contains 206 rules |
System SettingsgroupContains rules that check correct system settings. |
contains 146 rules |
Installing and Maintaining SoftwaregroupThe following sections contain information on
security-relevant choices during the initial operating system
installation process and the setup of software
updates. |
contains 14 rules |
Disk PartitioninggroupTo ensure separation and protection of data, there
are top-level system directories which should be placed on their
own physical partition or logical volume. The installer's default
partitioning scheme creates separate logical volumes for
/ , /boot , and swap .
- If starting with any of the default layouts, check the box to
"Review and modify partitioning." This allows for the easy creation
of additional logical volumes inside the volume group already
created, though it may require making
/ 's logical volume smaller to
create space. In general, using logical volumes is preferable to
using partitions because they can be more easily adjusted
later. - If creating a custom layout, create the partitions mentioned in
the previous paragraph (which the installer will require anyway),
as well as separate ones described in the following sections.
If a system has already been installed, and the default
partitioning scheme was used, it is possible but nontrivial to
modify it to create separate logical volumes for the directories
listed above. The Logical Volume Manager (LVM) makes this possible.
See the LVM HOWTO at http://tldp.org/HOWTO/LVM-HOWTO/ for more
detailed information on LVM. |
contains 2 rules |
Ensure /var/log Located On Separate Partitionrule
System logs are stored in the /var/log directory.
Ensure that it has its own partition or logical
volume at installation time, or migrate it using LVM.
Rationale:
Placing /var/log in its own partition
enables better separation between log files
and other files in /var/ .
|
Ensure /var/log/audit Located On Separate Partitionrule
Audit logs are stored in the /var/log/audit directory. Ensure that it
has its own partition or logical volume at installation time, or migrate it
later using LVM. Make absolutely certain that it is large enough to store all
audit logs that will be created by the auditing daemon.
Rationale:
Placing /var/log/audit in its own partition
enables better separation between audit files
and other files, and helps ensure that
auditing cannot be halted due to the partition running out
of space.
|
Software Integrity Checkinggroup
Both the AIDE (Advanced Intrusion Detection Environment)
software and the RPM package management system provide
mechanisms for verifying the integrity of installed software.
AIDE uses snapshots of file metadata (such as hashes) and compares these
to current system files in order to detect changes.
The RPM package management system can conduct integrity
checks by comparing information in its metadata database with
files installed on the system.
Integrity checking cannot prevent intrusions,
but can detect that they have occurred. Requirements
for software integrity checking may be highly dependent on
the environment in which the system will be used. Snapshot-based
approaches such as AIDE may induce considerable overhead
in the presence of frequent software updates.
|
contains 6 rules |
Verify Integrity with AIDEgroupAIDE conducts integrity checks by comparing information about
files with previously-gathered information. Ideally, the AIDE database is
created immediately after initial system configuration, and then again after any
software update. AIDE is highly configurable, with further configuration
information located in /usr/share/doc/aide-VERSION .
|
contains 3 rules |
Install AIDErule
Install the AIDE package with the command:
$ sudo yum install aide
Rationale:
The AIDE package must be installed if it is to be available for integrity checking.
Remediation script:
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command install aide
|
Build and Test AIDE DatabaseruleRun the following command to generate a new database:
$ sudo /usr/sbin/aide --init
By default, the database will be written to the file /var/lib/aide/aide.db.new.gz .
Storing the database, the configuration file /etc/aide.conf , and the binary
/usr/sbin/aide (or hashes of these files), in a secure location (such as on read-only media) provides additional assurance about their integrity.
The newly-generated database can be installed as follows:
$ sudo cp /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz
To initiate a manual check, run the following command:
$ sudo /usr/sbin/aide --check
If this check produces any unexpected output, investigate.
Rationale:
For AIDE to be effective, an initial database of "known-good" information about files
must be captured and it should be able to be verified against the installed files.
Remediation script:/usr/sbin/aide --init
|
Configure Periodic Execution of AIDErule
To implement a daily execution of AIDE at 4:05am using cron, add the following line to /etc/crontab :
05 4 * * * root /usr/sbin/aide --check
AIDE can be executed periodically through other means; this is merely one example.
Rationale:
By default, AIDE does not install itself for periodic execution. Periodically
running AIDE is necessary to reveal unexpected changes in installed files.
identifiers:
CCE-26952-2 references:
CM-3(d), CM-3(e), CM-6(d), CM-6(3), SC-28, SI-7, 374, 416, 1069, 1263, 1297, 1589, Req-11.5, 1.3.1 Remediation script:echo "05 4 * * * root /usr/sbin/aide --check" >> /etc/crontab
|
Verify Integrity with RPMgroupThe RPM package management system includes the ability
to verify the integrity of installed packages by comparing the
installed files with information about the files taken from the
package metadata stored in the RPM database. Although an attacker
could corrupt the RPM database (analogous to attacking the AIDE
database as described above), this check can still reveal
modification of important files. To list which files on the system differ from what is expected by the RPM database:
$ rpm -qVa
See the man page for rpm to see a complete explanation of each column.
|
contains 2 rules |
Verify and Correct File Permissions with RPMrule
Discretionary access control is weakened if a user or group has access
permissions to system files and directories greater than the default.
