) t
val fprintf: (unit, 'a) t * TextIO.outstream -> 'a
val newFormat: ('a -> string) -> ('a -> 'b, 'c) t * string -> ('b, 'c) t
val printf: (unit, 'a) t -> 'a

end

structure Printf: PRINTF =
struct

type out = TextIO.outstream
val output = TextIO.output

datatype ('a, 'b) t = T of (out -> 'a) -> out -> 'b

fun fprintf (T f, out) = f (fn _ => ()) out

fun printf t = fprintf (t, TextIO.stdOut)

fun ` s = T (fn a => fn out => (output (out, s); a out))

MLton Guide (20051202) PrintfGentle

289

fun newFormat toString (T f, s) =
 T (fn g =>
 f (fn out => fn a =>
 (output (out, toString a)
 ; output (out, s)
 ; g out)))

end

Notes

Lesson: instead of using dependent types for a function, express the the dependency in the type of the
argument.

•

If printf is partially applied, it will do the printing then and there. Perhaps this could be fixed with
some kind of terminator.

A syntactic or argument terminator is not necessary. A formatter can either be eager (as above) or lazy
(as below). A lazy formatter accumulates enough state to print the entire string. The simplest lazy
formatter concatenates the strings as they become available:

structure PrintfLazyConcat: PRINTF =
struct

datatype ('a, 'b) t = T of (string -> 'a) -> string -> 'b

fun printf (T f) = f print ""

fun ` s = T (fn th => fn s' => th (s' ^ s))

fun newFormat toString (T f, s) =
 T (fn th =>
 f (fn s' => fn a =>
 th (s' ^ toString a ^ s)))

end

It is somewhat more efficient to accumulate the strings as a list:

structure PrintfLazyList: PRINTF =
struct

datatype ('a, 'b) t = T of (string list -> 'a) -> string list -> 'b

fun printf (T f) = f (List.app print o List.rev) []

fun ` s = T (fn th => fn ss => th (s::ss))

fun newFormat toString (T f, s) =
 T (fn th =>
 f (fn ss => fn a =>
 th (s::toString a::ss)))

end

•

Last edited on 2005-07-13 21:21:04 by VesaKarvonen.

MLton Guide (20051202) PrintfGentle

290

ProductType
Standard ML has special syntax for products (tuples). A product type is written as

t1 * t2 * ... * tN

and a product pattern is written as

(p1, p2, ..., pN)

In most situations the syntax is quite convenient. However, there are special circumstances under which the
syntax for product patterns can be cumbersome.

The problem is best shown through parser combinators. A typical parser combinator library provides a
combinator that has a type of the form

'a parser * 'b parser -> ('a * 'b) parser

and produces a parser for the concatenation of two parsers. When more than two parsers are concatenated, the
result of the resulting parser is a nested structure of pairs

(...((p1, p2), p3)..., pN)

which is somewhat cumbersome.

One way around this problem is to use a product datatype

datatype ('a, 'b) product = & of 'a * 'b

with an infix constructor

infix &

The type of the concatenation combinator then becomes

'a parser * 'b parser -> ('a, 'b) product parser

While this doesn't stop the nesting, it makes the pattern significantly easier to write. Instead of

(...((p1, p2), p3)..., pN)

the pattern is written as

p1 & p2 & p3 & ... & pN

which is considerably more concise.

The symbol & is inspired by the Curry-Howard isomorphism: the proof of a conjunction (A & B) is a pair of
proofs (a, b).

Last edited on 2005-12-02 04:23:58 by StephenWeeks.

MLton Guide (20051202) ProductType

291

Profiling
With MLton and mlprof, you can profile your program to find out bytes allocated, execution counts, or time
spent in each function. To profile you program, compile with -profile kind, where kind is one of alloc,
count, or time. Then, run the executable, which will write an mlmon.out file when it finishes. You can
then run mlprof on the executable and the mlmon.out file to see the performance data.

Here are the three kinds of profiling that MLton supports.

ProfilingAllocation•
ProfilingCounts•
ProfilingTime•

Going further

CallGraphs to visualize profiling data.•
ProfilingTheStack•
MLtonProfile to selectively profile parts of your program.•
HowProfilingWorks.•

Last edited on 2004-11-01 18:55:47 by StephenWeeks.

MLton Guide (20051202) Profiling

292

ProfilingAllocation
With MLton and mlprof, you can profile your program to find out how many bytes each function allocates.
To do so, compile your program with -profile alloc. For example, suppose that list-rev.sml is
the following.

fun append (l1, l2) =
case l1 of

 [] => l2
 | x :: l1 => x :: append (l1, l2)

fun rev l =
case l of

 [] => []
 | x :: l => append (rev l, [x])

val l = List.tabulate (1000, fn i => i)
val _ = 1 + hd (rev l)

Compile and run list-rev as follows.

% mlton -profile alloc list-rev.sml
% ./list-rev
% mlprof -show-line true list-rev mlmon.out
6,030,136 bytes allocated (108,336 bytes by GC)
 function cur
----------------------- -----
append list-rev.sml: 1 97.6%
<gc> 1.8%
<main> 0.4%
rev list-rev.sml: 6 0.2%

The data shows that most of the allocation is done by the append function defined on line 1 of
list-rev.sml. The table also shows how special functions like gc and main are handled: they are printed
with surrounding brackets. C functions are displayed similarly. In this example, the allocation done by the
garbage collector is due to stack growth, which is usually the case.

The run-time performance impact of allocation profiling is noticeable, because it inserts additional C calls for
object allocation.

Compile with -profile alloc -profile-branch true to find out how much allocation is done in
each branch of a function; see ProfilingCounts for more details on -profile-branch.

Last edited on 2005-12-02 04:24:10 by StephenWeeks.

MLton Guide (20051202) ProfilingAllocation

293

ProfilingCounts
With MLton and mlprof, you can profile your program to find out how many times each function is called
and how many times each branch is taken. To do so, compile your program with

-profile
count -profile-branch true

. For example, suppose that tak.smlcontains the following.

structure Tak =
struct

fun tak1 (x, y, z) =
let

fun tak2 (x, y, z) =
if y >= x

then z
else

 tak1 (tak2 (x - 1, y, z),
 tak2 (y - 1, z, x),
 tak2 (z - 1, x, y))

in
if y >= x

then z
else

 tak1 (tak2 (x - 1, y, z),
 tak2 (y - 1, z, x),
 tak2 (z - 1, x, y))

end
end

val rec f =
fn 0 => ()

 | ~1 => print "this branch is not taken\n"
 | n => (Tak.tak1 (18, 12, 6) ; f (n-1))

val _ = f 5000

fun uncalled () = ()

Compile with count profiling and run the program.

% mlton -profile count -profile-branch true tak.sml
% ./tak

Display the profiling data, along with raw counts and file positions.

% mlprof -raw true -show-line true tak mlmon.out
623,610,002 ticks
 function cur raw
--------------------------------- ----- -------------
Tak.tak1.tak2 tak.sml: 5 38.2% (238,530,000)
Tak.tak1.tak2.<true> tak.sml: 7 27.5% (171,510,000)
Tak.tak1 tak.sml: 3 10.7% (67,025,000)
Tak.tak1.<true> tak.sml: 14 10.7% (67,025,000)
Tak.tak1.tak2.<false> tak.sml: 9 10.7% (67,020,000)
Tak.tak1.<false> tak.sml: 16 2.0% (12,490,000)

MLton Guide (20051202) ProfilingCounts

294

f tak.sml: 23 0.0% (5,001)
f.<branch> tak.sml: 25 0.0% (5,000)
f.<branch> tak.sml: 23 0.0% (1)
uncalled tak.sml: 29 0.0% (0)
f.<branch> tak.sml: 24 0.0% (0)

Branches are displayed with lexical nesting followed by <branch> where the function name would normally
be, or <true> or <false> for if-expressions. It is best to run mlprof with -show-line true to help
identify the branch.

One use of -profile count is as a code-coverage tool, to help find code in your program that hasn't been
tested. For this reason, mlprof displays functions and branches even if they have a count of zero. As the
above output shows, the branch on line 24 was never taken and the function defined on line 29 was never
called. To see zero counts, it is best to run mlprof with -raw true, since some code (e.g. the branch on
line 23 above) will show up with 0.0% but may still have been executed and hence have a nonzero raw count.

Last edited on 2005-12-02 04:24:22 by StephenWeeks.

MLton Guide (20051202) ProfilingCounts

295

ProfilingTheStack
For all forms of Profiling, you can gather counts for all functions on the stack, not just the currently executing
function. To do so, compile your program with -profile-stack true. For example, suppose that
list-rev.sml contains the following.

fun append (l1, l2) =
case l1 of

 [] => l2
 | x :: l1 => x :: append (l1, l2)

fun rev l =
case l of

 [] => []
 | x :: l => append (rev l, [x])

val l = List.tabulate (1000, fn i => i)
val _ = 1 + hd (rev l)

Compile with stack profiling and then run the program.

% mlton -profile alloc -profile-stack true list-rev.sml
% ./list-rev

Display the profiling data.

% mlprof -show-line true list-rev mlmon.out
6,030,136 bytes allocated (108,336 bytes by GC)
 function cur stack GC
----------------------- ----- ----- ----
append list-rev.sml: 1 97.6% 97.6% 1.4%
<gc> 1.8% 0.0% 1.8%
<main> 0.4% 98.2% 1.8%
rev list-rev.sml: 6 0.2% 97.6% 1.8%

In the above table, we see that rev, defined on line 6 of list-rev.sml, is only responsible for 0.2% of the
allocation, but is on the stack while 97.6% of the allocation is done by the user program and while 1.8% of the
allocation is done by the garbage collector.

The run-time performance impact of -profile-stack true can be noticeable since there is some extra
bookkeeping at every nontail call and return.

Last edited on 2005-12-02 00:47:48 by StephenWeeks.

MLton Guide (20051202) ProfilingTheStack

296

ProfilingTime
With MLton and mlprof, you can profile your program to find out how much time is spent in each function
over an entire run of the program. To do so, compile your program with -profile time. For example,
suppose that tak.sml contains the following.

structure Tak =
struct

fun tak1 (x, y, z) =
let

fun tak2 (x, y, z) =
if y >= x

then z
else

 tak1 (tak2 (x - 1, y, z),
 tak2 (y - 1, z, x),
 tak2 (z - 1, x, y))

in
if y >= x

then z
else

 tak1 (tak2 (x - 1, y, z),
 tak2 (y - 1, z, x),
 tak2 (z - 1, x, y))

end
end

val rec f =
fn 0 => ()

 | ~1 => print "this branch is not taken\n"
 | n => (Tak.tak1 (18, 12, 6) ; f (n-1))

val _ = f 5000

fun uncalled () = ()

Compile with time profiling and run the program.

% mlton -profile time tak.sml
% ./tak

Display the profiling data.

% mlprof tak mlmon.out
6.00 seconds of CPU time (0.00 seconds GC)
function cur
------------- -----
Tak.tak1.tak2 75.8%
Tak.tak1 24.2%

This example shows how mlprof indicates lexical nesting: as a sequence of period-separated names
indicating the structures and functions in which a function definition is nested. The profiling data shows that
roughly three-quarters of the time is spent in the Tak.tak1.tak2 function, while the rest is spent in
Tak.tak1.

Display raw counts in addition to percentages with -raw true.

MLton Guide (20051202) ProfilingTime

297

% mlprof -raw true tak mlmon.out
6.00 seconds of CPU time (0.00 seconds GC)
 function cur raw
------------- ----- -------
Tak.tak1.tak2 75.8% (4.55s)
Tak.tak1 24.2% (1.45s)

Display the file name and line number for each function in addition to its name with -show-line true.

% mlprof -show-line true tak mlmon.out
6.00 seconds of CPU time (0.00 seconds GC)
 function cur
------------------------- -----
Tak.tak1.tak2 tak.sml: 5 75.8%
Tak.tak1 tak.sml: 3 24.2%

Time profiling is designed to have a very small performance impact. However, in some cases there will be a
run-time performance cost, which may perturb the results. There is more likely to be an impact with
-codegen c than -codegen native.

You can also compile with -profile time -profile-branch true to find out how much time is
spent in each branch of a function; see ProfilingCounts for more details on -profile-branch.

Caveats

With -profile time, use of the following in your program will cause a run-time error, since they would
interfere with the profiler signal handler.

MLton.Itimer.set (MLton.Itimer.Prof, ...)•
MLton.Signal.setHandler (MLton.Signal.prof, ...)•

Also, because of the random sampling used to implement -profile time, it is best to have a long running
program (at least tens of seconds) in order to get reasonable time

Last edited on 2005-12-02 00:51:55 by StephenWeeks.

MLton Guide (20051202) ProfilingTime

298

Projects
We have lots of ideas for projects to improve MLton, many of which we do not have time to implement, or at
least haven't started on yet. Here is a list of some of those improvements, ranging from the easy (1 week) to
the difficult (several months). If you have any interest in working on one of these, or some other improvement
to MLton not listed here, please send mail to MLton@mlton.org.

Port to new platform: Windows (native, not Cygwin or MinGW), ...•
Source-level debugger•
Heap profiler•
Interfaces to libraries: OpenGL, ...•
Additional constant types: Real80, ...•
An IDE (possibly integrated with Eclipse)•
Port MLRISC and use for code generation•
Optimizations•

Improved closure representation♦
Right now, MLton's closure conversion algorithm uses a simple flat closure to represent each
function.
Elimination of array bounds checks in loops♦
Elimination of overflow checks on array index computations♦
Common-subexpression elimination of repeated array subscripts♦
Loop-invariant code motion, especially for tuple selects♦
Auto-vectorization, for MMX/SSE/3DNow/AltiVec (see the work done on GCC)♦

Analyses•
Uncaught exception analysis♦

Last edited on 2005-12-02 00:53:29 by StephenWeeks.

MLton Guide (20051202) Projects

299

mailto:MLton@mlton.org
mailto:MLton@mlton.org
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://gcc.gnu.org/projects/tree-ssa/vectorization.html

Pronounce
Here is how "MLton" sounds.

"MLton" is pronounced in two syllables, with stress on the first syllable. The first syllable sounds like the
word mill (as in "steel mill"), the second like the word tin (as in "cookie tin").

Last edited on 2005-12-02 00:54:13 by StephenWeeks.

MLton Guide (20051202) Pronounce

300

http://mlton.org/pages/Pronounce/attachments/pronounce-mlton.mp3
http://mlton.org/pages/Pronounce/attachments/pronounce-mlton.mp3

PropertyList
A property list is a dictionary-like data structure into which properties (name-value pairs) can be inserted and
from which properties can be looked up by name. The term comes from the Lisp language, where every
symbol has a property list for storing information, and where the names are typically symbols and keys can be
any type of value.

Here is an SML signature for property lists such that for any type of value a new property can be dynamically
created to manipulate that type of value in a property list.

signature PROPERTY_LIST =
sig

type t

val new: unit -> t
val newProperty: unit -> {add: t * 'a -> unit,

 peek: t -> 'a option}
end

Here is a functor demonstrating the use of property lists. It first creates a property list, then two new properties
(of different types), and adds a value to the list for each property.

functor Test (P: PROPERTY_LIST) =
struct

val pl = P.new ()

val {add = addInt: P.t * int -> unit, peek = peekInt} = P.newProperty ()
val {add = addReal: P.t * real -> unit, peek = peekReal} = P.newProperty ()

val () = addInt (pl, 13)
val () = addReal (pl, 17.0)
val s1 = Int.toString (valOf (peekInt pl))
val s2 = Real.toString (valOf (peekReal pl))
val () = print (concat [s1, " ", s2, "\n"])

end

Applied to an appropriate implementation PROPERTY_LIST, the Test functor will produce the following
output.

13 17.0

Implementation

Because property lists can hold values of any type, their implementation requires a UniversalType. Given that,
a property list is simply a list of elements of the universal type. Adding a property adds to the front of the list,
and looking up a property scans the list.

functor PropertyList (U: UNIVERSAL_TYPE): PROPERTY_LIST =
struct

datatype t = T of U.t list ref

fun new () = T (ref [])

fun 'a newProperty () =
let

MLton Guide (20051202) PropertyList

301

val (inject, out) = U.embed ()
fun add (T r, a: 'a): unit = r := inject a :: (!r)
fun peek (T r) =

 Option.map (valOf o out) (List.find (isSome o out) (!r))
in

 {add = add, peek = peek}
end

end

If U: UNIVERSAL_TYPE, then we can test our code as follows.

structure Z = Test (PropertyList (U))

Of course, a serious implementation of property lists would have to handle duplicate insertions of the same
property, as well as the removal of elements in order to avoid space leaks.

Also see

MLton relies heavily on property lists for attaching information to syntax tree nodes in its intermediate
languages. See property-list.sig property-list.fun .

MLRISC uses property lists extensively.

Last edited on 2005-08-19 15:30:27 by MatthewFluet.

MLton Guide (20051202) PropertyList

302

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/mlton/basic/property-list.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/mlton/basic/property-list.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/mlton/basic/property-list.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/mlton/basic/property-list.fun?view=markup

RSSA
RSSA is an IntermediateLanguage, translated from SSA2 by ToRSSA, optimized by RSSASimplify, and
translated by ToMachine to Machine.

Description

RSSA is a IntermediateLanguage that makes representation decisions explicit.

Implementation

rssa.sig rssa.fun

Type Checking

The new type language is aimed at expressing bit-level control over layout and associated packing of data
representations. There are singleton types that denote constants, other atomic types for things like integers and
reals, and arbitrary sum types and sequence (tuple) types. The big change to the type system is that type
checking is now based on subtyping, not type equality. So, for example, the singleton type 0xFFFFEEBB
whose only inhabitant is the eponymous constant is a subtype of the type Word32.

Details and Notes

SSA is an abbreviation for Static Single Assignment. The RSSA IntermediateLanguage is a variant of SSA.

Last edited on 2005-12-02 03:28:34 by StephenWeeks.

MLton Guide (20051202) RSSA

303

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/rssa.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/rssa.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/rssa.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/rssa.fun?view=markup

RSSAShrink
RSSAShrink is an optimization pass for the RSSA IntermediateLanguage.

Description

This pass implements a whole family of compile-time reductions, like:

constant folding, copy propagation•
inline the Goto to a block with a unique predecessor•

Implementation

shrink.sig shrink.fun
shrink.sig shrink.fun

Details and Notes

Last edited on 2005-12-02 01:05:57 by StephenWeeks.

MLton Guide (20051202) RSSAShrink

304

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.fun?view=markup

RSSASimplify
The optimization passes for the RSSA IntermediateLanguage are collected and controlled by the Backend
functor (backend.sig , backend.fun).

The following optimization pass is implemented:

RSSAShrink•

The following implementation passes are implemented:

ImplementHandlers•
ImplementProfiling•
InsertLimitChecks•
InsertSignalChecks•

The optimization passes can be controlled from the command-line by the options

-diag-pass <pass> -- keep diagnostic info for pass•
-drop-pass <pass> -- omit optimization pass•
-keep-pass <pass> -- keep the results of pass•

Last edited on 2005-12-02 01:07:42 by StephenWeeks.

MLton Guide (20051202) RSSASimplify

305

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/backend.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/backend.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/backend.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/backend.fun?view=markup

RayRacine
Using SML in some Semantic Web stuff. Anyone interested in similar, please contact me. GreyLensman on
#sml on IRC or rracine at this domain adelphia with a dot here net.

Current areas of coding.

Pretty solid, high performance Rete implementation - base functionality is complete.1.
N3 parser - mostly complete2.
RDF parser based on fxg - not started.3.
Swerve HTTP server - 1/2 done.4.
SPARQL implementation - not started.5.
Persistent engine based on BerkelyDB - not started.6.
Native implementation of Postgresql protocol - underway, ways to go.7.
I also have a small change to the MLton compiler to add PackWord<N> - changes compile but needs
some more work, clean-up and unit tests.

8.

Last edited on 2005-12-02 03:28:00 by StephenWeeks.

MLton Guide (20051202) RayRacine

306

Redundant
Redundant is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

???

Implementation

redundant.sig redundant.fun

Details and Notes

The reason Redundant got put in was due to some output of the ClosureConvert pass converter where the
environment record, or components of it, were passed around in several places. That may have been more
relevant with polyvariant analyses (which are long gone). But it still seems possibly relevant, especially with
more aggressive flattening, which should reveal some fields in nested closure records that are redundant.

Last edited on 2005-12-02 00:58:46 by StephenWeeks.

MLton Guide (20051202) Redundant

307

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/redundant.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/redundant.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/redundant.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/redundant.fun?view=markup

RedundantTests
RedundantTests is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass simplifies conditionals whose results are implied by a previous conditional test.

Implementation

redundant-tests.sig redundant-tests.fun

Details and Notes

An additional test will sometimes eliminate the overflow test when adding or subtracting 1. In particular, it
will eliminate it in the following cases:

if x < y
 then ... x + 1 ...
else ... y - 1 ...

Last edited on 2005-12-02 00:59:16 by StephenWeeks.

MLton Guide (20051202) RedundantTests

308

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/redundant-tests.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/redundant-tests.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/redundant-tests.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/redundant-tests.fun?view=markup

RefFlatten
Refflatten is an optimization pass for the SSA2 IntermediateLanguage, invoked from SSA2Simplify.

Description

This pass flattens a ref cell into its containing object. The idea is to replace, where possible, a type like

 (int ref * real)

with a type like

 (int[m] * real)

where the [m] indicates a mutable field of a tuple.

Implementation

ref-flatten.sig ref-flatten.fun

Details and Notes

The savings is obvious, I hope. We avoid an extra heap-allocated object for the ref, which in the above case
saves two words. We also save the time and code for the extra indirection at each get and set. There are lots of
useful data structures (singly-linked and doubly-linked lists, union-find, fibonacci heaps, ...) that I believe we
are paying through the nose right now because of the absence of ref flattening.

The idea is to compute for each occurrence of a ref type in the program whether or not that ref can be
represented as an offset of some object (constructor or tuple). As before, a unification-based whole-program
with deep abstract values makes sure the analysis is consistent.

The only syntactic part of the analysis that remains is the part that checks that for a variable bound to a value
constructed by Ref_ref:

the object allocation is in the same block. This is pretty draconian, and it would be nice to generalize
it some day to allow flattening as long as the ref allocation and object allocation "line up
one-to-one" in the same loop-free chunk of code.

•

updates occur in the same block (and hence it is safe-for-space because the containing object is still
alive). It would be nice to relax this to allow updates as long as it can be proved that the container is
live.

•

Prevent flattening of unit refs.

RefFlatten is safe for space. The idea is to prevent a ref being flattened into an object that has a component
of unbounded size (other than possibly the ref itself) unless we can prove that at each point the ref is live,
then the containing object is live too. I used a pretty simple approximation to liveness.

Last edited on 2005-12-02 01:01:34 by StephenWeeks.

MLton Guide (20051202) RefFlatten

309

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ref-flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ref-flatten.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ref-flatten.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ref-flatten.fun?view=markup

References
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Compiling with Continuations (addall). ISBN 0521416957. Andrew W. Appel. Cambridge
University Press, 1992.

•

Shrinking Lambda Expressions in Linear Time. Andrew Appel and Trevor Jim. JFP, 7(5):515-540,
1997.

•

Modern Compiler Implementation in ML (addall). ISBN 0521582741 Andrew W. Appel.
Cambridge University Press, 1998.

•

Tree Pattern Matching for ML. Marianne Baudinet, David MacQueen. 1985.•
Describes the match compiler used in an early version of SML/NJ.
Compiling Standard ML to Java Bytecodes. Nick Benton, Andrew Kennedy, and George Russell.

