graphviz-2999.18.1.2: Bindings to Graphviz for graph visualisation.

Copyright(c) Ivan Lazar Miljenovic
License3-Clause BSD-style
MaintainerIvan.Miljenovic@gmail.com
Safe HaskellNone
LanguageHaskell2010

Data.GraphViz.Types.Generalised

Contents

Description

The generalised Dot representation most closely matches the implementation of actual Dot code, as it places no restrictions on ordering of elements, etc. As such it should be able to parse any existing Dot code (taking into account the parsing limitations/assumptions).

The sample graph could be implemented (this is actually a prettied version of parsing in the Dot code) as:

DotGraph { strictGraph = False
         , directedGraph = True
         , graphID = Just (Str "G")
         , graphStatements = Seq.fromList [ SG $ DotSG { isCluster = True
                                                       , subGraphID = Just (Int 0)
                                                       , subGraphStmts = Seq.fromList [ GA $ GraphAttrs [style filled]
                                                                                      , GA $ GraphAttrs [color LightGray]
                                                                                      , GA $ NodeAttrs [style filled, color White]
                                                                                      , DE $ DotEdge "a0" "a1" []
                                                                                      , DE $ DotEdge "a1" "a2" []
                                                                                      , DE $ DotEdge "a2" "a3" []
                                                                                      , GA $ GraphAttrs [textLabel "process #1"]]}
                                          , SG $ DotSG { isCluster = True
                                                       , subGraphID = Just (Int 1)
                                                       , subGraphStmts = fromList [ GA $ NodeAttrs [style filled]
                                                                                  , DE $ DotEdge "b0" "b1" []
                                                                                  , DE $ DotEdge "b1" "b2" []
                                                                                  , DE $ DotEdge "b2" "b3" []
                                                                                  , GA $ GraphAttrs [textLabel "process #2"]
                                                                                  , GA $ GraphAttrs [color Blue]]}
                                          , DE $ DotEdge "start" "a0" []
                                          , DE $ DotEdge "start" "b0" []
                                          , DE $ DotEdge "a1" "b3" []
                                          , DE $ DotEdge "b2" "a3" []
                                          , DE $ DotEdge "a3" "a0" []
                                          , DE $ DotEdge "a3" "end" []
                                          , DE $ DotEdge "b3" "end" []
                                          , DN $ DotNode "start" [shape MDiamond]
                                          , DN $ DotNode "end" [shape MSquare]]}

Synopsis

Documentation

data DotGraph n #

The internal representation of a generalised graph in Dot form.

Constructors

DotGraph 

Fields

Instances

Functor DotGraph #

Assumed to be an injective mapping function.

Methods

fmap :: (a -> b) -> DotGraph a -> DotGraph b #

(<$) :: a -> DotGraph b -> DotGraph a #

(Ord n, PrintDot n, ParseDot n) => PPDotRepr DotGraph n # 
(Ord n, ParseDot n) => ParseDotRepr DotGraph n # 
(Ord n, PrintDot n) => PrintDotRepr DotGraph n # 
Ord n => DotRepr DotGraph n # 
Ord n => FromGeneralisedDot DotGraph n # 
Eq n => Eq (DotGraph n) # 

Methods

(==) :: DotGraph n -> DotGraph n -> Bool #

(/=) :: DotGraph n -> DotGraph n -> Bool #

Ord n => Ord (DotGraph n) # 

Methods

compare :: DotGraph n -> DotGraph n -> Ordering #

(<) :: DotGraph n -> DotGraph n -> Bool #

(<=) :: DotGraph n -> DotGraph n -> Bool #

(>) :: DotGraph n -> DotGraph n -> Bool #

(>=) :: DotGraph n -> DotGraph n -> Bool #

max :: DotGraph n -> DotGraph n -> DotGraph n #

min :: DotGraph n -> DotGraph n -> DotGraph n #

Read n => Read (DotGraph n) # 
Show n => Show (DotGraph n) # 

Methods

showsPrec :: Int -> DotGraph n -> ShowS #

show :: DotGraph n -> String #

showList :: [DotGraph n] -> ShowS #

ParseDot n => ParseDot (DotGraph n) # 
PrintDot n => PrintDot (DotGraph n) # 

class DotRepr dg n => FromGeneralisedDot dg n where #

This class is useful for being able to parse in a dot graph as a generalised one, and then convert it to your preferred representation.