ICFP 1998.
•

Interlanguage Working Without Tears: Blending SML with Java. Nick Benton and Andrew
Kennedy. ICFP 1999.

•

Exceptional Syntax. Nick Benton and Andrew Kennedy. JFP, 11(4):395-410, 2001.•
Embedded Interpreters. Nick Benton. JFP, 2005.•
Adventures in Interoperability: The SML.NET Experience. Nick Benton, Andrew Kennedy, and

Claudio Russo. PPDP 2004.
•

OO Programming styles in ML. Bernard Berthomieu. LAAS Report #2000111, 2000.•
No-Longer-Foreign: Teaching an ML compiler to speak C "natively". Matthias Blume. BABEL

2001.
•

Destructors, Finalizers, and Synchronization. Hans Boehm. POPL 2003.•

Discusses a number of issues in the design of finalizers. Many of the design choices are consistent with
MLtonFinalizable.

Flow-directed Closure Conversion for Typed Languages. Henry Cejtin, Suresh Jagannathan, and
Stephen Weeks. ESOP 2000.

•

Describes MLton's closure-conversion algorithm, which translates from its simply-typed higher-order
intermediate language to its simply-typed first-order intermediate language.

Functional Unparsing. Olivier Danvy. BRICS Technical Report RS 98-12, 1998.•
Extensional Polymorphism. Catherin Dubois, Francois Rouaix, and Pierre Weis. POPL 1995.•

An extension of ML that allows the definition of ad-hoc polymorphic functions by inspecting the type of their
argument.

Garbage Collection Safety for Region-based Memory Management. Martin Elsman. TLDI 2003.•
Type-Specialized Serialization with Sharing Martin Elsman. University of Copenhagen. IT

University Technical Report TR-2004-43, 2004.
•

The Little MLer (addall). ISBN 026256114X. Matthias Felleisen and Dan Freidman. The MIT
Press, 1998.

•

Kill-Safe Synchronization Abstractions. Matthew Flatt and Robert Bruce Findler. PLDI 2004.•
Contification Using Dominators. Matthew Fluet and Stephen Weeks. ICFP 2001.•

MLton Guide (20051202) References

310

http://us.cambridge.org/titles/catalogue.asp?isbn=0521416957
http://us.cambridge.org/titles/catalogue.asp?isbn=0521416957
http://www.addall.com/New/submitNew.cgi?query=0-521-41695-7&type=ISBN&location=10000&state=&dispCurr=USD
http://www.addall.com/New/submitNew.cgi?query=0-521-41695-7&type=ISBN&location=10000&state=&dispCurr=USD
http://us.cambridge.org/titles/catalogue.asp?isbn=0521582741
http://us.cambridge.org/titles/catalogue.asp?isbn=0521582741
http://www.addall.com/New/submitNew.cgi?query=0-521-58274-1&type=ISBN&location=10000&state=&dispCurr=USD
http://www.addall.com/New/submitNew.cgi?query=0-521-58274-1&type=ISBN&location=10000&state=&dispCurr=USD
http://citeseer.ist.psu.edu/baudinet85tree.html
http://citeseer.ist.psu.edu/baudinet85tree.html
http://citeseer.ist.psu.edu/benton98compiling.html
http://citeseer.ist.psu.edu/benton98compiling.html
http://citeseer.ist.psu.edu/benton99interlanguage.html
http://citeseer.ist.psu.edu/benton99interlanguage.html
http://citeseer.ist.psu.edu/388363.html
http://citeseer.ist.psu.edu/388363.html
http://research.microsoft.com/~nick/benton03.pdf
http://research.microsoft.com/~nick/benton03.pdf
http://www.research.microsoft.com/~nick/p53-Benton.pdf
http://www.research.microsoft.com/~nick/p53-Benton.pdf
http://www.laas.fr/~bernard/oo/ooml.html
http://www.laas.fr/~bernard/oo/ooml.html
http://citeseer.ist.psu.edu/blume01nolongerforeign.html
http://citeseer.ist.psu.edu/blume01nolongerforeign.html
http://citeseer.ist.psu.edu/640926.html
http://citeseer.ist.psu.edu/640926.html
http://mlton.org/pages/References/attachments/CejtinEtAl00.ps.gz
http://mlton.org/pages/References/attachments/CejtinEtAl00.ps.gz
http://citeseer.ist.psu.edu/danvy98functional.html
http://citeseer.ist.psu.edu/danvy98functional.html
ftp://ftp.inria.fr/INRIA/Projects/cristal/Francois.Rouaix/generics.dvi.Z
ftp://ftp.inria.fr/INRIA/Projects/cristal/Francois.Rouaix/generics.dvi.Z
http://www.it-c.dk/research/mlkit/papers.html
http://www.it-c.dk/research/mlkit/papers.html
http://www.itu.dk/people/mael/papers.html
http://www.itu.dk/people/mael/papers.html
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=4787
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=4787
http://www3.addall.com/New/submitNew.cgi?query=026256114X&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=026256114X&type=ISBN
http://www.cs.utah.edu/plt/kill-safe/
http://www.cs.utah.edu/plt/kill-safe/
http://mlton.org/pages/References/attachments/FluetWeeks01.ps.gz
http://mlton.org/pages/References/attachments/FluetWeeks01.ps.gz

Describes contification, a generalization of tail-recursion elimination that is an optimization
operating on MLton's static single assignment (SSA) intermediate language.
Phantom Types and Subtyping. Matthew Fluet and Riccardo Pucella. TCS 2002.•
Generic Polymorphism in ML. J. Furuse. JFLA 2001.•

The formalism behind G'CAML, which has an approach to ad-hoc polymorphism based on Dubois94, the
differences being in how type checking works an an improved compilation approach for typecase that does
the matching at compile time, not run time.

The Standard ML Basis Library. (addall) ISBN 0521794781. Emden R. Gansner and John H.
Reppy. Cambridge University Press, 2004.

•

An introduction and overview of the Basis Library, followed by a detailed description of each module.
The module descriptions are also available online.
Region-based Memory Management in Cyclone. Dan Grossman, Greg Morrisett, Trevor Jim,

Michael Hicks, Yanling Wang, and James Cheney. PLDI 2002.
•

Combining Region Inference and Garbage Collection. Niels Hallenberg, Martin Elsman, and Mads
Tofte. PLDI 2002.

•

Introduction to Programming using SML (addall). ISBN 0201398206. Michael R. Hansen, Hans
Rischel. Addison-Wesley, 1999.

•

Safe and Flexible Memory Management in Cyclone. Mike Hicks, Greg Morrisett, Dan Grossman,
and Trevor Jim. University of Maryland Technical Report CS-TR-4514, 2003.

•

Garbage Collection: Algorithms for Automatic Memory Management (addall). ISBN
0471941484. Richard Jones. John Wiley & Sons, 1999.

•

Mistakes and ambiguities in the definition of Standard ML. Stefan Kahrs. University of Edinburgh
LFCS Report ECS-LFCS-93-257, 1993.

There are also the addenda published in 1996.

•

Describes a number of problems with the 1990 Definition, many of which were fixed in the 1997
Definition.
Pickler Combinators. Andrew Kennedy. JFP, 14(6): 727-739, 2004.•

Faster Algorithms for Finding Minimal Consistent DFAs. Kevin Lang. 1999.•
mGTK: An SML binding of Gtk+. Ken Larsen and Henning Niss. USENIX Annual Technical

Conference, 2004.
•

The ZINC experiment: an economical implementation of the ML language. Xavier Leroy.
Technical report 117, INRIA, 1990.

•

A detailed explanation of the design and implementation of a bytecode compiler and interpreter for
ML with a machine model aimed at efficient implementation.
Polymorphism by name for references and continuations. Xavier Leroy. POPL 1993.•
MLRISC Annotations. Allen Leung and Lal George. 1998.•

Asynchronous exceptions in Haskell. Simon Marlow, Simon Peyton Jones, Andy Moran and John
Reppy. PLDI 2001.

•

An asynchronous exception is a signal that one thread can send to another, and is useful for the
receiving thread to treat as an exception so that it can clean up locks or other state relevant to its
current context.
There are a couple of earlier versions of this paper floating around, from August and November 2000.
Make sure and get the official version from May 2001 (linked above).

MLton Guide (20051202) References

311

http://arxiv.org/abs/cs.PL/0403034
http://arxiv.org/abs/cs.PL/0403034
http://pauillac.inria.fr/~furuse/publications/jfla2001.ps.gz
http://pauillac.inria.fr/~furuse/publications/jfla2001.ps.gz
http://titles.cambridge.org/catalogue.asp?isbn=0521794781
http://titles.cambridge.org/catalogue.asp?isbn=0521794781
http://www3.addall.com/New/submitNew.cgi?query=0521794781&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0521794781&type=ISBN
http://mlton.org/basis/
http://mlton.org/basis/
http://www.eecs.harvard.edu/~greg/cyclone/
http://www.eecs.harvard.edu/~greg/cyclone/
http://www.it-c.dk/research/mlkit/papers.html
http://www.it-c.dk/research/mlkit/papers.html
http://www.it.dtu.dk/introSML
http://www.it.dtu.dk/introSML
http://www3.addall.com/New/submitNew.cgi?query=0201398206&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0201398206&type=ISBN
http://www.eecs.harvard.edu/~greg/cyclone/
http://www.eecs.harvard.edu/~greg/cyclone/
http://www.cs.kent.ac.uk/people/staff/rej/gcbook/gcbook.html
http://www.cs.kent.ac.uk/people/staff/rej/gcbook/gcbook.html
http://www3.addall.com/New/submitNew.cgi?query=0471941484&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0471941484&type=ISBN
http://www.cs.kent.ac.uk/pubs/1993/569/index.html
http://www.cs.kent.ac.uk/pubs/1993/569/index.html
http://www.cs.kent.ac.uk/~smk/errors-new.ps.Z
http://www.cs.kent.ac.uk/~smk/errors-new.ps.Z
http://research.microsoft.com/~akenn/fun/picklercombinators.pdf
http://research.microsoft.com/~akenn/fun/picklercombinators.pdf
http://citeseer.nj.nec.com/lang99faster.html
http://citeseer.nj.nec.com/lang99faster.html
http://www.it-c.dk/~hniss/publications/freenix2004.pdf
http://www.it-c.dk/~hniss/publications/freenix2004.pdf
http://citeseer.ist.psu.edu/leroy90zinc.html
http://citeseer.ist.psu.edu/leroy90zinc.html
http://pauillac.inria.fr/~xleroy/leroy.html
http://pauillac.inria.fr/~xleroy/leroy.html
http://citeseer.ist.psu.edu/637416.html
http://citeseer.ist.psu.edu/637416.html
http://www.haskell.org/~simonmar/papers/async.ps.gz
http://www.haskell.org/~simonmar/papers/async.ps.gz

A Just-In-Time backend for Moscow ML 2.00 in SML. Bjarke Meier, Kristian NÃ¸rgaard. Masters
Thesis, 2003.

•

A just-in-time compiler using GNU Lightning, showing a speedup of up to four times over Moscow
ML's usual bytecode interpreter.
The full report is only available in Danish.
How ML Evolved. Robin Milner. Polymorphism--The ML/LCF/Hope Newsletter, 1983.•
Commentary on Standard ML (online pdf). (addall) ISBN 0262631327. Robin Milner and

Mads Tofte. The MIT Press, 1990.
•

Introduces and explains the notation and approach used in The Definition of Standard ML.
The Definition of Standard ML. (addall) ISBN 0262631326. Robin Milner, Mads Tofte, and

Robert Harper. The MIT Press, 1990.
•

Superseded by The Definition of Standard ML (Revised). Accompanied by the Commentary on
Standard ML.
The Definition of Standard ML (Revised). (addall) ISBN 0262631814. Robin Milner, Mads

Tofte, Robert Harper, and David MacQueen. The MIT Press, 1997.
•

A terse and formal specification of Standard ML's syntax and semantics. Supersedes an older version.
Automatic Code Generation from Coloured Petri Nets for an Access Control System. Kjeld H.

Mortensen. Workshop on Practical Use of Coloured Petri Nets and Design/CPN, 1999.
•

fxp - Processing Structured Documents in SML. Andreas Neumann. Scottish Functional
Programming Workshop, 1999.

•

Describes fxp, an XML parser implemented in Standard ML.
Parsing and Querying XML Documents in SML. Andreas Neumann. Doctoral Thesis, 1999.•

Purely Functional Data Structures. ISBN 0521663504. Chris Okasaki. Cambridge University Press,
1999.

•

ML For the Working Programmer (addall) ISBN 052156543X. Larry C. Paulson. Cambridge
University Press, 1996.

•

The HiPE/x86 Erlang Compiler: System Description and Performance Evaluation. Mikael
Pettersson, Konstantinos Sagonas, and Erik Johansson. FLOPS 2002.

•

Describes a native x86 Erlang compiler and a comparison of many different native x86 compilers (including
MLton) and their register usage and call stack implementations.

Embedding an Interpreted Language Using Higher-Order Functions and Types. Norman Ramsey.
IVME 2003.

•

Widening Integer Arithmetic. Kevin Redwine and Norman Ramsey. CC 2004.•
Describes a method to implement numeric types and operations (like Int31 or Word17) for sizes
smaller than that provided by the processor.
Concurrent Programming in ML (addall). ISBN 0521480892. John Reppy. Cambridge University

Press, 1999.
•

Covers ConcurrentML.
Defects in the Revised Definition of Standard ML. Andreas Rossberg. 2001.•

Dual-Mode Garbage Collection. Patrick M. Sansom. Workshop on the Parallel Implementation of
Functional Languages, 1991.

•

When Do Match-Compilation Heuristics Matter. Kevin Scott and Norman Ramsey. University of
Virginia Technical Report CS-2000-13.

•

Modified SML/NJ to experimentally compare a number of match-compilation heuristics and showed
that choice of heuristic usually does not significantly affect code size or run time.

MLton Guide (20051202) References

312

http://www.itu.dk/stud/speciale/bmkn/
http://www.itu.dk/stud/speciale/bmkn/
http://www.dcs.ed.ac.uk/home/stg/tutorial/papers/evolved.pdf
http://www.dcs.ed.ac.uk/home/stg/tutorial/papers/evolved.pdf
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8988
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=8988
http://www.itu.dk/people/tofte/publ/1991commentaryBody.pdf
http://www.itu.dk/people/tofte/publ/1991commentaryBody.pdf
http://www3.addall.com/New/submitNew.cgi?query=0262631327&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0262631327&type=ISBN
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7945
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=7945
http://www3.addall.com/New/submitNew.cgi?query=0262631326&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0262631326&type=ISBN
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3874
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3874
http://www3.addall.com/New/submitNew.cgi?query=0262631814&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0262631814&type=ISBN
http://www.daimi.au.dk/CPnets/workshop99/papers/Mortensen.ps.gz
http://www.daimi.au.dk/CPnets/workshop99/papers/Mortensen.ps.gz
http://citeseer.ist.psu.edu/412760.html
http://citeseer.ist.psu.edu/412760.html
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxp/
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxp/
http://citeseer.ist.psu.edu/neumann99parsing.html
http://citeseer.ist.psu.edu/neumann99parsing.html
http://us.cambridge.org/titles/catalogue.asp?isbn=0521663504
http://us.cambridge.org/titles/catalogue.asp?isbn=0521663504
http://www.cl.cam.ac.uk/users/lcp/MLbook/
http://www.cl.cam.ac.uk/users/lcp/MLbook/
http://www3.addall.com/New/submitNew.cgi?query=052156543X&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=052156543X&type=ISBN
http://user.it.uu.se/~happi/publications/flops02.pdf
http://user.it.uu.se/~happi/publications/flops02.pdf
http://www.eecs.harvard.edu/~nr/pubs/embed-abstract.html
http://www.eecs.harvard.edu/~nr/pubs/embed-abstract.html
http://citeseer.ist.psu.edu/670348.html
http://citeseer.ist.psu.edu/670348.html
http://us.cambridge.org/titles/catalogue.asp?isbn=0521480892
http://us.cambridge.org/titles/catalogue.asp?isbn=0521480892
http://www3.addall.com/New/submitNew.cgi?query=0521480892&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0521480892&type=ISBN
http://www.ps.uni-sb.de/hamlet/defects.pdf
http://www.ps.uni-sb.de/hamlet/defects.pdf
http://citeseer.ist.psu.edu/sansom91dualmode.html
http://citeseer.ist.psu.edu/sansom91dualmode.html
http://citeseer.ist.psu.edu/scott00when.html
http://citeseer.ist.psu.edu/scott00when.html

ML pattern match compilation and partial evaluation. Peter Sestoft. Partial Evaluation, 1996.•
Describes the derivation of the match compiler used in Moscow ML.
Anthony L. Shipman. Unix System Programming with Standard ML, 2002.•
Calcul statique des applications de modules parametres. Julien Signoles. JFLA 2003.•

Describes a defunctorizer for OCaml, and compares it to existing defunctorizers, including MLton.

Object-oriented programming and Standard ML. Lars Thorup and Mads Tofte. Workshop on ML
and its applications, 1994.

•

Type Inference for Polymorphic References. Mads Tofte. Information and Computation,
89(1_References), 1990.

•

Elements of ML Programming (addall). ISBN 0137903871. Jeffrey D. Ullman. Prentice-Hall,
1998.

•

Managing Memory with Types. Daniel C. Wang. PhD Thesis.•
Chapter 6 describes an implementation of a type-preserving garbage collector for MLton.
Type-Preserving Garbage Collectors. Daniel C. Wang and Andrew W. Appel. POPL 2001.•

Shows how to modify MLton to generate a strongly typed garbage collector as part of a program.
Programming With Recursion Schemes. Daniel C. Wang and Tom Murphy VII.•

Describes a programming technique for data abstraction, along with benchmarks of MLton and other
SML compilers.
Recursion Schemes as Abstract Interfaces. Daniel C. Wang and Tom Murphy. JFP.•
Simple Imperative Polymorphism. Andrew Wright. LASC, 8(4):343-355, 1995.•

The origin of the ValueRestriction.

Abbreviations

BABEL = Workshop on multi-language infrastructure and interoperability.•
CC = International Conference on Compiler Construction•
ESOP = European Symposium on Programming•
FLOPS = Symposium on Functional and Logic Programming•
ICFP = International Conference on Functional Programming•
IVME = Workshop on Interpreters, Virtual Machines and Emulators.•
JFLA = Journees Francophones des Langages Applicatifs•
JFP = Journal of Functional Programming•
LASC = Lisp and Symbolic Computation•
PLDI = Conference on Programming Language Design and Implementation•
POPL = Symposium on Principles of Programming Languages•
PPDP = International Conference on Principles and Practice of Declarative Programming•
TCS = IFIP International Conference on Theoretical Computer Science•
TLDI = Workshop on Types in Language Design and Implementation•

Last edited on 2005-12-02 03:28:18 by StephenWeeks.

MLton Guide (20051202) References

313

http://citeseer.ist.psu.edu/sestoft96ml.html
http://citeseer.ist.psu.edu/sestoft96ml.html
http://web.access.net.au/felixadv/files/output/book/index.html
http://web.access.net.au/felixadv/files/output/book/index.html
http://www.lri.fr/~signoles/publis/jfla2003.ps.gz
http://www.lri.fr/~signoles/publis/jfla2003.ps.gz
http://www.diku.dk/users/tofte/publ/MLWorkshop94.ps.gz
http://www.diku.dk/users/tofte/publ/MLWorkshop94.ps.gz
http://www-db.stanford.edu/~ullman/emlp.html
http://www-db.stanford.edu/~ullman/emlp.html
http://www3.addall.com/New/submitNew.cgi?query=0137903871&type=ISBN
http://www3.addall.com/New/submitNew.cgi?query=0137903871&type=ISBN
http://ncstrl.cs.princeton.edu/expand.php?id=TR-640-01
http://ncstrl.cs.princeton.edu/expand.php?id=TR-640-01
http://www.cs.princeton.edu/~danwang/Papers/tpsrvgc/
http://www.cs.princeton.edu/~danwang/Papers/tpsrvgc/
http://www-2.cs.cmu.edu/~tom7/papers/wang-murphy-recursion.pdf
http://www-2.cs.cmu.edu/~tom7/papers/wang-murphy-recursion.pdf
http://www.cs.princeton.edu/~danwang/drafts/recursion-schemes.pdf
http://www.cs.princeton.edu/~danwang/drafts/recursion-schemes.pdf
http://citeseer.ist.psu.edu/wright95simple.html
http://citeseer.ist.psu.edu/wright95simple.html

Regions
In region-based memory management, the heap is divided into a collection of regions into which objects are
allocated. At compile time, either in the source program or through automatic inference, allocation points are
annotated with the region in which the allocation will occur. Typically, although not always, the regions are
allocated and deallocated according to a stack discipline.

MLton does not use region-based memory management; it uses traditional GarbageCollection. We have
considered integrating regions with MLton, but in our opinion it is far from clear that regions would provide
MLton with improved performance, while they would certainly add a lot of complexity to the compiler and
complicate reasoning about and achieving SpaceSafety. Region-based memory management and garbage
collection have different strengths and weaknesses; it's pretty easy to come up with programs that do
significantly better under regions than under GC, and vice versa. We believe that it is the case that common
SML idioms tend to work better under GC than under regions.

One common argument for regions is that the region operations can all be done in (approximately) constant
time; therefore, you eliminate GC pause times, leading to a real-time GC. However, because of space safety
concerns (see below), we believe that region-based memory management for SML must also include a
traditional garbage collector. Hence, to achieve real-time memory management for MLton/SML, we believe
that it would be both easier and more efficient to implement a traditional real-time garbage collector than it
would be to implement a region system.

Regions, the ML Kit, and space safety

The ML Kit pioneered the use of regions for compiling Standard ML. The ML Kit maintains a stack of
regions at run time. At compile time, it uses region inference to decide when data can be allocated in a
stack-like manner, assigning it to an appropriate region. The ML Kit has put a lot of effort into improving the
supporting analyses and representations of regions, which are all necessary to improve the performance.

Unfortunately, under a pure stack-based region system, space leaks are inevitable in theory, and costly in
practice. Data for which region inference can not determine the lifetime is moved into the global region
whose lifetime is the entire program. There are two ways in which region inference will place an object to the
global region.

When the inference is too conservative, that is, when the data is used in a stack-like manner but the
region inference can't figure it out.

•

When data is not used in a stack-like manner. In this case, correctness requires region inference to
place the object

•

This global region is a source of space leaks. No matter what region system you use, there are some programs
such that the global region must exist, and its size will grow to an unbounded multiple of the live data size.
For these programs one must have a GC to achieve space safety.

To solve this problem, the ML Kit has undergone work to combine garbage collection with region-based
memory management. HallenbergEtAl02 and Elsman03 describe the addition of a garbage collector to the ML
Kit's region-based system. These papers provide convincing evidence for space leaks in the global region.
They show a number of benchmarks where the memory usage of the program running with just regions is a
large multiple (2, 10, 50, even 150) of the program running with regions plus GC.

MLton Guide (20051202) Regions

314

These papers also give some numbers to show the ML Kit with just regions does better than either a system
with just GC or a combined system. Unfortunately, a pure region system isn't practical because of the lack of
space safety. And the other performance numbers are not so convincing, because they compare to an old
version of SML/NJ and not at all with MLton. It would be interesting to see a comparison with a more serious
collector.

Regions, Garbage Collection, and Cyclone

One possibility is to take Cyclone's approach, and provide both region-based memory management and
garbage collection, but at the programmer's option (GrossmanEtAl02, HicksEtAl03).

One might ask whether we might do the same thing -- i.e., provide a MLton.Regions structure with
explicit region based memory management operations, so that the programmer could use them when
appropriate. MatthewFluet has thought about this question

http://www.cs.cornell.edu/People/fluet/rgn-monad/index.html

Unfortunately, his conclusion is that the SML type system is too weak to support this option, although there
might be a "poor-man's" version with dynamic checks.

Last edited on 2005-09-06 23:20:00 by MatthewFluet.

MLton Guide (20051202) Regions

315

http://www.cs.cornell.edu/People/fluet/rgn-monad/index.html
http://www.cs.cornell.edu/People/fluet/rgn-monad/index.html

ReleaseChecklist
Wiki•

check OrphanedPages and WantedPages.♦
spell check.♦

Update doc/changelog with a summary.•
mlton.org•

basis gets a snapshot of http://standardml.org/Basis.♦
changelog gets a copy of doc/changelog.♦
Home gets note of new release.♦
Download gets release notes and executables.♦

Experimental is cleared.♦
Send mail to•

MLton@mlton.org♦
MLton-user@mlton.org♦
sml-list@cs.cmu.edu (aka news:comp.lang.ml)♦
lwn@lwn.net (linux weekly news)♦

Post to•
news:comp.lang.functional♦

Update OtherSites that have MLton pages.•
dupload Debian package.•
Generate new Performance numbers.•

Last edited on 2005-12-02 04:24:34 by StephenWeeks.

MLton Guide (20051202) ReleaseChecklist

316

http://standardml.org/Basis
http://standardml.org/Basis
http://mlton.org/Download
http://mlton.org/Download
mailto:MLton@mlton.org
mailto:MLton@mlton.org
mailto:MLton-user@mlton.org
mailto:MLton-user@mlton.org
mailto:sml-list@cs.cmu.edu
mailto:sml-list@cs.cmu.edu
mailto:lwn@lwn.net
mailto:lwn@lwn.net

RemoveUnused
RemoveUnused is an optimization pass for both the SSA and SSA2 IntermediateLanguages, invoked from
SSASimplify and SSA2Simplify.

Description

This pass aggressively removes unused:

datatypes•
datatype constructors•
datatype constructor arguments•
functions•
function arguments•
function returns•
blocks•
block arguments•
statements (variable bindings)•
handlers from non-tail calls (mayRaise analysis)•
continuations from non-tail calls (mayReturn analysis)•

Implementation

remove-unused.sig remove-unused.fun remove-unused2.sig remove-unused2.fun

Details and Notes

Last edited on 2005-12-02 01:03:46 by StephenWeeks.

MLton Guide (20051202) RemoveUnused

317

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/remove-unused.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/remove-unused.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/remove-unused.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/remove-unused.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/remove-unused2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/remove-unused2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/remove-unused2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/remove-unused2.fun?view=markup

Restore
Restore is a rewrite pass for the SSA and SSA2 IntermediateLanguages, invoked from KnownCase and
LocalRef.

Description

This pass restores the SSA condition for a violating SSA or SSA2 program; the program must satisfy:

Every path from the root to a use of a variable (excluding globals) passes through a def of that variable.

Implementation

restore.sig restore.fun
restore2.sig restore2.fun

Details and Notes

Based primarily on Section 19.1 of Modern Compiler Implementation in ML.

The main deviation is the calculation of liveness of the violating variables, which is used to predicate the
insertion of phi arguments. This is due to the algorithm's bias towards imperative languages, for which it
makes the assumption that all variables are defined in the start block and all variables are "used" at exit.

This is "optimized" for restoration of functions with small numbers of violating variables -- use bool vectors
to represent sets of violating variables.

Also, we use a Promise.t to suspend part of the dominance frontier computation.

Last edited on 2005-12-02 03:19:52 by StephenWeeks.

MLton Guide (20051202) Restore

318

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/restore.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/restore.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/restore.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/restore.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/restore2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/restore2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/restore2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/restore2.fun?view=markup

RunTimeOptions
Executables produced by MLton take command line arguments that control the runtime system. These
arguments are optional, and occur before the executable's usual arguments. To use these options, the first
argument to the executable must be @MLton. The optional arguments then follow, must be terminated by --,
and are followed by any arguments to the program. The optional arguments are not made available to the
SML program via CommandLine.arguments. For example, a valid call to hello-world is:

hello-world @MLton gc-summary fixed-heap 10k -- a b c

In the above example, CommandLine.arguments () = ["a", "b", "c"].

It is allowed to have a sequence of @MLton arguments, as in:

hello-world @MLton gc-summary -- @MLton fixed-heap 10k -- a b c

Run-time options can also control MLton, as in

mlton @MLton fixed-heap 0.5g -- foo.sml

Options

fixed-heap x{k|K|m|M|g|G} •
Use a fixed size heap of size x, where x is a real number and the trailing letter indicates its
units.
k or K 1024
m or M 1,048,576
g or G 1,073,741,824
A value of 0 means to use almost all the RAM present on the machine.

The heap size used by fixed-heap includes all memory allocated by SML code, including
memory for the stack (or stacks, if there are multiple threads). It does not, however, include
any memory used for code itself or memory used by C globals, the C stack, or malloc.

gc-messages•
Print a message at the start and end of every garbage collection.
gc-summary•
Print a summary of garbage collection statistics upon program termination.
load-world world•
Restart the computation with the file specified by world, which must have been created by a call to
MLton.World.save by the same executable. See MLtonWorld.
max-heap x{k|K|m|M|g|G} •
Run the computation with an automatically resized heap that is never larger than x, where x is a real
number and the trailing letter indicates the units as with fixed-heap. The heap size for max-heap
is accounted for as with fixed-heap.
no-load-world•
Disable load-world. This can be used as an argument to the compiler via
-runtime no-load-world to create executables that will not load a world. This may be useful
to ensure that set-uid executables do not load some strange world.

MLton Guide (20051202) RunTimeOptions

319

ram-slop x•
Multiply x by the amount of RAM on the machine to obtain what the runtime views as the amount of
RAM it can use. Typically x is less than 1, and is used to account for space used by other programs
running on the same machine.
stop•

Causes the runtime to stop processing @MLton arguments once the next -- is reached. This can be used as an
argument to the compiler via -runtime stop to create executables that don't process any @MLton
arguments.

Last edited on 2005-12-02 06:13:52 by StephenWeeks.

MLton Guide (20051202) RunTimeOptions

320

RunningOnCygwin
MLton runs on the Cygwin emulation layer, which provides a Posix-like environment while running on
Windows. To run MLton with Cygwin, you must first install Cygwin on your Windows machine. To do this,
visit the Cygwin site from your Windows machine and run their setup.exe script. Then, you can unpack
the MLton binary tgz in your Cygwin environment.

To run MLton cross-compiled executables on Windows, you must install the Cygwin dll on the Windows
machine.

Known issues

Time profiling is disabled.•
Cygwin's mmap emulation is less than perfect. Sometimes it interacts badly with
Posix.Process.fork. For idiomatic uses of fork plus exec, you can instead use the
MLton.Process.spawn family of functions, which work on all our platforms.

•

Cygwin's mmap emulation does not make available as much contiguous virtual address space as using
the Windows VirtualAlloc function. Earlier versions of MLton used VirtualAlloc instead of
mmap, but that no longer works.

•

Also see

RunningOnMinGW•

Last edited on 2005-12-02 01:37:10 by StephenWeeks.

MLton Guide (20051202) RunningOnCygwin

321

http://www.cygwin.com/
http://www.cygwin.com/

RunningOnDarwin
MLton runs fine on Darwin, which underlies Mac OSX.

MLton requires the GnuMP library, which fink has here.•

Also see

RunningOnPowerPC•

Last edited on 2005-12-02 01:14:31 by StephenWeeks.

MLton Guide (20051202) RunningOnDarwin

322

http://fink.sourceforge.net/
http://fink.sourceforge.net/
http://fink.sourceforge.net/pdb/package.php/gmp
http://fink.sourceforge.net/pdb/package.php/gmp

RunningOnFreeBSD
MLton is available as a FreeBSD port.

Known issues

Executables often run more slowly than on a comparable Linux machine. We conjecture that part of
this is due to costs due to heap resizing and kernel zeroing of pages. Any help in solving the problem
would be appreciated.

•

Last edited on 2004-12-29 20:13:09 by StephenWeeks.

MLton Guide (20051202) RunningOnFreeBSD

323

http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all
http://www.freebsd.org/cgi/ports.cgi?query=mlton&stype=all

RunningOnLinux
The are no known issues using MLton on Linux.

Last edited on 2004-11-02 00:56:09 by StephenWeeks.

MLton Guide (20051202) RunningOnLinux

324

RunningOnMinGW
MLton runs on MinGW, a library for porting Unix applications to Windows. Some library functionality is
missing or changed.

The C function getrusage is implemented by a stub that always sets the time to zero. Hence
MLton.Rusage.rusage will return times of zero. Also, the times printed by the runtime system
will be zeroes.

•

Many functions are unimplemented and will raise SysErr.•
IS.IO.poll♦
MLton.Itimer.set♦
MLton.ProcEnv.setgroups♦
Posix.FileSys.chown♦
Posix.FileSys.fchown♦
Posix.FileSys.fpathconf♦
Posix.FileSys.link♦
Posix.FileSys.mkfifo♦
Posix.FileSys.pathconf♦
Posix.FileSys.readlink♦
Posix.FileSys.symlink♦
Posix.IO.dupfd♦
Posix.IO.getfd♦
Posix.IO.getfl♦
Posix.IO.getlk♦
Posix.IO.setfd♦
Posix.IO.setfl♦
Posix.IO.setlk♦
Posix.IO.setlkw♦
Posix.ProcEnv.ctermid♦
Posix.ProcEnv.getegid♦
Posix.ProcEnv.geteuid♦
Posix.ProcEnv.getgid♦
Posix.ProcEnv.getgroups♦
Posix.ProcEnv.getlogin♦
Posix.ProcEnv.getpgrp♦
Posix.ProcEnv.getpid♦
Posix.ProcEnv.getppid♦
Posix.ProcEnv.getuid♦
Posix.ProcEnv.setgid♦
Posix.ProcEnv.setpgid♦
Posix.ProcEnv.setsid♦
Posix.ProcEnv.setuid♦
Posix.ProcEnv.sysconf♦
Posix.ProcEnv.times♦
Posix.ProcEnv.ttyname♦
Posix.Process.exece♦
Posix.Process.execp♦
Posix.Process.exit♦
Posix.Process.fork♦
Posix.Process.getgrnam♦

MLton Guide (20051202) RunningOnMinGW

325

http://mingw.org
http://mingw.org

Posix.Process.getpwuid♦
Posix.Process.kill♦
Posix.Process.pause♦
Posix.Process.waitpid♦
Posix.Process.waitpid_nh♦
Posix.SysDB.getgrgid♦
Posix.TTY.TC.drain♦
Posix.TTY.TC.flow♦
Posix.TTY.TC.flush♦
Posix.TTY.TC.getattr♦
Posix.TTY.TC.getpgrp♦
Posix.TTY.TC.sendbreak♦
Posix.TTY.TC.setattr♦
Posix.TTY.TC.setpgrp♦
UnixSock.fromAddr♦
UnixSock.toAddr♦

Last edited on 2005-12-02 01:32:16 by StephenWeeks.

MLton Guide (20051202) RunningOnMinGW

326

RunningOnNetBSD
MLton runs fine on NetBSD.

Installing the correct packages for NetBSD

The NetBSD system installs 3rd party packages by a mechanism known as pkgsrc. This is a tree of Makefiles
which when invoked downloads the source code, builds a package and installs it on the system. In order to run
MLton on NetBSD, you will have to install several packages for it to work:

shells/bash•
devel/gmp•
devel/gmake•

In order to get graphical call-graphs of profiling information, you will need the additional package

graphics/graphviz•

To build the documentation for MLton, you need htmldoc.

Tips for compiling and using MLton on NetBSD

MLton can be a memory-hog on computers with little memory. While 640Mb of RAM ought to be enough to
self-compile MLton one might want to do some tuning to the NetBSD VM subsystem in order to succeed. The
notes presented here is what JesperLouisAndersen uses for compiling MLton on his laptop.

The NetBSD VM subsystem

NetBSD uses a VM subsystem named UVM. Tuning the VM system can be done via the
sysctl(8)-interface with the "VM" MIB set.

Tuning the NetBSD VM subsystem for MLton

MLton uses a lot of anonymous pages when it is running. Thus, we will need to tune up the default of 80 for
anonymous pages. Setting

sysctl -w vm.anonmax=95
sysctl -w vm.anonmin=50
sysctl -w vm.filemin=2
sysctl -w vm.execmin=2
sysctl -w vm.filemax=4
sysctl -w vm.execmax=4

makes it less likely for the VM system to swap out anonymous pages. For a full explanation of the above
flags, see the documentation.

The result is that my laptop goes from a MLton compile where it swaps a lot to a MLton compile with no
swapping.

Last edited on 2005-12-02 01:34:02 by StephenWeeks.

MLton Guide (20051202) RunningOnNetBSD

327

http://www.ccrc.wustl.edu/pub/chuck/tech/uvm/
http://www.ccrc.wustl.edu/pub/chuck/tech/uvm/
http://www.selonen.org/arto/netbsd/vm_tune.html
http://www.selonen.org/arto/netbsd/vm_tune.html

RunningOnOpenBSD
MLton runs fine on OpenBSD.

Known issues

Our socket regression test fails. We suspect this is not a bug and is simply due to our test relying on a
certain behavior when connecting to a socket that has not yet accepted, which is handled differently
on OpenBSD than other platforms. Any help in understanding and resolving this issue is appreciated.

•

Last edited on 2005-12-02 01:37:01 by StephenWeeks.

MLton Guide (20051202) RunningOnOpenBSD

328

RunningOnPowerPC
MLton runs fine on PowerPC.

Known issues

When compiling for PowerPC, MLton doesn't support native code generation
(-codegen native). Hence, performance is not as good as it might be and compile times are
longer. Also, the quality of code generated by gcc is important. By default, MLton calls gcc -O1.
You can change this by calling MLton with -cc-opt -O2.

•

Last edited on 2005-12-02 01:36:54 by StephenWeeks.

MLton Guide (20051202) RunningOnPowerPC

329

RunningOnSolaris
MLton runs fine on Solaris.

Known issues

You must install the binutils, gcc, and make packages. You can find out how to get these at
sunfreeware.com

•

Making the documentation requires that you install latex and dvips, which are available in the
tetex package. It also requires hevea, for which we haven't yet tracked down a package.

•

Bootstrapping is so slow as to be impractical (many hours on a 500MHz UltraSparc). For this reason,
we strongly recommend building with a Linux to Solaris cross compiler.

•

Also see

RunningOnSparc•

Last edited on 2005-12-02 04:24:41 by StephenWeeks.

MLton Guide (20051202) RunningOnSolaris

330

http://www.sunfreeware.com
http://www.sunfreeware.com

RunningOnSparc
MLton runs fine on Sparc.

Known issues

When compiling for Sparc, MLton doesn't support native code generation (-codegen native).
Hence, performance is not as good as it might be and compile times are longer. Also, the quality of
code generated by gcc is important. By default, MLton calls gcc -O1. You can change this by
calling MLton with -cc-opt -O2. We have seen this speed up some programs by as much as 30%,
especially those involving floating point; however, it can also more than double compile times.

•

When compiling for Sparc, MLton uses -align 8 by default. While this speeds up reals, it also
may increase object sizes. If your program does not make significant use of reals, you might see a
speedup with -align 4.

•

Last edited on 2005-12-02 01:38:25 by StephenWeeks.

MLton Guide (20051202) RunningOnSparc

331

SMLNET
SML.NET is a Standard ML Compiler that targets the .NET Common Language Runtime.

SML.NET is based on the MLj compiler.

BentonEtAl04 describes SML.NET.

Last edited on 2004-12-30 20:11:30 by StephenWeeks.

MLton Guide (20051202) SMLNET

332

http://www.research.microsoft.com/Projects/SML.NET/
http://www.research.microsoft.com/Projects/SML.NET/

SMLNJ
SML/NJ is a Standard ML Compiler. It is a native code compiler that runs on a variety of platforms and has

a number of libraries and tools.

We maintain a list of SML/NJ's deviations from the Definition of SML.

MLton has support for some features of SML/NJ in order to ease porting between MLton and SML/NJ.

CompilationManager (CM)•
LineDirectives•
SMLofNJStructure•
UnsafeStructure•

Last edited on 2004-12-30 20:12:30 by StephenWeeks.

MLton Guide (20051202) SMLNJ

333

http://www.smlnj.org/
http://www.smlnj.org/

SMLNJDeviations
Here are some deviations of SML/NJ from the Definition of SML. Some of these are documented in the
SML '97 Conversion Guide. Since MLton does not deviate from the Definition, you should look here if you

are having trouble porting a program from MLton to SML/NJ or vice versa. If you discover other deviations
of SML/NJ that aren't listed here, please send mail to MLton@mlton.org.

SML/NJ allows spaces in long identifiers, as in S . x. Section 2.5 of the Definition implies that
S . x should be treated as three separate lexical items.

•

SML/NJ allows = to be rebound by the declaration:

val op = = 13

This is explicitly forbidden on page 5 of the Definition.

•

SML/NJ extends the syntax of the language to allow vector expressions and patterns like the
following:

val v = #[1,2,3]
val #[x,y,z] = v

•

SML/NJ extends the syntax of the language to allow or patterns like the following:

datatype foo = Foo of int | Bar of int
val (Foo x | Bar x) = Foo 13

•

SML/NJ allows higher-order functors, that is, functors can be components of structures and can be
passed as functor arguments and returned as functor results. As a consequence, SML/NJ allows
abbreviated functor definitions, as in the following:

signature S =
sig
type t
val x: t

end
functor F (structure A: S): S =
struct
type t = A.t * A.t
val x = (A.x, A.x)

end
functor G = F

•

SML/NJ extends the syntax of the language to allow functor and signature definitions to occur within
the scope of local and structure declarations.

•

SML/NJ allows duplicate type specifications in signatures when the duplicates are introduced by
include, as in the following:

signature SIG1 =
sig

type t
type u

end
signature SIG2 =

sig
type t
type v

end
signature SIG =

sig

•

MLton Guide (20051202) SMLNJDeviations

334

http://www.smlnj.org/doc/Conversion/index.html
http://www.smlnj.org/doc/Conversion/index.html
mailto:MLton@mlton.org
mailto:MLton@mlton.org

include SIG1
include SIG2

end

This is disallowed by rule 77 of the Definition.
SML/NJ allows sharing constraints between type abbreviations in signatures, as in the following:

signature SIG =
sig

type t = int * int
type u = int * int
sharing type t = u

end

These are disallowed by rule 78 of the Definition.

•

SML/NJ disallows multiple where type specifications of the same type name, as in the following

signature S =
sig

type t
type u = t

end
where type u = int

This is allowed by rule 84 of the Definition.

•

SML/NJ allows and in sharing specs in signatures, as in

signature S =
sig

type t
type u
type v
sharing type t = u
type u = v

end

•

SML/NJ does not expand the withtype derived form as described by the Definition. According to
page 55 of the Definition, the type bindings of a withtype declaration are substituted
simultaneously in the connected datatype. Consider the following program.

type u = real
datatype a =
 A of t
| B of u

withtype u = int
and t = u

According to the Definition, it should be expanded to the following.

type u = real
datatype a =
 A of u
| B of int

However, SML/NJ expands withtype bindings sequentially, meaning that earlier bindings are
expanded within later ones. Hence, the above program is expanded to the following.

type u = real

•

MLton Guide (20051202) SMLNJDeviations

335

datatype a =
 A of int
| B of int

SML/NJ allows withtype specifications in signatures.•
SML/NJ allows a where structure specification that is similar to a where type specification. For
example:

structure S = struct type t = int end
signature SIG =
sig

structure T : sig type t end
end where T = S

This is equivalent to:

structure S = struct type t = int end
signature SIG =
sig

structure T : sig type t end
end where type T.t = S.t

SML/NJ also allows a definitional structure specification that is similar to a definitional type
specification. For example:

structure S = struct type t = int end
signature SIG =
sig

structure T : sig type t end = S
end

This is equivalent to the previous examples and to:

structure S = struct type t = int end
signature SIG =
sig

structure T : sig type t end where type t = S.t
end

•

SML/NJ disallows binding non-datatypes with datatype replication. For example, it rejects the
following program that should be allowed according to the Definition.

type ('a, 'b) t = 'a * 'b
datatype u = datatype t

This idiom can be useful when one wants to rename a type without rewriting all the type arguments.
For example, the above would have to be written in SML/NJ as follows.

type ('a, 'b) t = 'a * 'b
type ('a, 'b) u = ('a, 'b) t

•

SML/NJ disallows sharing a structure with one of its substructures. For example, SML/NJ disallows
the following.

signature SIG =
sig

structure S:
sig

type t

•

MLton Guide (20051202) SMLNJDeviations

336

structure T: sig type t end
end

sharing S = S.T
end

This signature is allowed by the Definition.
SML/NJ disallows polymorphic generalization of refutable patterns. For example, SML/NJ disallows
the following.

val [x] = [[]]
val _ = (1 :: x, "one" :: x)

•

Deviations from the Basis Library Specification

Here are some deviations of SML/NJ from the Basis Library Specification.

SML/NJ exposes the equality of the vector type in structures such as Word8Vector that
abstractly match MONO_VECTOR, which says type vector, not eqtype vector. So, for
example, SML/NJ accepts the following program:

fun f (v: Word8Vector.vector) = v = v

•

Last edited on 2005-12-02 04:25:13 by StephenWeeks.

MLton Guide (20051202) SMLNJDeviations

337

SMLNJLibrary
The SML/NJ Library is a collection of libraries that are distributed with SML/NJ. Due to differences
between SML/NJ and MLton, these libraries will not work out-of-the box with MLton.

As of 20050818, MLton includes a port of the SML/NJ Library, currently synchronized with SML/NJ version
110.57.

Usage

You can import a sub-library of the SML/NJ Library into an MLB file with:•
MLB file Description

$(SML_LIB)/smlnj-lib/Util/smlnj-lib.mlb

Various utility
modules, included
collections, simple
formating, ...

$(SML_LIB)/smlnj-lib/Controls/controls-lib.mlb

A library for
managing control
flags in an
application.

$(SML_LIB)/smlnj-lib/HashCons/hash-cons-lib.mlb

Support for
implementing
hash-consed data
structures.

$(SML_LIB)/smlnj-lib/INet/inet-lib.mlb

Networking utilities;
supported on both
Unix and Windows
systems.

$(SML_LIB)/smlnj-lib/Unix/unix-lib.mlb
Utilities for
Unix-based operating
systems.

$(SML_LIB)/smlnj-lib/PP/pp-lib.mlb
Pretty-printing
library.

$(SML_LIB)/smlnj-lib/HTML/html-lib.mlb
HTML parsing and
pretty-printing
library.

$(SML_LIB)/smlnj-lib/RegExp/regexp-lib.mlb
Regular expression
library.

$(SML_LIB)/smlnj-lib/Reactive/reactive-lib.mlb
Reactive scripting
library.