This can be seen as a semi-inverse of fromCanonical.

Minimal complete definition

fromGeneralised

Methods

fromGeneralised :: DotGraph n -> dg n #

Sub-components of a DotGraph.

data DotStatement n #

Constructors

GA GlobalAttributes 
SG (DotSubGraph n) 
DN (DotNode n) 
DE (DotEdge n) 

data DotSubGraph n #

Re-exported from Data.GraphViz.Types.

data GraphID #

A polymorphic type that covers all possible ID values allowed by Dot syntax. Note that whilst the ParseDot and PrintDot instances for String will properly take care of the special cases for numbers, they are treated differently here.

Constructors

Str Text 
Num Number 

data GlobalAttributes #

Represents a list of top-level list of Attributes for the entire graph/sub-graph. Note that GraphAttrs also applies to DotSubGraphs.

Note that Dot allows a single Attribute to be listed on a line; if this is the case then when parsing, the type of Attribute it is determined and that type of GlobalAttribute is created.

Constructors

GraphAttrs 

Fields

NodeAttrs 

Fields

EdgeAttrs 

Fields

data DotNode n #

A node in DotGraph.

Constructors

DotNode 

Instances

Functor DotNode # 

Methods

fmap :: (a -> b) -> DotNode a -> DotNode b #

(<$) :: a -> DotNode b -> DotNode a #

Eq n => Eq (DotNode n) # 

Methods

(==) :: DotNode n -> DotNode n -> Bool #

(/=) :: DotNode n -> DotNode n -> Bool #

Ord n => Ord (DotNode n) # 

Methods

compare :: DotNode n -> DotNode n -> Ordering #

(<) :: DotNode n -> DotNode n -> Bool #

(<=) :: DotNode n -> DotNode n -> Bool #

(>) :: DotNode n -> DotNode n -> Bool #

(>=) :: DotNode n -> DotNode n -> Bool #

max :: DotNode n -> DotNode n -> DotNode n #

min :: DotNode n -> DotNode n -> DotNode n #

Read n => Read (DotNode n) # 
Show n => Show (DotNode n) # 

Methods

showsPrec :: Int -> DotNode n -> ShowS #

show :: DotNode n -> String #

showList :: [DotNode n] -> ShowS #

ParseDot n => ParseDot (DotNode n) # 
PrintDot n => PrintDot (DotNode n) # 

data DotEdge n #

An edge in DotGraph.

Constructors

DotEdge 

Fields

Instances

Functor DotEdge # 

Methods

fmap :: (a -> b) -> DotEdge a -> DotEdge b #

(<$) :: a -> DotEdge b -> DotEdge a #

Eq n => Eq (DotEdge n) # 

Methods

(==) :: DotEdge n -> DotEdge n -> Bool #

(/=) :: DotEdge n -> DotEdge n -> Bool #

Ord n => Ord (DotEdge n) # 

Methods

compare :: DotEdge n -> DotEdge n -> Ordering #

(<) :: DotEdge n -> DotEdge n -> Bool #

(<=) :: DotEdge n -> DotEdge n -> Bool #

(>) :: DotEdge n -> DotEdge n -> Bool #

(>=) :: DotEdge n -> DotEdge n -> Bool #

max :: DotEdge n -> DotEdge n -> DotEdge n #

min :: DotEdge n -> DotEdge n -> DotEdge n #

Read n => Read (DotEdge n) # 
Show n => Show (DotEdge n) # 

Methods

showsPrec :: Int -> DotEdge n -> ShowS #

show :: DotEdge n -> String #

showList :: [DotEdge n] -> ShowS #

ParseDot n => ParseDot (DotEdge n) # 
PrintDot n => PrintDot (DotEdge n) #