If you are porting a project from SML/NJ's CompilationManager to MLton's ML Basis system using
cm2mlb, note that the following maps are included by default:

$smlnj-lib.cm $(SML_LIB)/smlnj-lib/Util
$controls-lib.cm $(SML_LIB)/smlnj-lib/Controls
$hash-cons-lib.cm $(SML_LIB)/smlnj-lib/HashCons
$inet-lib.cm $(SML_LIB)/smlnj-lib/INet
$unix-lib.cm $(SML_LIB)/smlnj-lib/Unix
$pp-lib.cm $(SML_LIB)/smlnj-lib/PP

•

MLton Guide (20051202) SMLNJLibrary

338

http://www.smlnj.org/doc/smlnj-lib/index.html
http://www.smlnj.org/doc/smlnj-lib/index.html

$html-lib.cm $(SML_LIB)/smlnj-lib/HTML
$regexp-lib.cm $(SML_LIB)/smlnj-lib/RegExp
$reactive-lib.cm $(SML_LIB)/smlnj-lib/Reactive

This will automatically convert a $/smlnj-lib.cm import in an input .cm file into a
$(SML_LIB)/smlnj-lib/Util/smlnj-lib.mlb import in the output .mlb file.

Details

The following changes were made to the SML/NJ Library, in addition to deriving the .mlb files from the
.cm files:

Util/redblack-set-fn.sml (modified): Rewrote use of where structure specification.•
Util/redblack-map-fn.sml (modified): Rewrote use of where structure specification.•
Util/graph-scc.sml (modified): Rewrote use of where structure specification.•
Util/bit-array.sml (modified): The computation of the maxLen is given by:

val maxLen = 8*Word8Array.maxLen

This is fine in SML/NJ where Word8Array.maxLen is 16777215, but in MLton,
Word8Array.maxLen is equal to valOf(Int.maxInt), so the computation overflows. To
accommodate both SML/NJ and MLton, the computation is replaced by

val maxLen = (8*Word8Array.maxLen) handle Overflow => Word8Array.maxLen

•

Util/engine.mlton.sml (added, not exported): Implements structure Engine, providing
time-limited, resumable computations using MLtonThread, MLtonSignal, and MLtonItimer.

•

Util/time-limit.mlton.sml (added): Implements structure TimeLimit using
structure Engine. The SML/NJ implementation of structure TimeLimit uses SML/NJ's
first-class continuations, signals, and interval timer.

•

Util/time-limit.mlb (added): Exports structure TimeLimit, which is not exported by
smlnj-lib.mlb. Since MLton is very conservative in the presence of threads and signals, program
performance may be adversely affected by unnecessarily including structure TimeLimit.

•

HTML/html-elements-fn.sml (modified): Rewrote use of or-patterns.•
HTML/html-attrs-fn.sml (modified): Rewrote use of or-patterns.•

Patch

smlnj-lib.patch•

Last edited on 2005-12-02 04:43:32 by MatthewFluet.

MLton Guide (20051202) SMLNJLibrary

339

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/smlnj-lib/smlnj-lib.patch?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/lib/smlnj-lib/smlnj-lib.patch?view=markup

SMLofNJStructure
signature SML_OF_NJ =

sig
structure Cont:

sig
type 'a cont
val callcc: ('a cont -> 'a) -> 'a
val throw: 'a cont -> 'a -> 'b

end
structure SysInfo:

sig
exception UNKNOWN
datatype os_kind = BEOS | MACOS | OS2 | UNIX | WIN32

val getHostArch: unit -> string
val getOSKind: unit -> os_kind
val getOSName: unit -> string

end

val exnHistory: exn -> string list
val exportFn: string * (string * string list -> OS.Process.status) -> unit
val exportML: string -> bool
val getAllArgs: unit -> string list
val getArgs: unit -> string list
val getCmdName: unit -> string

end

SMLofNJ implements a subset of the structure of the same name provided in Standard ML of New Jersey. It
is included to make it easier to port programs between the two systems. The semantics of these functions may
be different than in SML/NJ.

structure Cont•
implements continuations.
SysInfo.getHostArch ()•
returns the string for the architecture.
SysInfo.getOSKind•
returns the OS kind.
SysInfo.getOSName ()•
returns the string for the host.
exnHistory•
the same as MLton.Exn.history.
getCmdName ()•
the same as CommandLine.name ().
getArgs ()•
the same as CommandLine.arguments ().
getAllArgs ()•
the same as getCmdName()::getArgs().
exportFn f•
saves the state of the computation to a file that will apply f to the command-line arguments upon
restart.
exportML f•

MLton Guide (20051202) SMLofNJStructure

340

saves the state of the computation to file f and continue. Returns true in the restarted computation and
false in the continuing computation.

Last edited on 2005-12-02 02:31:55 by StephenWeeks.

MLton Guide (20051202) SMLofNJStructure

341

SSA
SSA is an IntermediateLanguage, translated from SXML by ClosureConvert, optimized by SSASimplify, and
translated by ToSSA2 to SSA2.

Description

SSA is a FirstOrder, SimplyTyped IntermediateLanguage. It is the main IntermediateLanguage used for
optimizations.

An SSA program consists of a collection of datatype declarations, a sequence of global statements, and a
collection of functions, along with a distinguished "main" function. Each function consists of a collection of
basic blocks, where each basic block is a sequence of statements ending with some control transfer.

Implementation

ssa.sig ssa.fun
ssa-tree.sig ssa-tree.fun

Type Checking

Type checking of a SSA program verifies the following:

no duplicate definitions (tycons, cons, vars, labels, funcs)•
no out of scope references (tycons, cons, vars, labels, funcs)•
variable definitions dominate variable uses•
case transfers are exhaustive and irredundant•
Enter/Leave profile statements match•
"traditional" well-typedness•

type-check.sig type-check.fun

Details and Notes

SSA is an abbreviation for Static Single Assignment.

Last edited on 2005-12-02 04:25:39 by StephenWeeks.

MLton Guide (20051202) SSA

342

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa-tree.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa-tree.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa-tree.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa-tree.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/type-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/type-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/type-check.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/type-check.fun?view=markup

SSA2
SSA2 is an IntermediateLanguage, translated from SSA by ToSSA2, optimized by SSA2Simplify, and
translated by ToRSSA to RSSA.

Description

SSA2 is a FirstOrder, SimplyTyped IntermediateLanguage, a slight variant of the SSA IntermediateLanguage,

Like SSA, a SSA program consists of a collection of datatype declarations, a sequence of global statements,
and a collection of functions, along with a distinguished "main" function. Each function consists of a
collection of basic blocks, where each basic block is a sequence of statements ending with some control
transfer.

Unlike SSA, SSA2 includes mutable fields in objects and makes the vector type constructor n-ary instead of
unary. This allows optimizations like RefFlatten and DeepFlatten to be expressed.

Implementation

ssa2.sig ssa2.fun
ssa-tree2.sig ssa-tree2.fun

Type Checking

Type checking of a SSA2 program verfies the following:

no duplicate definitions (tycons, cons, vars, labels, funcs)•
no out of scope references (tycons, cons, vars, labels, funcs)•
variable definitions dominate variable uses•
case transfers are exhaustive and irredundant•
Enter/Leave profile statements match•
"traditional" well-typedness•

type-check2.sig type-check2.fun

Details and Notes

SSA is an abbreviation for Static Single Assignment.

Last edited on 2005-12-02 03:19:44 by StephenWeeks.

MLton Guide (20051202) SSA2

343

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa-tree2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa-tree2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa-tree2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa-tree2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/type-check2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/type-check2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/type-check2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/type-check2.fun?view=markup

SSA2Simplify
The optimization passes for the SSA2 IntermediateLanguage are collected and controlled by the Simplify2
functor (simplify2.sig , simplify2.fun).

The following optimization passes are implemented:

DeepFlatten•
RefFlatten•
RemoveUnused•
Zone•

There are additional analysis and rewrite passes that augment many of the other optimization passes:

Restore•
Shrink•

The optimization passes can be controlled from the command-line by the options

diag-pass <pass> -- keep diagnostic info for pass•
drop-pass <pass> -- omit optimization pass•
keep-pass <pass> -- keep the results of pass•
loop-passes <n> -- loop optimization passes•
ssa2-passes <passes> -- ssa optimization passes•

Last edited on 2005-08-19 15:27:05 by MatthewFluet.

MLton Guide (20051202) SSA2Simplify

344

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/simplify2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/simplify2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/simplify2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/simplify2.fun?view=markup

SSASimplify
The optimization passes for the SSA IntermediateLanguage are collected and controlled by the Simplify
functor (simplify.sig , simplify.fun).

The following optimization passes are implemented:

CommonArg•
CommonBlock•
CommonSubexp•
ConstantPropagation•
Contify•
Flatten•
Inline•
IntroduceLoops•
KnownCase•
LocalFlatten•
LocalRef•
LoopInvariant•
Redundant•
RedundantTests•
RemoveUnused•
SimplifyTypes•
Useless•

The following implementation pass is implemented:

PolyEqual•

There are additional analysis and rewrite passes that augment many of the other optimization passes:

Multi•
Restore•
Shrink•

The optimization passes can be controlled from the command-line by the options:

diag-pass <pass> -- keep diagnostic info for pass•
drop-pass <pass> -- omit optimization pass•
keep-pass <pass> -- keep the results of pass•
loop-passes <n> -- loop optimization passes•
ssa-passes <passes> -- ssa optimization passes•

Last edited on 2005-08-19 15:26:49 by MatthewFluet.

MLton Guide (20051202) SSASimplify

345

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/simplify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/simplify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/simplify.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/simplify.fun?view=markup

SXML
SXML is an IntermediateLanguage, translated from XML by Monomorphise, optimized by SXMLSimplify,
and translated by ClosureConvert to SSA.

Description

SXML is a simply-typed version of XML.

Implementation

sxml.sig sxml.fun
sxml-tree.sig

Type Checking

SXML shares the type checker for XML.

Details and Notes

There are only two differences between XML and SXML. First, SXML val, fun, and datatype
declarations always have an empty list of type variables. Second, SXML variable references always have an
empty list of type arguments. Constructors uses can only have a nonempty list of type arguments if the
constructor is a primitive.

Although we could rely on the type system to enforce these constraints by parameterizing the XML signature,
StephenWeeks did so in a previous version of the compiler, and the software engineering gains were not
worth the effort.

Last edited on 2005-12-02 02:42:31 by StephenWeeks.

MLton Guide (20051202) SXML

346

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/sxml.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/sxml.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/sxml.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/sxml.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/sxml-tree.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/sxml-tree.sig?view=markup

SXMLShrink
SXMLShrink is an optimization pass for the SXML IntermediateLanguage, invoked from SXMLSimplify.

Description

This pass performs optimizations based on a reduction system.

Implementation

shrink.sig shrink.fun

Details and Notes

SXML shares the XMLShrink simplifier.

Last edited on 2005-12-02 02:42:47 by StephenWeeks.

MLton Guide (20051202) SXMLShrink

347

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/shrink.fun?view=markup

SXMLSimplify
The optimization passes for the SXML IntermediateLanguage are collected and controlled by the
SxmlSimplify functor (sxml-simplify.sig , sxml-simplify.fun).

The following optimization passes are implemented:

Polyvariance•
SXMLShrink•

The following implementation passes are implemented:

ImplementExceptions•
ImplementSuffix•

The following optimization passes are not implemented, but might prove useful:

Uncurry•
LambdaLift•

The optimization passes can be controlled from the command-line by the options

diag-pass <pass> -- keep diagnostic info for pass•
drop-pass <pass> -- omit optimization pass•
keep-pass <pass> -- keep the results of pass•
sxml-passes <passes> -- sxml optimization passes•

Last edited on 2005-08-19 15:25:57 by MatthewFluet.

MLton Guide (20051202) SXMLSimplify

348

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/sxml-simplify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/sxml-simplify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/sxml-simplify.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/sxml-simplify.fun?view=markup

ScopeInference
Scope inference is an analysis/rewrite pass for the AST IntermediateLanguage, invoked from Elaborate.

Description

This pass adds free type variables to the val or fun declaration where they are implicitly scoped.

Implementation

scope.sig scope.fun

Details and Notes

Scope inference determines for each type variable, the declaration where it is bound. Scope inference is a
direct implementation of the specification given in section 4.6 of the Definition. Recall that a free occurrence
of a type variable 'a in a declaration d is unguarded in d if 'a is not part of a smaller declaration. A type
variable 'a is implicitly scoped at d if 'a is unguarded in d and 'a does not occur unguarded in any
declaration containing d.

The first pass of scope inference walks down the tree and renames all explicitly bound type variables in order
to avoid name collisions. It then walks up the tree and adds to each declaration the set of unguarded type
variables occurring in that declaration. At this point, if declaration d contains an unguarded type variable 'a
and the immediately containing declaration does not contain 'a, then 'a is implicitly scoped at d. The final
pass walks down the tree leaving a 'a at the a declaration where it is scoped and removing it from all
enclosed declarations.

Last edited on 2005-12-02 01:43:12 by StephenWeeks.

MLton Guide (20051202) ScopeInference

349

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/scope.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/scope.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/scope.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/elaborate/scope.fun?view=markup

SelfCompiling
If you want to compile MLton, you must first get the Sources. You can compile with either MLton or
SML/NJ, but we strongly recommend using MLton, since it generates a much faster and more robust
executable.

Compiling with MLton

To compile with MLton, you need the binary versions of mlton, mllex, and mlyacc that come with the
MLton binary package. To be safe, you should use the same version of MLton that you are building.
However, older versions may work, as long as they don't go back too far. To build MLton, run make from
within the root directory of the sources. This will build MLton first with the already installed binary version of
MLton and will then rebuild MLton with itself.

First, the Makefile calls mllex and mlyacc to build the lexer and parser, and then calls mlton to
compile itself. When making MLton using another version the Makefile automatically uses
mlton-stubs.cm, which will put in enough stubs to emulate the MLton structure. Once MLton is built,
the Makefile will rebuild MLton with itself, this time using mlton.cm and the real MLton structure from
the Basis Library. This second round of compilation is essential in order to achieve a fast and robust MLton.

Compiling MLton requires at least 512M of actual RAM, and 1G is preferable. If your machine has less than
512M, self-compilation will likely fail, or at least take a very long time due to paging. Even if you have
enough memory, there simply may not be enough available, due to memory consumed by other processes. In
this case, you may see an Out of memory message, or self-compilation may become extremely slow. The
only fix is to make sure that enough memory is available.

Possible Errors

If you have errors running latex, you can skip building the documentation by using
make all-no-docs.

•

The C compiler may not be able to find the GnuMP header file, gmp.h leading to an error like the
following.

 platform/darwin.h:26:36: /usr/local/include/gmp.h: No such file or directory

The solution is to install (or build) the GnuMP on your machine. If you install it at a different
location, put the new path in runtime/platform/<os>.h.

•

The following error indicates that a binary version of MLton could not be found in your path.

.../upgrade-basis: mlton: command not found
Error: cannot upgrade basis because the compiler doesn't work
make[3]: *** [upgrade-basis.sml] Error 1

You need to have mlton in your path to build MLton from source.

During the build process, there are various times that the Makefiles look for a mlton in your path
and in src/build/bin. It is OK if the latter doesn't exist when the build starts; it is the target
being built. While not finding build/bin/mlton also results in
mlton: command not found error messages, such errors are benign and will not abort the
build. Failure to find a mlton in your path will abort the build.

•

MLton Guide (20051202) SelfCompiling

350

Mac OS X executables do not seem to like static libraries to have a different path location at runtime
compared to when the executable was built. For example, the binary package for Mac OS X unpacks
to /usr. If you try to install it in /usr/local you may get the following errors:

/usr/bin/ld: table of contents for archive:
/usr/local/lib/mlton/self/libmlton.a is out of date;
rerun ranlib(1) (can't load from it)

Although running ranlib seems like the right thing to do, it doesn't actually resolve the problem.
Best bet is to install in /usr and then either live with this location, or build MLton yourself and
install in /usr/local.

•

Compiling with SML/NJ

To compile with SML/NJ, run make nj-mlton from within the root directory of the sources. You must use
a recent version of SML/NJ. First, the Makefile calls mllex and mlyacc to build the lexer and parser.
Then, it calls SML/NJ with the appropriate sources.cm file. Building with SML/NJ takes some time
(roughly 10 minutes on a 1.6GHz machine). Unless you are doing compiler development and need rapid
recompilation, we recommend compiling with MLton.

Last edited on 2005-12-02 01:44:46 by StephenWeeks.

MLton Guide (20051202) SelfCompiling

351

Serialization
Standard ML does not have built-in support for serialization. Here are papers that describes a user-level
approach.

Elsman04•
Kennedy04•

Last edited on 2005-12-02 01:46:34 by StephenWeeks.

MLton Guide (20051202) Serialization

352

ShowBasis
MLton has a flag, -show-basis file, that causes MLton to pretty print to file the basis defined by the
input program. For example, if foo.sml contains

fun f x = x + 1

then mlton -show-basis foo.basis foo.sml will create foo.basis with the following
contents.

val f: int -> int

If you only want to see the basis and do not wish to compile the program, you can call MLton with
-stop tc.

Displaying signatures

When displaying signatures, MLton prefixes types defined in the signature them with ?. to distinguish them
from types defined in the environment. For example,

signature SIG =
sig

type t
val x: t * int -> unit

end

is displayed as

signature SIG =
 sig
 type t = ?.t
 val x: (?.t * int) -> unit
 end

Notice that int occurs without the ?. prefix.

MLton also uses a canonical name for each type in the signature, and that name is used everywhere for that
type, no matter what the input signature looked like. For example:

signature SIG =
sig

type t
type u = t
val x: t
val y: u

end

is displayed as

signature SIG =
 sig
 type t = ?.t
 type u = ?.t
 val x: ?.t

MLton Guide (20051202) ShowBasis

353

 val y: ?.t
 end

Canonical names are always relative to the "top" of the signature, even when used in nested substructures. For
example:

signature S =
sig

type t
val w: t
structure U:

sig
type u
val x: t
val y: u

end
val z: U.u

end

is displayed as

signature S =
 sig
 type t = ?.t
 val w: ?.t
 val z: ?.U.u
 structure U:
 sig
 type u = ?.U.u
 val x: ?.t
 val y: ?.U.u
 end
 end

Displaying structures

When displaying structures, MLton uses signature constraints wherever possible, combined with
where type clauses to specify the meanings of the types defined within the signature.

signature SIG =
sig

type t
val x: t

end
structure S: SIG =

struct
type t = int
val x = 13

end
structure S2:> SIG = S

is displayed as

structure S: SIG
 where type t = int
structure S2: SIG
 where type t = S2.t

MLton Guide (20051202) ShowBasis

354

signature SIG =
 sig
 type t = ?.t
 val x: ?.t
 end

Last edited on 2005-12-02 01:48:03 by StephenWeeks.

MLton Guide (20051202) ShowBasis

355

Shrink
Shrink is a rewrite pass for the SSA and SSA2 IntermediateLanguages, invoked from every optimization pass
(see SSASimplify and SSA2Simplify).

Description

This pass implements a whole family of compile-time reductions, like:

#1(a, b) --> a•
case C x of C y => e --> let y = x in e•
constant folding, copy propagation•
eta blocks•
tuple reconstruction elimination•

Implementation

shrink.sig shrink.fun
shrink.sig shrink.fun

Details and Notes

The Shrink pass is run after every SSA and SSA2 optimization pass.

The Shrink implementation also includes functions to eliminate unreachable blocks from a SSA or SSA2
program or function. The Shrink pass does not guarantee to eliminate all unreachable blocks. Doing so would
unduly complicate the implementation, and it is almost always the case that all unreachable blocks are
eliminated. However, a small number of optimization passes require that the input have no unreachable blocks
(essentially, when the analysis works on the control flow graph and the rewrite iterates on the vector of
blocks). These passes explicitly call eliminateDeadBlocks.

The Shrink pass has a special case to turn a non-tail call where the continuation and handler only do
Profile statements into a tail call where the Profile statements precede the tail call.

Last edited on 2005-12-02 04:24:49 by StephenWeeks.

MLton Guide (20051202) Shrink

356

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/shrink.fun?view=markup

SimplifyTypes
SimplifyTypes is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass computes a "cardinality" of each datatype, which is an abstraction of the number of values of the
datatype.

Zero means the datatype has no values (except for bottom).•
One means the datatype has one value (except for bottom).•
Many means the datatype has many values.•

This pass removes all datatypes whose cardinality is Zero or One and removes:

components of tuples•
function args•
constructor args•

which are such datatypes.

This pass marks constructors as one of:

Useless: it never appears in a ConApp.•
Transparent: it is the only variant in its datatype and its argument type does not contain any uses of
array or vector.

•

Useful: otherwise•

This pass also removes Useless and Transparent constructors.

Implementation

simplify-types.sig simplify-types.fun

Details and Notes

This pass must happen before polymorphic equality is implemented because

it will make polymorphic equality faster because some types are simpler1.
it removes uses of polymorphic equality that must return true2.

We must keep track of Transparent constructors whose argument type uses array because of datatypes like
the following:

datatype t = T of t vector

Such a datatype has Cardinality.Many, but we cannot eliminate the datatype and replace the lhs by the rhs, i.e.
we must keep the circularity around.

MLton Guide (20051202) SimplifyTypes

357

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/simplify-types.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/simplify-types.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/simplify-types.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/simplify-types.fun?view=markup

Must do similar things for vectors.

Also, to eliminate as many Transparent constructors as possible, for something like the following,

datatype t = T of u array
and u = U of t vector

we (arbitrarily) expand one of the datatypes first. The result will be something like

datatype u = U of u array array

where all uses of t are replaced by u array.

Last edited on 2005-12-02 04:25:02 by StephenWeeks.

MLton Guide (20051202) SimplifyTypes

358

Sources
We maintain our sources with Subversion. You can view them on the web or access them with a subversion
client. Anonymous read access is available via

svn://mlton.org/mlton

We use the standard repository layout, so you can check out the latest revision with

svn co svn://mlton.org/mlton/trunk mlton

Committers (you know who you are) can access via

svn+ssh://mlton.org/svnroot/

Committers can check out the trunk with

svn co svn+ssh://mlton.org/svnroot/mlton/trunk mlton

Commit email

All commits are sent to MLton-commit@mlton.org (subscribe, archive), which is only for commit
email. Discussion should go to MLton@mlton.org.

If the first line of a commit log message begins with "MAIL ", then the commit message will be sent with the
subject as the rest of that first line, and will also be sent to [mailto:MLton@mlton.org MLton@mlton.org].

Changelog

See the changelog for a list of changes and bug fixes.

CVS

Prior to 20050730, we used CVS. We have left the CVS server up for access via

ViewCVS•
anonymous CVS•

cvs -d :pserver:anonymous@cvs.mlton.org:/cvsroot/mlton co mlton

Last edited on 2005-12-02 02:33:52 by StephenWeeks.

MLton Guide (20051202) Sources

359

http://mlton.org/svn
http://mlton.org/svn
http://svnbook.red-bean.com/en/1.1/ch05s04.html#svn-ch-5-sect-6.1
http://svnbook.red-bean.com/en/1.1/ch05s04.html#svn-ch-5-sect-6.1
http://mlton.org/mailman/listinfo/mlton-commit
http://mlton.org/mailman/listinfo/mlton-commit
http://mlton.org/pipermail/mlton-commit
http://mlton.org/pipermail/mlton-commit
mailto:MLton@mlton.org
mailto:MLton@mlton.org
mailto:MLton@mlton.org
mailto:MLton@mlton.org
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/doc/changelog?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/doc/changelog?view=markup
http://mlton.org/cvs
http://mlton.org/cvs

SpaceSafety
Informally, space safety is a property of a language implementation that asymptotically bounds the space used
by a running program.

References

Chapter 12 of Appel92•

Last edited on 2004-12-30 20:20:57 by StephenWeeks.

MLton Guide (20051202) SpaceSafety

360

StandardML
Standard ML (SML) is a programming language that combines excellent support for rapid prototyping,
modularity, and development of large programs, with performance approaching that of C.

SML Resources

Tutorials•
Books•
Implementations•

Aspects of SML

DefineTypeBeforeUse•
EqualityType•
EqualityTypeVariable•
GenerativeDatatype•
GenerativeException•
OperatorPrecedence•
Overloading•
PolymorphicEquality•
ValueRestriction•

Using SML

ForLoops•
FunctionalRecordUpdate•
InfixingOperators•
Lazy•
ObjectOrientedProgramming•
OptionalArguments•
Printf•
PropertyList•
Serialization•
StyleGuide•
UniversalType•

Programming in SML

Emacs•
Enscript•

Notes

History of SML•
Regions•

MLton Guide (20051202) StandardML

361

Related Languages

Alice•
OCaml•

Last edited on 2005-12-02 03:34:06 by StephenWeeks.

MLton Guide (20051202) StandardML

362

StandardMLBooks

Introductory Books

Elements of ML Programming•
ML For the Working Programmer•
Introduction to Programming using SML•
The Little MLer•

Applications

Unix System Programming with Standard ML•

Reference Books

The Standard ML Basis Library•
The Definition of Standard ML (Revised)•

Related Topics

Concurrent Programming in ML•
Purely Functional Data Structures•

Last edited on 2005-05-19 19:50:12 by StephenWeeks.

MLton Guide (20051202) StandardMLBooks

363

StandardMLHistory
Standard ML grew out of ML in the early 1980s.

For an excellent overview of SML's history, see Appendix F of the Definition.

For an overview if its history before 1982, see How ML Evolved.

Last edited on 2005-06-20 21:44:44 by StephenWeeks.

MLton Guide (20051202) StandardMLHistory

364

StandardMLImplementations
There are a number of implementations of Standard ML, from interpreters, to byte-code compilers, to
incremental compilers, to whole-program compilers.

HaMLet•
ML Kit•
MLton•
Moscow ML•
Poly/ML•
Poplog•
SML/NJ•
SML.NET•
TILT•

Not Actively Maintained

Edinburgh ML•
MLj•
MLWorks•
TIL•

Last edited on 2005-12-02 02:39:34 by StephenWeeks.

MLton Guide (20051202) StandardMLImplementations

365

http://www.dcs.ed.ac.uk/home/edml/
http://www.dcs.ed.ac.uk/home/edml/
http://www.cs.cornell.edu/Info/People/jgm/til.tar.Z
http://www.cs.cornell.edu/Info/People/jgm/til.tar.Z

StandardMLPortability
Technically, SML'97 as defined in the Definition requires only a a minimal initial basis, which, while
including the types int, real, char, and string, need have no operations on those base types. Hence, the
only observable output of an SML'97 program is termination or raising an exception. Most SML compilers
should agree there, to the degree each agrees with the Definition. See UnresolvedBugs for MLton's very few
corner cases.

Realistically, a program needs to make use of the Basis Library. Within the Basis Library, there are numerous
places where the behavior is implementation dependent. For a trivial example:

val _ = valOf (Int.maxInt)

may either raise the Option exception (if Int.maxInt == NONE) or may terminate normally. The
default Int/Real/Word sizes are the biggest implementation dependent aspect; so, one implementation may
raise Overflow while another can accommodate the result. Also, maximum array and vector lengths are
implementation dependent. Interfacing with the operating system is a bit murky, and implementations surely
differ in handling of errors there.

Last edited on 2005-12-02 04:25:49 by StephenWeeks.

MLton Guide (20051202) StandardMLPortability

366

StandardMLTutorials
A Gentle Introduction to ML. Andrew Cummings.•
Programming in Standard ML '97: An Online Tutorial. Stephen Gilmore.•
Programming in Standard ML. Robert Harper.•
Essentials of Standard ML Modules. Mads Tofte.•

Last edited on 2005-05-10 15:17:53 by StephenWeeks.

MLton Guide (20051202) StandardMLTutorials

367

http://www.dcs.napier.ac.uk/course-notes/sml/manual.html
http://www.dcs.napier.ac.uk/course-notes/sml/manual.html
http://www.dcs.ed.ac.uk/home/stg/NOTES/
http://www.dcs.ed.ac.uk/home/stg/NOTES/
http://www-2.cs.cmu.edu/~rwh/smlbook/
http://www-2.cs.cmu.edu/~rwh/smlbook/
http://www.diku.dk/users/tofte/publ/oregon/
http://www.diku.dk/users/tofte/publ/oregon/

StephenWeeks
I am a consultant based in the San Francisco Bay Area.

home page

You can email me at sweeks@sweeks.com.

My license plate.

image

Last edited on 2004-11-10 21:59:17 by StephenWeeks.

MLton Guide (20051202) StephenWeeks

368

http://sweeks.com/
http://sweeks.com/
mailto:sweeks@sweeks.com.
http://mlton.org/pages/StephenWeeks/attachments/license-plate.jpg?ts=1098901229

StyleGuide
These conventions are chosen so that inertia is towards modularity, code reuse and finding bugs early, not to
save typing.

SyntacticConventions•

Last edited on 2004-11-14 23:23:24 by StephenWeeks.

MLton Guide (20051202) StyleGuide

369

Subversion
Subversion is a version control system designed to replace CVS. The MLton project uses Subversion to

maintain its source code.

Version Control with Subversion, a free online book•

Last edited on 2005-07-30 21:29:05 by StephenWeeks.

MLton Guide (20051202) Subversion

370

http://subversion.tigris.org/
http://subversion.tigris.org/
http://svnbook.red-bean.com
http://svnbook.red-bean.com

SureshJagannathan
I am an Associate Professor at the Department of Computer Science at Purdue University. My research
focus is in programming language design and implementation, concurrency, and distributed systems. I am
interested in various aspects of MLton, mostly related to (in no particular order): (1) control-flow analysis (2)
representation strategies (e.g., flattening), (3) IR formats, and (4) extensions for distributed programming.

Please see my Home page for more details.

Last edited on 2004-11-20 21:09:49 by SureshJagannathan.

MLton Guide (20051202) SureshJagannathan

371

http://www.cs.purdue.edu/
http://www.cs.purdue.edu/
http://www.cs.purdue.edu/homes/suresh/index.html
http://www.cs.purdue.edu/homes/suresh/index.html

Survey
The 2005 MLton Survey is closed. Please check this space in January 2006 for our next survey. Thanks to all
who responded.

Last edited on 2005-02-07 01:08:25 by StephenWeeks.

MLton Guide (20051202) Survey

372

SurveyDone
Success. Thank you for submitting a survey.

Last edited on 2005-01-05 19:41:21 by StephenWeeks.

MLton Guide (20051202) SurveyDone

373

Swerve
Swerve is an HTTP server written in SML, originally developed with SML/NJ. RayRacine ported Swerve to

MLton in January 2005.

download the port

Excerpt from the included README:

Total testing of this port consisted of a successful compile, startup, and serving one html page with one gif
image. Given that the original code was throughly designed and implemented in a thoughtful manner and I
expect it is quite usable modulo a few minor bugs introduced by my porting effort.

Last edited on 2005-10-24 00:55:35 by PhilipSchatz.

MLton Guide (20051202) Swerve

374

http://ftp.sun.ac.za/ftp/mirrorsites/ocaml/Systems_programming/book/c3253.html
http://ftp.sun.ac.za/ftp/mirrorsites/ocaml/Systems_programming/book/c3253.html
http://mlton.org/pages/Swerve/attachments/swerve.tar.bz2
http://mlton.org/pages/Swerve/attachments/swerve.tar.bz2

SyntacticConventions
Here are a number of syntactic conventions useful for programming in SML.

General1.
Identifiers2.
Types3.
Core4.
Signatures5.
Structures6.
Functors7.

General

A line of code never exceeds 80 columns.•
Only split a syntactic entity across multiple lines if it doesn't fit on one line within 80 columns.•
Use alphabetical order wherever possible.•
Avoid redundant parentheses.•
When using :, there is no space before the colon, and a single space after it.•

Identifiers

Variables, record labels and type constructors begin with and use small letters, using capital letters to
separate words.

cost
maxValue

•

Variables that represent collections of objects (lists, arrays, vectors, ...) are often suffixed with an s.

xs
employees

•

Constructors, structure identifiers, and functor identifiers begin with a capital letter.

Queue
LinkedList

•

Signature identifiers are in all capitals, using _ to separate words.

LIST
BINARY_HEAP

•

Types

Alphabetize record labels. In a record type, there are spaces after colons and commas, but not before
colons or commas, or at the delimiters { and } .

{bar: int, foo: int}

•

Only split a record type across multiple lines if it doesn't fit on one line. If a record type must be split
over multiple lines, put one field per line.

{bar: int,
 foo: real * real,

•

MLton Guide (20051202) SyntacticConventions

375

 zoo: bool}

In a tuple type, there are spaces before and after each *.

int * bool * real

•

Only split a tuple type across multiple lines if it doesn't fit on one line. In a tuple type split over
multiple lines, there is one type per line, and the *s go at the beginning of the lines.

int
* bool
* real

It may also be useful to parenthesize to make the grouping more apparent.

(int
 * bool
 * real)

•

In an arrow type split over multiple lines, put the arrow at the beginning of its line.

int * real
-> bool

It may also be useful to parenthesize to make the grouping more apparent.

(int * real
 -> bool)

•

Avoid redundant parentheses.•
Arrow types associate to the right, so write

a -> b -> c

not

a -> (b -> c)

♦

Type constructor application associates to the left, so write

int ref list

not

(int ref) list

♦

Type constructor application binds more tightly than a tuple type, so write

int list * bool list

not

(int list) * (bool list)

♦

Tuple types bind more tightly than arrow types, so write

int * bool -> real

not

(int * bool) -> real

♦

MLton Guide (20051202) SyntacticConventions

376

Core

A core expression or declaration split over multiple lines does not contain any blank lines.•
A record field selector has no space between the # and the record label. So, write

#foo

not

foo

•

A tuple has a space after each comma, but not before, and not at the delimiters ().

(e1, e2, e3)

•

A tuple split over multiple lines has one element per line, and the commas go at the end of the lines.

(e1,
 e2,
 e3)

•

A list has a space after each comma, but not before, and not at the delimiters [].

[e1, e2, e3]

•

A list split over multiple lines has one element per line, and the commas at the end of the lines.

[e1,
 e2,
 e3]

•

A record has spaces before and after =, a space after each comma, and no space at the delimiters.
Field names appear in alphabetical order.

{bar = 13, foo = true}

•

A sequence expression has a space after each semicolon, but not before.

(e1; e2; e3)

•

A sequence expression split over multiple lines has one expression per line, and the semicolons at the
beginning of lines. Lisp and Scheme programmers may find this hard to read at first.

(e1
 ; e2
 ; e3)

Rationale: this makes it easy to visually spot the beginning of each expression, which becomes more
valuable as the expressions themselves are split across multiple lines.

•

An application expression has a space between the function and the argument. There are no parens
unless the argument is a tuple (in which case the parens are really part of the tuple, not the
application).

f a
f (a1, a2, a3)

•

Avoid redundant parentheses. Application associates to left, so write

f a1 a2 a3

not

•

MLton Guide (20051202) SyntacticConventions

377

((f a1) a2) a3

Infix operators have a space before and after the operator.

x + y
x * y - z

•

Avoid redundant parentheses. Use OperatorPrecedence. So, write

x + y * z

not

x + (y * z)

•

An andalso expression split over multiple lines has the andalso at the beginning of subsequent
lines.

e1
andalso e2
andalso e3

•

A case expression is indented as follows

case e1 of
 p1 => e1
 | p2 => e2
 | p3 => e3

•

A datatype's constructors are alphabetized.

datatype t = A | B | C

•

A datatype declaration has a space before and after each |.

datatype t = A | B of int | C

•

A datatype split over multiple lines has one constructor per line, with the | at the beginning of
lines and the constructors beginning 3 columns to the right of the datatype.

datatype t =
 A
| B
| C

•

A fun declaration may start its body on the subsequent line, indented 3 spaces.

fun f x y =
let

val z = x + y + z
in

 z
end

•

An if expression is indented as follows.

if e1
then e2

else e3

•

A sequence of if-then-elses is indented as follows.

if e1
then e2

else if e3
then e4

•

MLton Guide (20051202) SyntacticConventions

378

else if e5
then e6

else e7
A let expression has the let, in, and end on their own lines, starting in the same column.
Declarations and the body are indented 3 spaces.

let
val x = 13
val y = 14

in
 x + y
end

•

A local declaration has the local, in, and end on their own lines, starting in the same column.
Declarations are indented 3 spaces.

local
val x = 13

in
val y = x

end

•

An orelse expression split over multiple lines has the orelse at the beginning of subsequent
lines.

e1
orelse e2
orelse e3

•

A val declaration has a space before and after the =.

val p = e

•

A val declaration can start the expression on the subsequent line, indented 3 spaces.

val p =
if e1 then e2 else e3

•

Signatures

A signature declaration is indented as follows.

signature FOO =
struct

val x: int
end

•

A val specification has a space after the colon, but not before.

val x: int

Exception: in the case of operators (like +), there is a space before the colon to avoid lexing the colon
as part of the operator.

val + : t * t -> t

•

Alphabetize specifications in signatures.

sig
val x: int
val y: bool

•

MLton Guide (20051202) SyntacticConventions

379

end

Structures

A structure declaration has a space on both sides of the =.

structure Foo = Bar

•

A structure declaration split over multiple lines is indented as follows.

structure S =
struct

val x = 13
end

•

Declarations in a struct are separated by blank lines.

struct
val x =

let
 y = 13

in
 y + 1

end

val z = 14
end

•

Functors

A functor declaration has spaces after each : (or :>) but not before, and a space before and after
the =. It is indented as follows

functor Foo (S: FOO_ARG): FOO =
struct

val x = S.x
end

Exception: a functor declaration in a file to itself can omit the indentation to save horizontal space.

functor Foo (S: FOO_ARG): FOO =
struct

val x = S.x

end

In this case, there should be a blank line after the struct} and before the end.

•

Last edited on 2005-12-02 02:44:41 by StephenWeeks.

MLton Guide (20051202) SyntacticConventions

380

SystemInfo
Python Version

2.2.3 (#1, Oct 25 2004, 20:26:02) [GCC 2.96 20000731 (Red Hat Linux 7.3 2.96-113)]
MoinMoin Version

Release 1.2.3 [Revision 1.186]
Number of pages

305
Number of system pages

2
Number of backup versions

1470
Accumulated page sizes

550717
Entries in edit log

1922 (189747 bytes)
Event log

30379275 bytes
Global extension macros

AbandonedPages, BR, FootNote, Form, FullSearch, GetText, Include, Navigation, OrphanedPages,
PageHits, PageSize, RandomPage, RandomQuote, RecentChanges, ShowSmileys, StatsChart,
SystemAdmin, TableOfContents, TeudView, WantedPages

Local extension macros
Cite, Div, DownloadSVN, Form, Improvement, IncludeSVN, Input, Span, TextArea, ViewCVS,
ViewCVSDir, ViewSVN, ViewSVNDir

Global extension actions
AttachFile, DeletePage, LikePages, LocalSiteMap, RenamePage, SpellCheck, links, rss_rc, titleindex

Local extension actions
AllLinks

Installed processors
CSV, Colorize

Last edited on 2004-10-26 01:42:46 by StephenWeeks.

MLton Guide (20051202) SystemInfo

381

TILT
TILT is a Standard ML Compiler.

Last edited on 2004-12-30 20:11:27 by StephenWeeks.

MLton Guide (20051202) TILT

382

http://www-2.cs.cmu.edu/~fox/tilt.html
http://www-2.cs.cmu.edu/~fox/tilt.html

Talk

The MLton Standard ML Compiler

Henry Cejtin, Matthew Fluet, Suresh Jagannathan, Stephen Weeks

Next

Last edited on 2004-12-01 16:48:10 by MatthewFluet.

MLton Guide (20051202) Talk

383

TalkDiveIn

Dive In

to Development•
to Documentation•
to Download•

Prev

Last edited on 2005-11-14 23:13:23 by MatthewFluet.

MLton Guide (20051202) TalkDiveIn

384

http://mlton.org/Download
http://mlton.org/Download

TalkFolkLore

Folk Lore

Defunctorization and monomorphisation are feasible•
Global control-flow analysis is feasible•
Early closure conversion is feasible•

Prev Next

Last edited on 2004-12-01 18:35:55 by MatthewFluet.

MLton Guide (20051202) TalkFolkLore

385

TalkFromSMLTo

From Standard ML to S-T F-O IL

What issues arise when translating from Standard ML into an intermediate language?•

Prev Next

Last edited on 2004-12-01 18:39:02 by MatthewFluet.

MLton Guide (20051202) TalkFromSMLTo

386

TalkHowHigherOrder

Higher-order Functions

How does one represent SML's higher-order functions?•
MLton's answer: defunctionalize•

Prev Next

See ClosureConvert.

Last edited on 2004-12-01 18:36:01 by MatthewFluet.

MLton Guide (20051202) TalkHowHigherOrder

387

TalkHowModules

Modules

How does one represent SML's modules?•
MLton's answer: defunctorize•

Prev Next

See Elaborate.

Last edited on 2004-12-01 18:36:07 by MatthewFluet.

MLton Guide (20051202) TalkHowModules

388

TalkHowPolymorphism

Polymorphism

How does one represent SML's polymorphism?•
MLton's answer: monomorphise•

Prev Next

See Monomorphise.

Last edited on 2004-12-01 18:36:12 by MatthewFluet.

MLton Guide (20051202) TalkHowPolymorphism

389

TalkMLtonApproach

MLton's Approach

whole-program optimization using a simply-typed, first-order intermediate language•
ensures programs are not penalized for exploiting abstraction and modularity•

Prev Next

Last edited on 2004-12-01 18:36:17 by MatthewFluet.

MLton Guide (20051202) TalkMLtonApproach

390

TalkMLtonFeatures

MLton Features

Supports full Standard ML language and Basis Library•
Generates standalone executables•
Extensions•

Foreign function interface (SML to C, C to SML)♦
ML Basis system for programming in the very large♦
Extension libraries♦

Prev Next

See Features.

Last edited on 2005-01-28 21:49:50 by MatthewFluet.

MLton Guide (20051202) TalkMLtonFeatures

391

TalkMLtonHistory

MLton History

April 1997 Stephen Weeks wrote a defunctorizer for SML/NJ
Aug. 1997 Begin independent compiler (smlc)
Oct. 1997 Monomorphiser
Nov. 1997 Polyvariant higher-order control-flow analysis (10,000 lines)
March 1999 First release of MLton (48,006 lines)
Jan. 2002 MLton at 102,541 lines
Jan. 2003 MLton at 112,204 lines
Jan. 2004 MLton at 122,299 lines
Nov. 2004 MLton at 141,311 lines

Prev Next

See History.

Last edited on 2004-12-01 18:42:32 by MatthewFluet.

MLton Guide (20051202) TalkMLtonHistory

392

TalkStandardML

Standard ML

a high-level language makes•
a programmer's life easier♦
a compiler writer's life harder♦

perceived overheads of features discourage their use•
higher-order functions♦
polymorphic datatypes♦
separate modules♦

Prev Next

Also see Standard ML.

Last edited on 2005-01-18 15:02:29 by MatthewFluet.

MLton Guide (20051202) TalkStandardML

393

TalkTemplate

Title

Bullet•
Bullet•

Prev Next

Last edited on 2004-12-01 18:59:26 by MatthewFluet.

MLton Guide (20051202) TalkTemplate

394

TalkWholeProgram

Whole Program Compiler

Each of these techniques requires whole-program analysis•
But, additional benefits:•

eliminate (some) variablity in programming styles♦
specialize representations♦
simplifies and improves runtime system♦

Prev Next

Last edited on 2004-12-01 18:40:55 by MatthewFluet.

MLton Guide (20051202) TalkWholeProgram

395

ToMachine
ToMachine is a translation pass from the RSSA IntermediateLanguage to the Machine IntermediateLanguage.

Description

This pass converts from a RSSA program into a Machine program.

It uses AllocateRegisters, Chunkify, and ParallelMove.

Implementation

backend.sig backend.fun

Details and Notes

Because the MLton runtime system is shared by all codegens, it is most convenient to decide on stack layout
before any codegen takes over. In particular, we compute all the stack frame info for each RSSA function,
including stack size, garbage collector masks for each frame, etc. To do so, the Machine
IntermediateLanguage imagines an abstract machine with an infinite number of (pseudo-)registers of every
size. A liveness analysis determines, for each variable, whether or not it is live across a point where the
runtime system might take over (for example, any garbage collection point) or a non-tail call to another RSSA
function. Those that are live go on the stack, while those that aren't live go into psuedo-registers. From this
information, we know all we need to about each stack frame. On the downside, nothing further on is allowed
to change this stack info; it is set in stone.

Last edited on 2005-12-02 03:34:28 by StephenWeeks.

MLton Guide (20051202) ToMachine

396

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/backend.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/backend.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/backend.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/backend.fun?view=markup

ToRSSA
ToRSSA is a translation pass from the SSA2 IntermediateLanguage to the RSSA IntermediateLanguage.

Description

This pass converts a SSA2 program into a RSSA program.

It uses PackedRepresentation.

Implementation

ssa-to-rssa.sig ssa-to-rssa.fun

Details and Notes

Last edited on 2005-12-02 02:51:27 by StephenWeeks.

MLton Guide (20051202) ToRSSA

397

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/ssa-to-rssa.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/ssa-to-rssa.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/ssa-to-rssa.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/backend/ssa-to-rssa.fun?view=markup

ToSSA2
ToSSA2 is a translation pass from the SSA IntermediateLanguage to the SSA2 IntermediateLanguage.

Description

This pass is a simple conversion from a SSA program into a SSA2 program.

The only interesting portions of the translation are:

an SSA ref type becomes an object with a single mutable field•
array, vector, and ref are eliminated in favor of select and updates•
Case transfers separate discrimination and constructor argument selects•

Implementation

ssa-to-ssa2.sig ssa-to-ssa2.fun

Details and Notes

Last edited on 2005-12-02 02:53:59 by StephenWeeks.

MLton Guide (20051202) ToSSA2

398

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa-to-ssa2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa-to-ssa2.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa-to-ssa2.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/ssa-to-ssa2.fun?view=markup

TomMurphy
Tom Murphy VII is a long time MLton user and occasional contributor. He works on programming languages
for his PhD work at Carnegie Mellon in Pittsburgh, USA.

Home page

Last edited on 2005-09-27 05:20:33 by TomMurphy.

MLton Guide (20051202) TomMurphy

399

http://tom7.org
http://tom7.org

TrustedGroup
This list of users is for AccessControl.

HenryCejtin•
MatthewFluet•
StephenWeeks•

Last edited on 2004-11-29 19:54:24 by StephenWeeks.

MLton Guide (20051202) TrustedGroup

400

TypeChecking
MLton's type checker follows the Definition of SML closely, so you may find differences between MLton and
other SML compilers that do not follow the Definition so closely. In particular, SML/NJ has many deviations
from the Definition -- please see SMLNJDeviations for those that we are aware of.

In some respects MLton's type checker is more powerful than other SML compilers, so there are programs
that MLton accepts that are rejected by some other SML compilers. These kinds of programs fall into a few
simple categories.

MLton resolves flexible record patterns using a larger context than many other SML compilers. For
example, MLton accepts the following.

fun f {x, ...} = x
val _ = f {x = 13, y = "foo"}

•

MLton uses as large a context as possible to resolve the type of variables constrained by the value
restriction to be monotypes. For example, MLton accepts the following.

structure S:
sig

val f: int -> int
end =
struct

val f = (fn x => x) (fn y => y)
end

•

Type error messages

To aid in the understanding of type errors, MLton's type checker displays type errors differently than other
SML compilers. In particular, when two types are different, it is important for the programmer to easily
understand why they are different. So, MLton displays only the differences between two types that don't
match, using underscores for the parts that match. For example, if a function expects real * int but gets
real * real, the type error message would look like

expects: _ * [int]
but got: _ * [real]

As another aid to spotting differences, MLton places brackets [] around the parts of the types that don't
match. A common situation is when a function receives a different number of arguments than it expects, in
which case you might see an error like

expects: [int * real]
but got: [int * real * string]

The brackets make it easy to see that the problem is that the tuples have different numbers of components --
not that the components don't match. Contrast that with a case where a function receives the right number of
arguments, but in the wrong order.

expects: [int] * [real]
but got: [real] * [int]

Here the brackets make it easy to see that the components do not match.

MLton Guide (20051202) TypeChecking

401

We appreciate feedback on any type error messages that you find confusing, or suggestions you may have for
improvements to error messages.

The shortest/most-recent rule for type names

In a type error message, MLton often has a number of choices in deciding what name to use for a type. For
example, in the following type-incorrect program

type t = int
fun f (x: t) = x
val _ = f "foo"

MLton reports

Error: z.sml 3.9.
 Function applied to incorrect argument.
 expects: [t]
 but got: [string]
 in: f "foo"

MLton could have reported expects: [int] instead of expects: [t]. However, MLton uses the
shortest/most-recent rule in order to decide what type name to display. This rule means that, at the point of the
error, MLton first looks for the shortest name for a type in terms of number of structure identifiers (e.g.
foobar is shorter than A.t). Next, if there are multiple names of the same length, then MLton uses the most
recently defined name. It is this tiebreaker that causes MLton to prefer t to int in the above example.

In signature matching, most recently defined is taken to include all of the definitions introduced by the
structure. For example

structure S:
sig

val x: int
end =
struct

type t = int
val x = "foo"

end

MLton reports the error message

Error: z.sml 2.4.
 Variable type in structure disagrees with signature.
 variable: x
 structure: [string]
 signature: [t]

in which the [t] refers to the type defined in the structure, since that is more recent than the definition of
int.

In signatures with type equations, this can be somewhat confusing. For example.

structure S:
sig

type t
type u = t

MLton Guide (20051202) TypeChecking

402

end =
struct

type t = int
type u = char

end

MLton reports the error

Error: z.sml 2.4.
 Type definition in structure disagrees with signature.
 type: u
 structure: [u]
 signature: [t]

This error reflects the fact that the signature requires type u to equal t, but that in the structure, u is defined to
be char, whose most-recent name is u, while the signature requires u to be int, whose most-recent name is
t.

Last edited on 2005-12-02 04:26:13 by StephenWeeks.

MLton Guide (20051202) TypeChecking

403

TypeConstructor
In Standard ML, a type constructor is a function from types to types. Type constructors can be nullary,
meaning that they take no arguments, as in char, int, and real. Type constructors can be unary, meaning
that they take one argument, as in array, list, and vector. A program can define a new type constructor
in two ways: a type definition or a datatype declaration. User-defined type constructors can can take any
number of arguments.

datatype t = T of int * real (* 0 arguments *)
type 'a t = 'a * int (* 1 argument *)
datatype ('a, 'b) t = A | B of 'a * 'b (* 2 arguments *)
type ('a, 'b, 'c) t = 'a * ('b -> 'c) (* 3 arguments *)

Here are the syntax rules for type constructor application.

Type constructor application is written in postfix. So, one writes int list, not list int.•
Unary type constructors drop the parens, so one writes int list, not (int) list.•
Nullary type constructors drop the argument entirely, so one writes int, not () int.•
N-ary type constructors use tuple notation; for example, (int, real) t.•
Type constructor application associates to the left. So, int ref list is the same as
(int ref) list.

•

Last edited on 2005-12-02 04:26:23 by StephenWeeks.

MLton Guide (20051202) TypeConstructor

404

TypeVariableScope
In Standard ML, every type variable is scoped (or bound) at a particular point in the program. A type variable
can be either implicitly scoped or explicitly scoped. For example, 'a is implicitly scoped in

val id: 'a -> 'a = fn x => x

and is implicitly scoped in

val id = fn x: 'a => x

On the other hand, 'a is explicitly scoped in

val 'a id: 'a -> 'a = fn x => x

and is explicitly scoped in

val 'a id = fn x: 'a => x

A type variable can be scoped at a val or fun declaration. An SML type checker performs scope inference
on each top-level declaration to determine the scope of each implicitly scoped type variable. After scope
inference, every type variable is scoped at exactly one enclosing val or fun declaration. Scope inference
shows that the first and second example above are equivalent to the third and fourth example, respectively.

Section 4.6 of the Definition specifies precisely the scope of an implicitly scoped type variable. A free
occurrence of a type variable 'a in a declaration d is said to be unguarded in d if 'a is not part of a smaller
declaration. A type variable 'a is implicitly scoped at d if 'a is unguarded in d and 'a does not occur
unguarded in any declaration containing d.

Scope inference examples

In this example,

val id: 'a -> 'a = fn x => x

'a is unguarded in val id and does not occur unguarded in any containing declaration. Hence, 'a
is scoped at val id and the declaration is equivalent to the following.

val 'a id: 'a -> 'a = fn x => x

•

In this example,

val f = fn x => let exception E of 'a in E x end

'a is unguarded in val f and does not occur unguarded in any containing declaration. Hence, 'a is
scoped at val f and the declaration is equivalent to the following.

val 'a f = fn x => let exception E of 'a in E x end

•

In this example (taken from the Definition),

val x: int -> int = let val id: 'a -> 'a = fn z => z in id id end

•

MLton Guide (20051202) TypeVariableScope

405

'a occurs unguarded in val id, but not in val x. Hence, 'a is implicitly scoped at val id, and
the declaration is equivalent to the following.

val x: int -> int = let val 'a id: 'a -> 'a = fn z => z in id id end
In this example,

val f = (fn x: 'a => x) (fn y => y)

'a occurs unguarded in val f and does not occur unguarded in any containing declaration. Hence,
'a is implicitly scoped at val f, and the declaration is equivalent to the following.

val 'a f = (fn x: 'a => x) (fn y => y)

This does not type check due to the ValueRestriction.

•

In this example,

fun f x =
let

fun g (y: 'a) = if true then x else y
in

 g x
end

'a occurs unguarded in fun g, not in fun f. Hence, 'a is implicitly scoped at fun g, and the
declaration is equivalent to

fun f x =
let

fun 'a g (y: 'a) = if true then x else y
in

 g x
end

This fails to type check because x and y must have the same type, and hence 'a can not be
generalized at fun g. MLton reports

Error: scope.sml 3.7.
 Unable to generalize 'a.
 in: fun 'a g ((y): 'a) = (if true then x else y)

This problem could be fixed either by adding an explicit type constraint, as in fun f (x: 'a), or
by explicitly scoping 'a, as in fun 'a f x.

•

Restrictions on type variable scope

It is not allowed to scope a type variable within a declaration in which it is already in scope (see the last
restriction listed on page 9 of the Definition). For example, the following program is invalid.

fun 'a f (x: 'a) =
let

fun 'a g (y: 'a) = y
in

 ()
end

MLton Guide (20051202) TypeVariableScope

406

MLton reports

Error: z.sml 3.11.
 Type variable 'a scoped at an outer declaration.

This is an error even if the scoping is implicit. That is, the following program is invalid as well.

fun f (x: 'a) =
let

fun 'a g (y: 'a) = y
in

 ()
end

Last edited on 2005-12-02 03:01:09 by StephenWeeks.

MLton Guide (20051202) TypeVariableScope

407

Unicode
The current release of MLton does not support Unicode. We are working on adding support.

WideChar structure.•
UTF-8 encoded source files.•

There is no real support for Unicode in the Definition of Standard ML; there are only a few throw-away
sentences along the lines of "ASCII must be a subset of the character set in programs".

Neither is there real support for Unicode in the Standard ML Basis Library. The general consensus (which
includes the opinions of the editors of the Basis Library) is that the WideChar structure is insufficient for the
purposes of Unicode. There is no LargeChar structure, which in itself is a deficiency, since a programmer
can not program against the largest supported character size.

MLton has some preliminary support for 16 and 32 bit characters and strings. It is even possible to include
arbitrary Unicode characters in 32-bit strings using a \Uxxxxxxxx escape sequence. (This longer escape
sequence is a minor extension over the Definition which only allows \uxxxx.) This is by no means
completely satisfactory in terms of support for Unicode, but it is what is currently available.

There are periodic flurries of questions and discussion about Unicode in MLton/SML. In December 2004,
there was a discussion that led to some seemingly sound design decisions. The discussion started at:

http://mlton.org/pipermail/mlton/2004-December/026396.html

There is a good summary of points at:

http://mlton.org/pipermail/mlton/2004-December/026440.html

In November 2005, there was a followup discussion and the beginning of some coding.

http://mlton.org/pipermail/mlton/2005-November/028300.html

We are optimistic that support will appear in the next MLton release.

Also see

The fxp XML parser has some support for dealing with Unicode documents.

Last edited on 2005-12-02 04:26:33 by StephenWeeks.

MLton Guide (20051202) Unicode

408

http://mlton.org/pipermail/mlton/2004-December/026396.html
http://mlton.org/pipermail/mlton/2004-December/026396.html
http://mlton.org/pipermail/mlton/2004-December/026440.html
http://mlton.org/pipermail/mlton/2004-December/026440.html
http://mlton.org/pipermail/mlton/2005-November/028300.html
http://mlton.org/pipermail/mlton/2005-November/028300.html

UniversalType
A universal type is a type into which all other types can be embedded. Here's a Standard ML signature for a
universal type.

signature UNIVERSAL_TYPE =
sig

type t

val embed: unit -> ('a -> t) * (t -> 'a option)
end

The idea is that type t is the universal type and that each call to embed returns a new pair of functions
(inject, project), where inject embeds a value into the universal type and project extracts the
value from the universal type. A pair (inject, project) returned by embed works together in that
project u will return SOME v if and only if u was created by inject v. If u was created by a different
function inject', then project returns NONE.

Here's an example embedding integers and reals into a universal type.

functor Test (U: UNIVERSAL_TYPE): sig end =
struct

val (intIn: int -> U.t, intOut) = U.embed ()
val r: U.t ref = ref (intIn 13)
val s1 =

case intOut (!r) of
 NONE => "NONE"
 | SOME i => Int.toString i

val (realIn: real -> U.t, realOut) = U.embed ()
val () = r := realIn 13.0
val s2 =

case intOut (!r) of
 NONE => "NONE"
 | SOME i => Int.toString i

val s3 =
case realOut (!r) of

 NONE => "NONE"
 | SOME x => Real.toString x

val () = print (concat [s1, " ", s2, " ", s3, "\n"])
end

Applying Test to an appropriate implementation will print

13 NONE 13.0

Note that two different calls to embed on the same type return different embeddings.

Standard ML does not have explicit support for universal types; however, there are at least two ways to
implement them.

Implementation Using Exceptions

While the intended use of SML exceptions is for exception handling, an accidental feature of their design is
that the exn type is a universal type. The implementation relies on being able to declare exceptions locally to

MLton Guide (20051202) UniversalType

409

a function and on the fact that exceptions are generative.

structure U:> UNIVERSAL_TYPE =
struct

type t = exn

fun 'a embed () =
let

exception E of 'a
fun project (e: t): 'a option =

case e of
 E a => SOME a
 | _ => NONE

in
 (E, project)

end
end

Implementation Using Functions and References

structure U:> UNIVERSAL_TYPE =
struct

datatype t = T of {clear: unit -> unit,
 store: unit -> unit}

fun 'a embed () =
let

val r: 'a option ref = ref NONE
fun inject (a: 'a): t =

 T {clear = fn () => r := NONE,
 store = fn () => r := SOME a}

fun project (T {clear, store}): 'a option =
let

val () = store ()
val res = !r
val () = clear ()

in
 res

end
in

 (inject, project)
end

end

Note that due to the use of a shared ref cell, the above implementation is not thread safe.

One could try to simplify the above implementation by eliminating the clear function, making
type t = unit -> unit.

structure U:> UNIVERSAL_TYPE =
struct

type t = unit -> unit

fun 'a embed () =
let

val r: 'a option ref = ref NONE
fun inject (a: 'a): t = fn () => r := SOME a
fun project (f: t): 'a option = (r := NONE; f (); !r)

MLton Guide (20051202) UniversalType

410

in
 (inject, project)

end
end

While correct, this approach keeps the contents of the ref cell alive longer than necessary, which could cause a
space leak. The problem is in project, where the call to f stores some value in some ref cell r'. Perhaps
r' is the same ref cell as r, but perhaps not. If we do not clear r' before returning from project, then r'
will keep the value alive, even though it is useless.

Also see

PropertyList: Lisp-style property lists implemented with a universal type.•

Last edited on 2005-05-29 03:04:34 by VesaKarvonen.

MLton Guide (20051202) UniversalType

411

UnresolvedBugs
Here are the places where MLton deviates from the Definition of SML. In general, MLton complies with the
Definition quite closely, typically much more closely than other SML compilers (see, e.g., our list of
SML/NJ's deviations). In fact, the three deviations listed here are the only known deviations, and we have no
plans to fix them. If you find a deviation not listed here, please report a Bug.

We don't plan to fix these bugs because one of them (parsing nested cases) has historically never been
accepted by any SML compiler, while the other two clearly indicate problems in the Definition.

MLton does not correctly parse case expressions nested within other matches. For example, the
following fails.

fun f 0 y =
case x of

1 => 2
 | _ => 3
 | f _ y = 4

To do this in a program, simply parenthesize the case expression.

Allowing such expressions, although compliant with the Definition, would be a mistake, since using
parentheses is clearer and no SML compiler has ever allowed them. Furthermore, implementing this
would require serious yacc grammar rewriting followed by postprocessing.

•

MLton rejects rebinding of constructors with val rec declarations, as in

val rec NONE = fn () => ()

The Definition (bizarrely) requires this program to type check, but to raise Bind.

We have no plans to change this behavior, as the Definition's behavior is clearly an error, a mismatch
between the static semantics and the dynamic semantics.

•

MLton does not hide the equality aspect of types declared in abstype declarations. So, MLton accepts
programs like the following, while the Definition rejects them.

abstype t = T with end
val _ = fn (t1, t2 : t) => t1 = t2

abstype t = T with val a = T end
val _ = a = a

One consequence of this choice is that MLton accepts the following program, in accordance with the
Definition.

abstype t = T with val eq = op = end
val _ = fn (t1, t2 : t) => eq (t1, t2)

Other implementations will typically reject this program, because they make an early choice for the
type of eq to be ''a * ''a -> bool instead of t * t -> bool. The choice is
understandable, since the Definition accepts the following program.

abstype t = T with val eq = op = end
val _ = eq (1, 2)

•

MLton Guide (20051202) UnresolvedBugs

412

Last edited on 2005-12-02 03:06:59 by StephenWeeks.

MLton Guide (20051202) UnresolvedBugs

413

UnsafeStructure
This module is a subset of the Unsafe module provided by SML/NJ.

signature UNSAFE_MONO_ARRAY =
sig

type array
type elem

val create: int -> array
val sub: array * int -> elem
val update: array * int * elem -> unit

end

signature UNSAFE_MONO_VECTOR =
sig

type elem
type vector

val sub: vector * int -> elem
end

signature UNSAFE =
sig

structure Array:
sig

val create: int * 'a -> 'a array
val sub: 'a array * int -> 'a
val update: 'a array * int * 'a -> unit

end
structure CharArray: UNSAFE_MONO_ARRAY
structure CharVector: UNSAFE_MONO_VECTOR
structure Real64Array: UNSAFE_MONO_ARRAY
structure Vector:

sig
val sub: 'a vector * int -> 'a

end
structure Word8Array: UNSAFE_MONO_ARRAY
structure Word8Vector: UNSAFE_MONO_VECTOR

end

Last edited on 2005-01-26 20:29:31 by MatthewFluet.

MLton Guide (20051202) UnsafeStructure

414

Useless
Useless is an optimization pass for the SSA IntermediateLanguage, invoked from SSASimplify.

Description

This pass:

removes components of tuples that are constants (use unification)•
removes function arguments that are constants•
builds some kind of dependence graph where•

- a value of ground type is useful if it is an arg to a primitive - a tuple is useful if it contains a useful
component - a constructor is useful if it contains a useful component or is used in a Case transfer

If a useful tuple is coerced to another useful tuple, then all of their components must agree (exactly). It is
trivial to convert a useful value to a useless one.

Implementation

useless.sig useless.fun

Details and Notes

It is also trivial to convert a useful tuple to one of its useful components -- but this seems hard.

Suppose that you have a ref/array/vector that is useful, but the components aren't -- then the
components are converted to type unit, and any primitive args must be as well.

Unify all handler arguments so that raise/handle has a consistent calling convention.

Last edited on 2005-12-02 03:09:00 by StephenWeeks.

MLton Guide (20051202) Useless

415

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/useless.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/useless.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/useless.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/useless.fun?view=markup

Users
Here is a list of companies, projects, and courses that use or have used MLton. If you use MLton and are not
here, please add your project with a brief description and a link. Thanks.

Companies

Hardcore Processing uses MLton as a crosscompiler from Linux to Windows for graphics and
game software.

•

CEX3D Converter, a conversion program for 3D objects.♦
Interactive Showreel, which contains a crossplatform GUI-toolkit and a realtime renderer

for a subset of RenderMan written in Standard ML.
♦

various games♦
PolySpace Technologies builds their product that detects runtime errors in embedded systems based

on abstract interpretation.
•

Sourcelight Technologies uses MLton internally for prototyping and for processing databases as
part of their system that makes personalized movie recommendations.

•

Projects

ADATE, Automatic Design of Algorithms Through Evolution, a system for automatic
programming i.e., inductive inference of algorithms. ADATE can automatically generate non-trivial
and novel algorithms written in Standard ML.

•

CIL, a compiler for SML based on intersection and union types.•
ConCert, a project investigating certified code for grid computing.•
Cooperative Internet hosting tools•
Guugelhupf, a simple search engine.•
HaMLet a model implementation of Standard ML.•
Metis, a first-order prover used in the HOL4 theorem proving system.•
mlftpd, an ftp daemon written in SML. TomMurphy is also working on replacements for standard

network services in SML. He also uses MLton to build his entries (2001, 2002, 2004, 2005)
in the annual ICFP programming contest.

•

MLOPE, an offline partial evaluator for Standard ML.•
SMLNJtrans, a program for generating SML/NJ transcripts in LaTeX.•
SSA PRE, an implementation of Partial Redundancy Elimination for MLton.•
Tina (Time Petri net Analyzer)•
Twelf an implementation of the LF logical framework.•

Courses

Harvard CS-152, undergraduate programming languages.•
HÃ¸gskolen i Ã�stfold IAI30202, programming languages.•

Last edited on 2005-12-02 03:28:50 by StephenWeeks.

MLton Guide (20051202) Users

416

http://www.hardcoreprocessing.com/
http://www.hardcoreprocessing.com/
http://www.hardcoreprocessing.com/Freeware/MLTonWin32.html
http://www.hardcoreprocessing.com/Freeware/MLTonWin32.html
http://www.cex3d.net/
http://www.cex3d.net/
http://www.hardcoreprocessing.com/company/showreel/index.html
http://www.hardcoreprocessing.com/company/showreel/index.html
http://www.hardcoreprocessing.com/entertainment/index.html
http://www.hardcoreprocessing.com/entertainment/index.html
http://www.polyspace.com/
http://www.polyspace.com/
http://www.sourcelight.com/
http://www.sourcelight.com/
http://www-ia.hiof.no/%7Erolando/adate_intro.html
http://www-ia.hiof.no/%7Erolando/adate_intro.html
http://types.bu.edu/reports/Dim+Wes+Mul+Tur+Wel+Con:TIC-2000-LNCS.html
http://types.bu.edu/reports/Dim+Wes+Mul+Tur+Wel+Con:TIC-2000-LNCS.html
http://www.cs.cmu.edu/%7Econcert/
http://www.cs.cmu.edu/%7Econcert/
http://hcoop.sourceforge.net/
http://hcoop.sourceforge.net/
http://www.fantasy-coders.de/projects/gh/
http://www.fantasy-coders.de/projects/gh/
http://www.ps.uni-sb.de/hamlet/
http://www.ps.uni-sb.de/hamlet/
http://www.cl.cam.ac.uk/users/jeh1004/research/metis/
http://www.cl.cam.ac.uk/users/jeh1004/research/metis/
http://hol.sourceforge.net/
http://hol.sourceforge.net/
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/tom7misc/net/mlftpd
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/tom7misc/net/mlftpd
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/tom7misc/net/
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/tom7misc/net/
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/tom7misc/net/
http://www.cs.cmu.edu/~tom7/icfp2001/
http://www.cs.cmu.edu/~tom7/icfp2001/
http://www.cs.cmu.edu/~tom7/icfp2002/
http://www.cs.cmu.edu/~tom7/icfp2002/
http://www.cs.cmu.edu/~tom7/icfp2004/
http://www.cs.cmu.edu/~tom7/icfp2004/
http://www.cs.cmu.edu/~tom7/icfp2005/
http://www.cs.cmu.edu/~tom7/icfp2005/
http://www.informatik.uni-freiburg.de/proglang/research/software/mlope/
http://www.informatik.uni-freiburg.de/proglang/research/software/mlope/
http://www.cis.ksu.edu/~allen/smlnjtrans.html
http://www.cis.ksu.edu/~allen/smlnjtrans.html
http://www-2.cs.cmu.edu/%7Etom7/ssapre/
http://www-2.cs.cmu.edu/%7Etom7/ssapre/
http://www.laas.fr/tina
http://www.laas.fr/tina
http://www.twelf.org/
http://www.twelf.org/
http://www.eecs.harvard.edu/%7Enr/cs152/
http://www.eecs.harvard.edu/%7Enr/cs152/
http://www.ia-stud.hiof.no/%7Erolando/PL/
http://www.ia-stud.hiof.no/%7Erolando/PL/

ValueRestriction
The value restriction is a rule that governs when type inference is allowed to polymorphically generalize a
value declaration. In short, the value restriction says that generalization can only occur if the right-hand side
of an expression is syntactically a value. For example, in

val f = fn x => x
val _ = (f "foo"; f 13)

the expression fn x => x is syntactically a value, so f has polymorphic type 'a -> 'a and both calls to
f type check. On the other hand, in

val f = let in fn x => x end
val _ = (f "foo"; f 13)

the expression let in fn x => end end is not syntactically a value and so f can either have type
int -> int or string -> string, but not 'a -> 'a. Hence, the program does not type check.

The Definition of SML spells out precisely which expressions are syntactic values (it refers to such
expressions as non-expansive). An expression is a value if it is of one of the following forms.

a constant (13, "foo", 13.0, ...)•
a variable (x, y, ...)•
a function (fn x => e)•
the application of a constructor other than ref to a value (Foo v)•
a type constrained value (v: t)•
a tuple in which each field is a value (v1, v2, ...)•
a record in which each field is a value {l1 = v1, l2 = v2, ...} •
a list in which each element is a value [v1, v2, ...]•

Why the value restriction exists

The value restriction prevents a ref cell (or an array) from holding values of different types, which would
allow a value of one type to be cast to another and hence would break type safety. If the restriction were not in
place, the following program would type check.

val r: 'a option ref = ref NONE
val r1: string option ref = r
val r2: int option ref = r
val () = r1 := SOME "foo"
val v: int = valOf (!r2)

The first line violates the value restriction because ref NONE is not a value. All other lines are type correct.
By its last line, the program has cast the string "foo" to an integer. This breaks type safety, because now we
can add a string to an integer with an expression like v + 13. We could even be more devious, by adding the
following two lines, which allow us to threat the string "foo" as a function.

val r3: (int -> int) option ref = r
val v: int -> int = valOf (!r3)

Eliminating the explicit ref does nothing to fix the problem. For example, we could replace the declaration

MLton Guide (20051202) ValueRestriction

417

of r with the following.

val f: unit -> 'a option ref = fn () => ref NONE
val r: 'a option ref = f ()

The declaration of f is well typed, while the declaration of r violates the value restriction because f () is
not a value.

Unnecessarily rejected programs

Unfortunately, the value restriction rejects some programs that could be accepted.

val id: 'a -> 'a = fn x => x
val f: 'a -> 'a = id id

The type constraint on f requires f to be polymorphic, which is disallowed because id id is not a value.
MLton reports the following type error.

Error: z.sml 2.19.
 Can't bind type variable: 'a.
 in: val 'a (f): ('a -> 'a) = id id

MLton indicates the inability to make f polymorphic by saying that it can't bind the type variable 'a at the
declaration. MLton doesn't explicitly mention the value restriction, but that is the reason. If we leave the type
constraint off of f

val id: 'a -> 'a = fn x => x
val f = id id

then the program succeeds; however, MLton gives us the following warning.

Warning: z.sml 2.1.
 Unable to locally determine type of variable: f.
 type: ??? -> ???
 in: val f = id id

This warning indicates that MLton couldn't polymorphically generalize f, nor was there enough context using
f to determine its type. This in itself is not a type error, but it it is a hint that something is wrong with our
program. Using f provides enough context to eliminate the warning.

val id: 'a -> 'a = fn x => x
val f = id id
val _ = f 13

But attempting to use f as a polymorphic function will fail.

val id: 'a -> 'a = fn x => x
val f = id id
val _ = f 13
val _ = f "foo"

MLton Guide (20051202) ValueRestriction

418

Alternatives to the value restriction

There would be nothing wrong with treating f as polymorphic in

val id: 'a -> 'a = fn x => x
val f = id id

One might think that the value restriction could be relaxed, and that only types involving ref should be
disallowed. Unfortunately, the following example shows that even the type 'a -> 'a can cause problems.
If this program were allowed, then we could cast an integer to a string (or any other type).

val f: 'a -> 'a =
let

val r: 'a option ref = ref NONE
in

fn x =>
let

val y = !r
val () = r := SOME x

in
case y of

 NONE => x
 | SOME y => y

end
end

val _ = f 13
val _ = f "foo"

The previous version of Standard ML took a different approach (MilnerEtAl90, Tofte90,
ImperativeTypeVariable) than the value restriction. It encoded information in the type system about when ref
cells would be created, and used this to prevent a ref cell from holding multiple types. Although it allowed
more programs to be type checked, this approach had significant drawbacks. First, it was significantly more
complex, both for implementors and for programmers. Second, it had an unfortunate interaction with the
modularity, because information about ref usage was exposed in module signatures. This either prevented the
use of references for implementing a signature, or required information that one would like to keep hidden to
propagate across modules.

In the early nineties, Andrew Wright studied about 250,000 lines of existing SML code and discovered that it
did not make significant use of the extended typing ability, and proposed the value restriction as a simpler
alternative (Wright95). This was adopted in the revised Definition of SML.

Working with the value restriction

One technique for making code meet the value restriction is to eta-expand, which means replacing an
expression e of arrow type with fn z => e z (where z does not occur in e). We can make our id id
example type check follows.

val id: 'a -> 'a = fn x => x
val f: 'a -> 'a = fn z => (id id) z

This solution means that the computation (in this case id id) will be performed each time f is applied,
instead of just once when f is declared. In this case, that is not a problem, but it could be if the declaration of
f performs substantial computation or creates a shared data structure.

MLton Guide (20051202) ValueRestriction

419

Another technique that sometimes works is to move a monomorphic computation prior to a (would-be)
polymorphic declaration so that the expression is a value. Consider the following program, which fails due to
the value restriction.

datatype 'a t = A of string | B of 'a
val x: 'a t = A (if true then "yes" else "no")

It is easy to rewrite this program as

datatype 'a t = A of string | B of 'a
local

val s = if true then "yes" else "no"
in

val x: 'a t = A s
end

The following example (taken from Wright95) creates a ref cell to count the number of times a function is
called.

val count: ('a -> 'a) -> ('a -> 'a) * (unit -> int) =
fn f =>
let

val r = ref 0
in

 (fn x => (r := 1 + !r; f x), fn () => !r)
end

val id: 'a -> 'a = fn x => x
val (countId: 'a -> 'a, numCalls) = count id

The example does not type check, due to the value restriction. However, it is easy to rewrite the program,
staging the ref cell creation before the polymorphic code.

datatype t = T of int ref
val count1: unit -> t = fn () => T (ref 0)
val count2: t * ('a -> 'a) -> (unit -> int) * ('a -> 'a) =

fn (T r, f) => (fn () => !r, fn x => (r := 1 + !r; f x))
val id: 'a -> 'a = fn x => x
val t = count1 ()
val countId: 'a -> 'a = fn z => #2 (count2 (t, id)) z
val numCalls = #1 (count2 (t, id))

Of course, one can hide the constructor T inside a local or behind a signature.

Also see

ImperativeTypeVariable•

Last edited on 2005-12-02 03:12:47 by StephenWeeks.

MLton Guide (20051202) ValueRestriction

420

Variant
A variant is an arm of a datatype declaration. For example, the datatype

datatype t = A | B of int | C of real

has three variants: A, B, and C.

Last edited on 2005-12-02 03:13:02 by StephenWeeks.

MLton Guide (20051202) Variant

421

VesaKarvonen
Vesa Karvonen is a student at the University of Helsinki. His interests lie in the design and implementation
of programming languages.

Things he'd like to see for SML and hopes to be able to contribute towards:

A practical tool for documenting libraries. Preferably one that is based on extracting the
documentation from source code comments.

•

A good IDE. Possibly an enhanced SML mode (esml-mode) for Emacs. Google for SLIME video
to get an idea of what he'd like to see. Some specific notes:

•

show type at point♦
robust, consistent indentation♦
show documentation♦
jump to definition♦

Documented and cataloged libraries. Perhaps something like Boost, but for SML libraries.•

Last edited on 2005-08-12 13:52:37 by VesaKarvonen.

MLton Guide (20051202) VesaKarvonen

422

http://www.cs.helsinki.fi/index.en.html
http://www.cs.helsinki.fi/index.en.html
http://www.google.com/search?&q=SLIME+video
http://www.google.com/search?&q=SLIME+video
http://www.boost.org
http://www.boost.org

WantedPages
Pages that don't exist and the pages that link to them. Please help fill these in. Also see OrphanedPages.

CCodegen: Chunkify1.
CVS: Sources, Subversion2.
Closures: MLNLFFIImplementation3.
Codegen: Machine4.
Defunctionalization: ClosureConvert5.
FirstOrder: IntermediateLanguage, SSA, SSA26.
FlatLattice: CommonArg7.
HigherOrder: IntermediateLanguage8.
LambdaLift: SXMLSimplify9.
LookupConstants: Defunctorize10.
MLDoc: Libraries11.
MLLex: Documentation, Features, FrontEnd, Installation, Libraries12.
MLRISC: Libraries, PropertyList13.
MLYacc: Documentation, Features, FrontEnd, Installation, Libraries, MLBasisAvailableLibraries14.
PackWord: RayRacine15.
Papers: ZZZOrphanedPages16.
SimplyTyped: IntermediateLanguage, SSA, SSA217.
TypeInference: FirstClassPolymorphism18.
Uncurry: SXMLSimplify19.
Untyped: Machine20.
UserGuide: ZZZOrphanedPages21.
ZZA: CompilerPassTemplate22.
ZZB: CompilerPassTemplate23.
ZZZ: CompilerPassTemplate24.
ZZZNext: TalkTemplate25.
ZZZOtherPass: CompilerPassTemplate26.
ZZZPrev: TalkTemplate27.
ZZZSimplify: CompilerPassTemplate28.

Last edited on 2004-11-09 02:12:23 by StephenWeeks.

MLton Guide (20051202) WantedPages

423

WebSite
This web site is a Wiki and is implemented using MoinMoin. If you're new to Wikis or to MoinMoin, they
have a lot of help pages. We have customized the look and feel, so some of their descriptions may not
apply.

Next Steps

AccessControl. Who can edit what.•
CreatingPages.•
EditingPages.•
SystemInfo. What version of MoinMoin we use, plus more.•
WikiMacros. Special macros for this site.•
WikiTool. Edit pages with your favorite text editor.•

Site Maintenance

OrphanedPages. Pages that no other page links to. Please help by linking to these.•
WantedPages. Pages that don't exist and the pages that link to them. Please help fill these in.•
OldPages. Pages with the oldest modification times.•

PageSize. Pages sorted in decreasing order of size.•
RecentChanges. Pages that have been changed recently.•

Navigation

The box in the upper-right corner is to Google search the entire web site. Also in the upper right is a link to an
Index of all pages, sorted by page title.

You can also do a search of just the wiki.

Wiki full-text search
Display context of search results
Case-sensitive searching

Wiki title search

Last edited on 2004-12-03 00:40:23 by StephenWeeks.

MLton Guide (20051202) WebSite

424

http://moinmoin.wikiwikiweb.de/HelpContents
http://moinmoin.wikiwikiweb.de/HelpContents
http://mlton.org/OldPages
http://mlton.org/OldPages
http://mlton.org/RecentChanges
http://mlton.org/RecentChanges

WesleyTerpstra
Wesley W. Terpstra is a PhD student at the Technische Universität Darmstadt (Germany).

Research interests

Distributed systems (P2P)•
Number theory (Error-correcting codes)•

My interest in SML is centered on the fact the the language is able to directly express ideas from number
theory which are important for my work. Modules and Functors seem to be a very natural basis for
implementing many algebraic structures. MLton provides an ideal platform for actual implementation as it is
fast and has unboxed words.

Things I would like from MLton in the future:

Some better optimization of mathematical expressions•
IPv6 and multicast support•
A complete GUI toolkit like mGTK•
More supported platforms so that applications written under MLton have a wider audience•

Last edited on 2004-12-19 03:55:34 by WesleyTerpstra.

MLton Guide (20051202) WesleyTerpstra

425

WholeProgramOptimization
Whole-program optimization is a compilation technique in which optimizations operate over the entire
program. This allows the compiler many optimization opportunities that are not available when analyzing
modules separately (as with separate compilation).

Most of MLton's optimizations are whole-program optimizations. Because MLton compiles the whole
program at once, it can perform optimization across module boundaries. As a consequence, MLton often
reduces or eliminates the run-time penalty that arises with separate compilation of SML features such as
functors, modules, polymorphism, and higher-order functions. MLton takes advantage of having the entire
program to perform transformations such as: defunctorization, monomorphisation, higher-order control-flow
analysis, inlining, unboxing, argument flattening, redundant-argument removal, constant folding, and
representation selection. Whole-program compilation is an integral part of the design of MLton and is not
likely to change.

Last edited on 2004-12-06 06:01:10 by StephenWeeks.

MLton Guide (20051202) WholeProgramOptimization

426

WikiMacros
Here are the wiki macros available in addition to the usual MoinMoin ones.

[[Cite(anchor, text)]] displays text as a link to the corresponding reference on the
References page.
Examples: a paper

•

[[DownloadSVN(pathToFile)]] displays a download link to the ViewCVS page for
pathToFile.
Examples: Makefile , main.fun

•

[[IncludeSVN(pathToFile, type)]] textually includes the latest contents of
pathToFile, formatted with Enscript as type (as in the !#syntax processor). If type is
omitted, use the extension of pathToFile.
Example:

(* Copyright (C) 1999-2005 Henry Cejtin, Matthew Fluet, Suresh
 * Jagannathan, and Stephen Weeks.
 * Copyright (C) 1997-2000 NEC Research Institute.
 *
 * MLton is released under a BSD-style license.
 * See the file MLton-LICENSE for details.
 *)

structure Main = Main ()

val _ =
let

open Trace.Immediate
in

 debug := Out Out.error
 ; flagged ()
 ; on []

end

•

[[ViewSVN(pathToFile)]] displays a link to the ViewCVS page for pathToFile.
Examples: Makefile , main.fun

•

[[ViewSVNSDir(pathToDir)]] displays a link to the ViewCVS page for pathToDir.
Examples: main

•

Last edited on 2005-08-10 12:43:15 by MatthewFluet.

MLton Guide (20051202) WikiMacros

427

http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/Makefile
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/Makefile
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/mlton/main/main.fun
http://mlton.org/cgi-bin/viewsvn.cgi/*checkout*/mlton/tags/on-20051202-release/mlton/main/main.fun
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/Makefile?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/Makefile?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/main/main.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/main/main.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/main
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/main

WikiName
A WikiName is a word that uses capitalized words. WikiNames automatically become hyperlinks to the
WikiName's page.

Last edited on 2005-12-02 03:20:19 by StephenWeeks.

MLton Guide (20051202) WikiName

428

WikiTool
We have written a simple command-line tool that makes it possible to edit wiki pages using your favorite text
editor instead of within a browser text box. The tool provides a CVS/SVN-like command-line interface that
can be used to update local copies of files from the web and to commit local modifications to the web.

The tool is written in SML (of course) and is [http://mlton.org/cgi-bin/viewcvs.cgi/mlton/wiki/ available in
the MLton CVS]. To compile it, you need to have the latest SVN of the MLton library sources, and point the
MLB path variable MLTON_SRC_LIB at the lib/mlton dir in the sources.

Here's a quick tutorial on how to use the tool

Create a new directory for your local copy of the wiki files.1.
In that directory, login.

 wiki login http://mlton.org StephenWeeks <my password>

2.

Checkout (the raw wiki markup) files with commands like:

 wiki checkout Home
 wiki checkout Index Documentation

3.

Edit the files using your favorite text editor.4.
Commit your changes with a command like

 wiki commit UserGuide

5.

Logout.

 wiki logout

6.

That's it for the simple use. There are also other commands like cvs.

Download the new version of a file from the web if there is one.

 wiki update UserGuide

•

Schedule a new file to be added (must be later committed, just like CVS) .

 wiki add NewFile

•

Rename a page

 wiki rename OldFile NewFile

•

Remove a page

 wiki remove DeletedFile

•

Attach files to a page

 wiki attach <file> <attachment>

•

Detach files to a page

 wiki detach <file> <attachment>

•

rename and remove shouldn't work for most people on mlton.org because of the way our
AccessControl is set up.

MLton Guide (20051202) WikiTool

429

http://mlton.org/cgi-bin/viewcvs.cgi/mlton/wiki/
http://mlton.org/cgi-bin/viewcvs.cgi/mlton/wiki/

This code is a two-day hack and is not widely used. But we've found it useful. Please send bug reports to
MLton@mlton.org.

Last edited on 2005-12-02 03:21:22 by StephenWeeks.

MLton Guide (20051202) WikiTool

430

mailto:MLton@mlton.org
mailto:MLton@mlton.org

XML
XML is an IntermediateLanguage, translated from CoreML by Defunctorize, optimized by XMLSimplify, and
translated by Monomorphise to SXML.

Description

XML is polymorphic, higher-order, with flat patterns. Every XML expression is annotated with its type.
Polymorphic generalization is made explicit through type variables annotating val and fun declarations.
Polymorphic instantiation is made explicit by specifying type arguments at variable references. XML patterns
can not be nested and can not contain wildcards, constraints, flexible records, or layering.

Implementation

xml.sig xml.fun
xml-tree.sig xml-tree.fun

Type Checking

XML also has a type checker, used for debugging. At present, the type checker is also the best specification of
the type system of XML. If you need more details, the type checker (type-check.sig , type-check.fun), is
pretty short.

Since the type checker does not affect the output of the compiler (unless it reports an error), it can be turned
off. The type checker recursively descends the program, checking that the type annotating each node is the
same as the type synthesized from the types of the expressions subnodes.

Details and Notes

XML uses the same atoms as Core ML, hence all identifiers (constructors, variables, etc.) are unique and can
have properties attached to them. Finally, XML has a simplifier (XMLShrink), which implements a reduction
system.

Types

XML types are either type variables or applications of n-ary type constructors. There are many utility
functions for constructing and destructing types involving built-in type constructors.

A type scheme binds list of type variables in a type. The only interesting operation on type schemes is the
application of a type scheme to a list of types, which performs a simultaneous substitution of the type
arguments for the bound type variables of the scheme. For the purposes of type checking, it is necessary to
know the type scheme of variables, constructors, and primitives. This is done by associating the scheme with
the identifier using its property list. This approach is used instead of the more traditional environment
approach for reasons of speed.

MLton Guide (20051202) XML

431

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/xml.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/xml.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/xml.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/xml.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/xml-tree.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/xml-tree.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/xml-tree.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/xml-tree.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/type-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/type-check.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/type-check.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/type-check.fun?view=markup

XmlTree

Before defining XML, the signature for language XML, we need to define an auxiliary signature XML_TREE,
that contains the datatype declarations for the expression trees of XML. This is done solely for the purpose of
modularity -- it allows the simplifier and type checker to be defined by separate functors (which take a
structure matching XML_TREE). Then, Xml is defined as the signature for a module containing the expression
trees, the simplifier, and the type checker.

Both constructors and variables can have type schemes, hence both constructor and variable references
specify the instance of the scheme at the point of references. An instance is specified with a vector of types,
which corresponds to the type variables in the scheme.

XML patterns are flat (i.e. not nested). A pattern is a constructor with an optional argument variable. Patterns
only occur in case expressions. To evaluate a case expression, compare the test value sequentially against
each pattern. For the first pattern that matches, destruct the value if necessary to bind the pattern variables and
evaluate the corresponding expression. If no pattern matches, evaluate the default. All patterns of a case
statement are of the same variant of Pat.t, although this is not enforced by ML's type system. The type
checker, however, does enforce this. Because tuple patterns are irrefutable, there will only ever be one tuple
pattern in a case expression and there will be no default.

XML contains value, exception, and mutually recursive function declarations. There are no free type variables
in XML. All type variables are explicitly bound at either a value or function declaration. At some point in the
future, exception declarations may go away, and exceptions may be represented with a single datatype
containing a unit ref component to implement genericity.

XML expressions are like those of CoreML, with the following exceptions. There are no records expressions.
After type inference, all records (some of which may have originally been tuples in the source) are converted
to tuples, because once flexible record patterns have been resolved, tuple labels are superfluous. Tuple
components are ordered based on the field ordering relation. XML eta expands primitives and constructors so
that there are always fully applied. Hence, the only kind of value of arrow type is a lambda. This property is
useful for flow analysis and later in code generation.

An XML program is a list of toplevel datatype declarations and a body expression. Because datatype
declarations are not generative, the defunctorizer can safely move them to toplevel.

Last edited on 2005-12-02 04:26:42 by StephenWeeks.

MLton Guide (20051202) XML

432

XMLShrink
XMLShrink is an optimization pass for the XML IntermediateLanguage, invoked from XMLSimplify.

Description

This pass performs optimizations based on a reduction system.

Implementation

shrink.sig shrink.fun

Details and Notes

The simplifier is based on Shrinking Lambda Expressions in Linear Time.

The source program may contain functions that are only called once, or not even called at all. Match
compilation introduces many such functions. In order to reduce the program size, speed up later phases, and
improve the flow analysis, a source to source simplifier is run on XML after type inference and match
compilation.

The simplifier implements the reductions shown below. The reductions eliminate unnecessary declarations
(see the side constraint in the figure), applications where the function is immediate, and case statements where
the test is immediate. Declarations can be eliminated only when the expression is nonexpansive (see Section
4.7 of the Definition), which is a syntactic condition that ensures that the expression has no effects
(assignments, raises, or nontermination). The reductions on case statements do not show the other irrelevant
cases that may exist. The reductions were chosen so that they were strongly normalizing and so that they
never increased tree size.

let x = e1 in e2

reduces to

e2 [x -> e1]

if e1 is a constant or variable or if e1 is nonexpansive and x occurs zero or one time in e2

•

(fn x => e1) e2

reduces to

let x = e2 in e1

•

e1 handle e2

reduces to

e1

•

MLton Guide (20051202) XMLShrink

433

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/shrink.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/shrink.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/shrink.fun?view=markup

if e1 is nonexpansive

case let d in e end of p1 => e1 ...

reduces to

let d in case e of p1 => e1 ... end

•

case C e1 of C x => e2

reduces to

let x = e1 in e2

•

Last edited on 2005-12-02 03:22:57 by StephenWeeks.

MLton Guide (20051202) XMLShrink

434

XMLSimplify
The optimization passes for the XML IntermediateLanguage are collected and controlled by the
XmlSimplify functor (xml-simplify.sig , xml-simplify.fun).

The following optimization passes are implemented:

XMLSimplifyTypes•
XMLShrink•

The optimization passes can be controlled from the command-line by the options

diag-pass <pass> -- keep diagnostic info for pass•
drop-pass <pass> -- omit optimization pass•
keep-pass <pass> -- keep the results of pass•
xml-passes <passes> -- xml optimization passes•

Last edited on 2005-08-19 15:22:55 by MatthewFluet.

MLton Guide (20051202) XMLSimplify

435

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/xml-simplify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/xml-simplify.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/xml-simplify.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/xml-simplify.fun?view=markup

XMLSimplifyTypes
XMLSimplifyTypes is an optimization pass for the XML IntermediateLanguage, invoked from
XMLSimplify.

Description

This pass simplifies types in an XML program, eliminating all unused type arguments.

Implementation

simplify-types.sig simplify-types.fun

Details and Notes

It first computes a simple fixpoint on all the datatype declarations to determine which datatype tycon
args are actually used. Then it does a single pass over the program to determine which polymorphic
declaration type variables are used, and rewrites types to eliminate unused type arguments.

This pass should eliminate any spurious duplication that the Monomorphise pass might perform due to
phantom types.

Last edited on 2005-12-02 03:24:10 by StephenWeeks.

MLton Guide (20051202) XMLSimplifyTypes

436

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/simplify-types.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/simplify-types.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/simplify-types.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/xml/simplify-types.fun?view=markup

ZZZOrphanedPages
The contents of these pages have been moved to other pages.

These templates are used by other pages.

CompilerPassTemplate•
TalkTemplate•

Last edited on 2005-12-02 05:11:48 by MatthewFluet.

MLton Guide (20051202) ZZZOrphanedPages

437

http://mlton.org/MatthewFluet

Zone
Zone is an optimization pass for the SSA2 IntermediateLanguage, invoked from SSA2Simplify.

Description

This pass breaks large SSA2 functions into zones, which are connected subgraphs of the dominator tree. For
each zone, at the node that dominates the zone (the "zone root"), it places a tuple collecting all of the live
variables at that node. It replaces any variables used in that zone with offsets from the tuple. The goal is to
decrease the liveness information in large SSA functions.

Implementation

zone.sig zone.fun

Details and Notes

Compute strongly-connected components to avoid put tuple constructions in loops.

There are two (expert) flags that govern the use of this pass

 -max-function-size <n>
 -zone-cut-depth <n>

Zone splitting only works when the number of basic blocks in a function is > n. The n used to cut the
dominator tree is set by -zone-cut-depth.

There is currently no attempt to be safe-for-space. That is, the tuples are not restricted to containing only
"small" values.

In the HOL program, the particular problem is the main function, which has 161,783 blocks and 257,519
variables -- the product of those two numbers being about 41 billion. Now, we're not likely going to need that
much space since we use a sparse representation. But even 1/100th would really hurt. And of course this rules
out bit vectors.

Last edited on 2005-12-02 03:24:42 by StephenWeeks.

MLton Guide (20051202) Zone

438

http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/zone.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/zone.sig?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/zone.fun?view=markup
http://mlton.org/cgi-bin/viewsvn.cgi/mlton/tags/on-20051202-release/mlton/ssa/zone.fun?view=markup

eXene
eXene is a multi-threaded X Window System toolkit written in ConcurrentML.

There is a group at K-State working toward eXene 2.0.

Last edited on 2005-12-01 04:04:43 by StephenWeeks.

MLton Guide (20051202) eXene

439

http://people.cs.uchicago.edu/~jhr/eXene/index.html
http://people.cs.uchicago.edu/~jhr/eXene/index.html
http://www.cis.ksu.edu/~stough/eXene/
http://www.cis.ksu.edu/~stough/eXene/

fxp
fxp is an XML parser written in Standard ML.

It has a patch to compile with MLton.

Last edited on 2005-09-09 19:15:51 by StephenWeeks.

MLton Guide (20051202) fxp

440

http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxp/
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxp/
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxp/mlton.html
http://atseidl2.informatik.tu-muenchen.de/~berlea/Fxp/mlton.html

mGTK
mGTK is a wrapper for GTK+, a GUI toolkit.

We recommend using mGTK 0.93, which is not listed on their home page, but is available at the file release
page. To test it, after unpacking, do cd examples; make mlton, after which you should be able to run
the many examples (signup-mlton, listview-mlton, ...).

Also see

Glade•

Last edited on 2005-12-02 03:33:24 by StephenWeeks.

MLton Guide (20051202) mGTK

441

http://mgtk.sourceforge.net/
http://mgtk.sourceforge.net/
http://www.gtk.org/
http://www.gtk.org/
http://sourceforge.net/project/showfiles.php?group_id=23226&package_id=16523
http://sourceforge.net/project/showfiles.php?group_id=23226&package_id=16523
http://sourceforge.net/project/showfiles.php?group_id=23226&package_id=16523

	MLton Guide (20051202)
	Home - MLton Standard ML Compiler (SML Compiler)
	Index - MLton Standard ML Compiler (SML Compiler)
	AST - MLton Standard ML Compiler (SML Compiler)
	AccessControl - MLton Standard ML Compiler (SML Compiler)
	AdmitsEquality - MLton Standard ML Compiler (SML Compiler)
	Alice - MLton Standard ML Compiler (SML Compiler)
	AllocateRegisters - MLton Standard ML Compiler (SML Compiler)
	AndreiFormiga - MLton Standard ML Compiler (SML Compiler)
	BasisLibrary - MLton Standard ML Compiler (SML Compiler)
	Bug - MLton Standard ML Compiler (SML Compiler)
	Bugs20041109 - MLton Standard ML Compiler (SML Compiler)
	CKitLibrary - MLton Standard ML Compiler (SML Compiler)
	CallGraph - MLton Standard ML Compiler (SML Compiler)
	CallingFromCToSML - MLton Standard ML Compiler (SML Compiler)
	CallingFromSMLToC - MLton Standard ML Compiler (SML Compiler)
	CallingFromSMLToCFunctionPointer - MLton Standard ML Compiler (SML Compiler)
	ChrisClearwater - MLton Standard ML Compiler (SML Compiler)
	Chunkify - MLton Standard ML Compiler (SML Compiler)
	Closure - MLton Standard ML Compiler (SML Compiler)
	ClosureConvert - MLton Standard ML Compiler (SML Compiler)
	CommonArg - MLton Standard ML Compiler (SML Compiler)
	CommonBlock - MLton Standard ML Compiler (SML Compiler)
	CommonSubexp - MLton Standard ML Compiler (SML Compiler)
	CompilationManager - MLton Standard ML Compiler (SML Compiler)
	CompileTimeOptions - MLton Standard ML Compiler (SML Compiler)
	CompilerOverview - MLton Standard ML Compiler (SML Compiler)
	CompilerPassTemplate - MLton Standard ML Compiler (SML Compiler)
	ConcurrentML - MLton Standard ML Compiler (SML Compiler)
	ConcurrentMLImplementation - MLton Standard ML Compiler (SML Compiler)
	ConstantPropagation - MLton Standard ML Compiler (SML Compiler)
	Contact - MLton Standard ML Compiler (SML Compiler)
	Contify - MLton Standard ML Compiler (SML Compiler)
	CoreML - MLton Standard ML Compiler (SML Compiler)
	CoreMLSimplify - MLton Standard ML Compiler (SML Compiler)
	CreatingPages - MLton Standard ML Compiler (SML Compiler)
	Credits - MLton Standard ML Compiler (SML Compiler)
	CrossCompiling - MLton Standard ML Compiler (SML Compiler)
	DeadCode - MLton Standard ML Compiler (SML Compiler)
	DeepFlatten - MLton Standard ML Compiler (SML Compiler)
	DefineTypeBeforeUse - MLton Standard ML Compiler (SML Compiler)
	DefinitionOfStandardML - MLton Standard ML Compiler (SML Compiler)
	Defunctorize - MLton Standard ML Compiler (SML Compiler)
	Developers - MLton Standard ML Compiler (SML Compiler)
	Development - MLton Standard ML Compiler (SML Compiler)
	Documentation - MLton Standard ML Compiler (SML Compiler)
	Drawbacks - MLton Standard ML Compiler (SML Compiler)
	Eclipse - MLton Standard ML Compiler (SML Compiler)
	EditingPages - MLton Standard ML Compiler (SML Compiler)
	Elaborate - MLton Standard ML Compiler (SML Compiler)
	Emacs - MLton Standard ML Compiler (SML Compiler)
	Enscript - MLton Standard ML Compiler (SML Compiler)
	EqualityType - MLton Standard ML Compiler (SML Compiler)
	EqualityTypeVariable - MLton Standard ML Compiler (SML Compiler)
	Experimental - MLton Standard ML Compiler (SML Compiler)
	FAQ - MLton Standard ML Compiler (SML Compiler)
	Features - MLton Standard ML Compiler (SML Compiler)
	FirstClassPolymorphism - MLton Standard ML Compiler (SML Compiler)
	Flatten - MLton Standard ML Compiler (SML Compiler)
	ForLoops - MLton Standard ML Compiler (SML Compiler)
	ForeignFunctionInterface - MLton Standard ML Compiler (SML Compiler)
	ForeignFunctionInterfaceSyntax - MLton Standard ML Compiler (SML Compiler)
	ForeignFunctionInterfaceTypes - MLton Standard ML Compiler (SML Compiler)
	FrontEnd - MLton Standard ML Compiler (SML Compiler)
	FunctionalRecordUpdate - MLton Standard ML Compiler (SML Compiler)
	GarbageCollection - MLton Standard ML Compiler (SML Compiler)
	GenerativeDatatype - MLton Standard ML Compiler (SML Compiler)
	GenerativeException - MLton Standard ML Compiler (SML Compiler)
	Glade - MLton Standard ML Compiler (SML Compiler)
	Globalize - MLton Standard ML Compiler (SML Compiler)
	GnuMP - MLton Standard ML Compiler (SML Compiler)
	HaMLet - MLton Standard ML Compiler (SML Compiler)
	HenryCejtin - MLton Standard ML Compiler (SML Compiler)
	History - MLton Standard ML Compiler (SML Compiler)
	HowProfilingWorks - MLton Standard ML Compiler (SML Compiler)
	Identifier - MLton Standard ML Compiler (SML Compiler)
	Immutable - MLton Standard ML Compiler (SML Compiler)
	ImperativeTypeVariable - MLton Standard ML Compiler (SML Compiler)
	ImplementExceptions - MLton Standard ML Compiler (SML Compiler)
	ImplementHandlers - MLton Standard ML Compiler (SML Compiler)
	ImplementProfiling - MLton Standard ML Compiler (SML Compiler)
	ImplementSuffix - MLton Standard ML Compiler (SML Compiler)
	InfixingOperators - MLton Standard ML Compiler (SML Compiler)
	Inline - MLton Standard ML Compiler (SML Compiler)
	InsertLimitChecks - MLton Standard ML Compiler (SML Compiler)
	InsertSignalChecks - MLton Standard ML Compiler (SML Compiler)
	Installation - MLton Standard ML Compiler (SML Compiler)
	IntermediateLanguage - MLton Standard ML Compiler (SML Compiler)
	IntroduceLoops - MLton Standard ML Compiler (SML Compiler)
	JesperLouisAndersen - MLton Standard ML Compiler (SML Compiler)
	JohnnyAndersen - MLton Standard ML Compiler (SML Compiler)
	KnownCase - MLton Standard ML Compiler (SML Compiler)
	LambdaFree - MLton Standard ML Compiler (SML Compiler)
	LanguageChanges - MLton Standard ML Compiler (SML Compiler)
	Lazy - MLton Standard ML Compiler (SML Compiler)
	Libraries - MLton Standard ML Compiler (SML Compiler)
	License - MLton Standard ML Compiler (SML Compiler)
	LineDirective - MLton Standard ML Compiler (SML Compiler)
	LocalFlatten - MLton Standard ML Compiler (SML Compiler)
	LocalRef - MLton Standard ML Compiler (SML Compiler)
	LoopInvariant - MLton Standard ML Compiler (SML Compiler)
	ML - MLton Standard ML Compiler (SML Compiler)
	MLBasis - MLton Standard ML Compiler (SML Compiler)
	MLBasisAnnotationExamples - MLton Standard ML Compiler (SML Compiler)
	MLBasisAnnotations - MLton Standard ML Compiler (SML Compiler)
	MLBasisAvailableLibraries - MLton Standard ML Compiler (SML Compiler)
	MLBasisExamples - MLton Standard ML Compiler (SML Compiler)
	MLBasisPathMap - MLton Standard ML Compiler (SML Compiler)
	MLBasisSyntaxAndSemantics - MLton Standard ML Compiler (SML Compiler)
	MLKit - MLton Standard ML Compiler (SML Compiler)
	MLNLFFI - MLton Standard ML Compiler (SML Compiler)
	MLNLFFIImplementation - MLton Standard ML Compiler (SML Compiler)
	MLj - MLton Standard ML Compiler (SML Compiler)
	MLtonArray - MLton Standard ML Compiler (SML Compiler)
	MLtonBinIO - MLton Standard ML Compiler (SML Compiler)
	MLtonCont - MLton Standard ML Compiler (SML Compiler)
	MLtonExn - MLton Standard ML Compiler (SML Compiler)
	MLtonFinalizable - MLton Standard ML Compiler (SML Compiler)
	MLtonGC - MLton Standard ML Compiler (SML Compiler)
	MLtonIO - MLton Standard ML Compiler (SML Compiler)
	MLtonIntInf - MLton Standard ML Compiler (SML Compiler)
	MLtonItimer - MLton Standard ML Compiler (SML Compiler)
	MLtonPlatform - MLton Standard ML Compiler (SML Compiler)
	MLtonPointer - MLton Standard ML Compiler (SML Compiler)
	MLtonProcEnv - MLton Standard ML Compiler (SML Compiler)
	MLtonProcess - MLton Standard ML Compiler (SML Compiler)
	MLtonProfile - MLton Standard ML Compiler (SML Compiler)
	MLtonRandom - MLton Standard ML Compiler (SML Compiler)
	MLtonRlimit - MLton Standard ML Compiler (SML Compiler)
	MLtonRusage - MLton Standard ML Compiler (SML Compiler)
	MLtonSignal - MLton Standard ML Compiler (SML Compiler)
	MLtonSocket - MLton Standard ML Compiler (SML Compiler)
	MLtonStructure - MLton Standard ML Compiler (SML Compiler)
	MLtonSyslog - MLton Standard ML Compiler (SML Compiler)
	MLtonTextIO - MLton Standard ML Compiler (SML Compiler)
	MLtonThread - MLton Standard ML Compiler (SML Compiler)
	MLtonVector - MLton Standard ML Compiler (SML Compiler)
	MLtonWeak - MLton Standard ML Compiler (SML Compiler)
	MLtonWord - MLton Standard ML Compiler (SML Compiler)
	MLtonWorld - MLton Standard ML Compiler (SML Compiler)
	Machine - MLton Standard ML Compiler (SML Compiler)
	ManualPage - MLton Standard ML Compiler (SML Compiler)
	MatchCompilation - MLton Standard ML Compiler (SML Compiler)
	MatchCompile - MLton Standard ML Compiler (SML Compiler)
	MatthewFluet - MLton Standard ML Compiler (SML Compiler)
	MichaelNorrish - MLton Standard ML Compiler (SML Compiler)
	MikeThomas - MLton Standard ML Compiler (SML Compiler)
	MoinMoin - MLton Standard ML Compiler (SML Compiler)
	Monomorphise - MLton Standard ML Compiler (SML Compiler)
	MoscowML - MLton Standard ML Compiler (SML Compiler)
	Multi - MLton Standard ML Compiler (SML Compiler)
	Mutable - MLton Standard ML Compiler (SML Compiler)
	OCaml - MLton Standard ML Compiler (SML Compiler)
	ObjectOrientedProgramming - MLton Standard ML Compiler (SML Compiler)
	OpenGL - MLton Standard ML Compiler (SML Compiler)
	OperatorPrecedence - MLton Standard ML Compiler (SML Compiler)
	OptionalArguments - MLton Standard ML Compiler (SML Compiler)
	OrphanedPages - MLton Standard ML Compiler (SML Compiler)
	OtherSites - MLton Standard ML Compiler (SML Compiler)
	Overloading - MLton Standard ML Compiler (SML Compiler)
	PackedRepresentation - MLton Standard ML Compiler (SML Compiler)
	PageSize - MLton Standard ML Compiler (SML Compiler)
	ParallelMove - MLton Standard ML Compiler (SML Compiler)
	Performance - MLton Standard ML Compiler (SML Compiler)
	PhantomType - MLton Standard ML Compiler (SML Compiler)
	PlatformSpecificNotes - MLton Standard ML Compiler (SML Compiler)
	PolyEqual - MLton Standard ML Compiler (SML Compiler)
	PolyML - MLton Standard ML Compiler (SML Compiler)
	PolymorphicEquality - MLton Standard ML Compiler (SML Compiler)
	Polyvariance - MLton Standard ML Compiler (SML Compiler)
	Poplog - MLton Standard ML Compiler (SML Compiler)
	PortingMLton - MLton Standard ML Compiler (SML Compiler)
	PrecedenceParse - MLton Standard ML Compiler (SML Compiler)
	Printf - MLton Standard ML Compiler (SML Compiler)
	PrintfGentle - MLton Standard ML Compiler (SML Compiler)
	ProductType - MLton Standard ML Compiler (SML Compiler)
	Profiling - MLton Standard ML Compiler (SML Compiler)
	ProfilingAllocation - MLton Standard ML Compiler (SML Compiler)
	ProfilingCounts - MLton Standard ML Compiler (SML Compiler)
	ProfilingTheStack - MLton Standard ML Compiler (SML Compiler)
	ProfilingTime - MLton Standard ML Compiler (SML Compiler)
	Projects - MLton Standard ML Compiler (SML Compiler)
	Pronounce - MLton Standard ML Compiler (SML Compiler)
	PropertyList - MLton Standard ML Compiler (SML Compiler)
	RSSA - MLton Standard ML Compiler (SML Compiler)
	RSSAShrink - MLton Standard ML Compiler (SML Compiler)
	RSSASimplify - MLton Standard ML Compiler (SML Compiler)
	RayRacine - MLton Standard ML Compiler (SML Compiler)
	Redundant - MLton Standard ML Compiler (SML Compiler)
	RedundantTests - MLton Standard ML Compiler (SML Compiler)
	RefFlatten - MLton Standard ML Compiler (SML Compiler)
	References - MLton Standard ML Compiler (SML Compiler)
	Regions - MLton Standard ML Compiler (SML Compiler)
	ReleaseChecklist - MLton Standard ML Compiler (SML Compiler)
	RemoveUnused - MLton Standard ML Compiler (SML Compiler)
	Restore - MLton Standard ML Compiler (SML Compiler)
	RunTimeOptions - MLton Standard ML Compiler (SML Compiler)
	RunningOnCygwin - MLton Standard ML Compiler (SML Compiler)
	RunningOnDarwin - MLton Standard ML Compiler (SML Compiler)
	RunningOnFreeBSD - MLton Standard ML Compiler (SML Compiler)
	RunningOnLinux - MLton Standard ML Compiler (SML Compiler)
	RunningOnMinGW - MLton Standard ML Compiler (SML Compiler)
	RunningOnNetBSD - MLton Standard ML Compiler (SML Compiler)
	RunningOnOpenBSD - MLton Standard ML Compiler (SML Compiler)
	RunningOnPowerPC - MLton Standard ML Compiler (SML Compiler)
	RunningOnSolaris - MLton Standard ML Compiler (SML Compiler)
	RunningOnSparc - MLton Standard ML Compiler (SML Compiler)
	SMLNET - MLton Standard ML Compiler (SML Compiler)
	SMLNJ - MLton Standard ML Compiler (SML Compiler)
	SMLNJDeviations - MLton Standard ML Compiler (SML Compiler)
	SMLNJLibrary - MLton Standard ML Compiler (SML Compiler)
	SMLofNJStructure - MLton Standard ML Compiler (SML Compiler)
	SSA - MLton Standard ML Compiler (SML Compiler)
	SSA2 - MLton Standard ML Compiler (SML Compiler)
	SSA2Simplify - MLton Standard ML Compiler (SML Compiler)
	SSASimplify - MLton Standard ML Compiler (SML Compiler)
	SXML - MLton Standard ML Compiler (SML Compiler)
	SXMLShrink - MLton Standard ML Compiler (SML Compiler)
	SXMLSimplify - MLton Standard ML Compiler (SML Compiler)
	ScopeInference - MLton Standard ML Compiler (SML Compiler)
	SelfCompiling - MLton Standard ML Compiler (SML Compiler)
	Serialization - MLton Standard ML Compiler (SML Compiler)
	ShowBasis - MLton Standard ML Compiler (SML Compiler)
	Shrink - MLton Standard ML Compiler (SML Compiler)
	SimplifyTypes - MLton Standard ML Compiler (SML Compiler)
	Sources - MLton Standard ML Compiler (SML Compiler)
	SpaceSafety - MLton Standard ML Compiler (SML Compiler)
	StandardML - MLton Standard ML Compiler (SML Compiler)
	StandardMLBooks - MLton Standard ML Compiler (SML Compiler)
	StandardMLHistory - MLton Standard ML Compiler (SML Compiler)
	StandardMLImplementations - MLton Standard ML Compiler (SML Compiler)
	StandardMLPortability - MLton Standard ML Compiler (SML Compiler)
	StandardMLTutorials - MLton Standard ML Compiler (SML Compiler)
	StephenWeeks - MLton Standard ML Compiler (SML Compiler)
	StyleGuide - MLton Standard ML Compiler (SML Compiler)
	Subversion - MLton Standard ML Compiler (SML Compiler)
	SureshJagannathan - MLton Standard ML Compiler (SML Compiler)
	Survey - MLton Standard ML Compiler (SML Compiler)
	SurveyDone - MLton Standard ML Compiler (SML Compiler)
	Swerve - MLton Standard ML Compiler (SML Compiler)
	SyntacticConventions - MLton Standard ML Compiler (SML Compiler)
	SystemInfo - MLton Standard ML Compiler (SML Compiler)
	TILT - MLton Standard ML Compiler (SML Compiler)
	Talk - MLton Standard ML Compiler (SML Compiler)
	TalkDiveIn - MLton Standard ML Compiler (SML Compiler)
	TalkFolkLore - MLton Standard ML Compiler (SML Compiler)
	TalkFromSMLTo - MLton Standard ML Compiler (SML Compiler)
	TalkHowHigherOrder - MLton Standard ML Compiler (SML Compiler)
	TalkHowModules - MLton Standard ML Compiler (SML Compiler)
	TalkHowPolymorphism - MLton Standard ML Compiler (SML Compiler)
	TalkMLtonApproach - MLton Standard ML Compiler (SML Compiler)
	TalkMLtonFeatures - MLton Standard ML Compiler (SML Compiler)
	TalkMLtonHistory - MLton Standard ML Compiler (SML Compiler)
	TalkStandardML - MLton Standard ML Compiler (SML Compiler)
	TalkTemplate - MLton Standard ML Compiler (SML Compiler)
	TalkWholeProgram - MLton Standard ML Compiler (SML Compiler)
	ToMachine - MLton Standard ML Compiler (SML Compiler)
	ToRSSA - MLton Standard ML Compiler (SML Compiler)
	ToSSA2 - MLton Standard ML Compiler (SML Compiler)
	TomMurphy - MLton Standard ML Compiler (SML Compiler)
	TrustedGroup - MLton Standard ML Compiler (SML Compiler)
	TypeChecking - MLton Standard ML Compiler (SML Compiler)
	TypeConstructor - MLton Standard ML Compiler (SML Compiler)
	TypeVariableScope - MLton Standard ML Compiler (SML Compiler)
	Unicode - MLton Standard ML Compiler (SML Compiler)
	UniversalType - MLton Standard ML Compiler (SML Compiler)
	UnresolvedBugs - MLton Standard ML Compiler (SML Compiler)
	UnsafeStructure - MLton Standard ML Compiler (SML Compiler)
	Useless - MLton Standard ML Compiler (SML Compiler)
	Users - MLton Standard ML Compiler (SML Compiler)
	ValueRestriction - MLton Standard ML Compiler (SML Compiler)
	Variant - MLton Standard ML Compiler (SML Compiler)
	VesaKarvonen - MLton Standard ML Compiler (SML Compiler)
	WantedPages - MLton Standard ML Compiler (SML Compiler)
	WebSite - MLton Standard ML Compiler (SML Compiler)
	WesleyTerpstra - MLton Standard ML Compiler (SML Compiler)
	WholeProgramOptimization - MLton Standard ML Compiler (SML Compiler)
	WikiMacros - MLton Standard ML Compiler (SML Compiler)
	WikiName - MLton Standard ML Compiler (SML Compiler)
	WikiTool - MLton Standard ML Compiler (SML Compiler)
	XML - MLton Standard ML Compiler (SML Compiler)
	XMLShrink - MLton Standard ML Compiler (SML Compiler)
	XMLSimplify - MLton Standard ML Compiler (SML Compiler)
	XMLSimplifyTypes - MLton Standard ML Compiler (SML Compiler)
	ZZZOrphanedPages - MLton Standard ML Compiler (SML Compiler)
	Zone - MLton Standard ML Compiler (SML Compiler)
	eXene - MLton Standard ML Compiler (SML Compiler)
	fxp - MLton Standard ML Compiler (SML Compiler)
	mGTK - MLton Standard ML Compiler (SML Compiler)