The RPM package management system can check file access permissions
of installed software packages, including many that are important
to system security.
Verify that the file permissions, ownership, and gruop membership of system files
and commands match vendor values. Check the file permissions, ownership, and group
membership with the following command:
$ sudo rpm -Va | grep '^.M'
Output indicates files that do not match vendor defaults. After locating a file with incorrect permissions, run the following command to determine which package owns it:
$ rpm -qf FILENAME
Next, run the following command to reset its permissions to
the correct values:
$ sudo rpm --setperms PACKAGENAME
warning
Note: Due to a bug in the gdm package, the
RPM verify command may continue to fail even after file permissions have been
correctly set on /var/log/gdm . This is being tracked in Red Hat
Bugzilla #1275532.
Rationale:
Permissions on system binaries and configuration files that are too generous
could allow an unauthorized user to gain privileges that they should not have.
The permissions set by the vendor should be maintained. Any deviations from
this baseline should be investigated.
identifiers:
CCE-27209-6 references:
AC-6, CM-6(d), CM-6(3), 1493, 1494, 1495, Req-11.5, 1.2.6, 6.1.3, 6.1.4, 6.1.5, 6.1.6, 6.1.7, 6.1.8, 6.1.9, 6.2.3, RHEL-07-010010 Remediation script:
# Declare array to hold list of RPM packages we need to correct permissions for
declare -a SETPERMS_RPM_LIST
# Create a list of files on the system having permissions different from what
# is expected by the RPM database
FILES_WITH_INCORRECT_PERMS=($(rpm -Va --nofiledigest | grep '^.M'))
# For each file path from that list:
# * Determine the RPM package the file path is shipped by,
# * Include it into SETPERMS_RPM_LIST array
for FILE_PATH in "${FILES_WITH_INCORRECT_PERMS[@]}"
do
RPM_PACKAGE=$(rpm -qf "$FILE_PATH")
SETPERMS_RPM_LIST=("${SETPERMS_RPM_LIST[@]}" "$RPM_PACKAGE")
done
# Remove duplicate mention of same RPM in $SETPERMS_RPM_LIST (if any)
SETPERMS_RPM_LIST=( $(echo "${SETPERMS_RPM_LIST[@]}" | sort -n | uniq) )
# For each of the RPM packages left in the list -- reset its permissions to the
# correct values
for RPM_PACKAGE in "${SETPERMS_RPM_LIST[@]}"
do
rpm --setperms "${RPM_PACKAGE}"
done
|
Verify File Hashes with RPMruleWithout cryptographic integrity protections, system
executables and files can be altered by unauthorized users without
detection.
The RPM package management system can check the hashes of
installed software packages, including many that are important to system
security.
To verify that the cryptographic hash of system files and commands match vendor
values, run the following command to list which files on the system
have hashes that differ from what is expected by the RPM database:
$ rpm -Va | grep '^..5'
A "c" in the second column indicates that a file is a configuration file, which
may appropriately be expected to change. If the file was not expected to
change, investigate the cause of the change using audit logs or other means.
The package can then be reinstalled to restore the file.
Run the following command to determine which package owns the file:
$ rpm -qf FILENAME
The package can be reinstalled from a yum repository using the command:
$ sudo yum reinstall PACKAGENAME
Alternatively, the package can be reinstalled from trusted media using the command:
$ sudo rpm -Uvh PACKAGENAME
Rationale:
The hashes of important files like system executables should match the
information given by the RPM database. Executables with erroneous hashes could
be a sign of nefarious activity on the system. |
Disable Prelinkingrule
The prelinking feature changes binaries in an attempt to decrease their startup
time. In order to disable it, change or add the following line inside the file
/etc/sysconfig/prelink :
PRELINKING=no
Next, run the following command to return binaries to a normal, non-prelinked state:
$ sudo /usr/sbin/prelink -ua
Rationale:
Because the prelinking feature changes binaries, it can interfere with the
operation of certain software and/or modes such as AIDE, FIPS, etc.
Remediation script:#
# Disable prelinking altogether
#
if grep -q ^PRELINKING /etc/sysconfig/prelink
then
sed -i 's/PRELINKING.*/PRELINKING=no/g' /etc/sysconfig/prelink
else
echo -e "\n# Set PRELINKING=no per security requirements" >> /etc/sysconfig/prelink
echo "PRELINKING=no" >> /etc/sysconfig/prelink
fi
#
# Undo previous prelink changes to binaries
#
/usr/sbin/prelink -ua
|
GNOME Desktop Environmentgroup
GNOME is a graphical desktop environment bundled with many Linux distributions that
allow users to easily interact with the operating system graphically rather than
textually. The GNOME Graphical Display Manager (GDM) provides login, logout, and user
switching contexts as well as display server management.
GNOME is developed by the GNOME Project and is considered the default
Red Hat Graphical environment.
For more information on GNOME and the GNOME Project, see https://www.gnome.org
|
contains 6 rules |
Configure GNOME Screen LockinggroupIn the default GNOME3 desktop, the screen can be locked
by selecting the user name in the far right corner of the main panel and
selecting Lock.
The following sections detail commands to enforce idle activation of the screensaver,
screen locking, a blank-screen screensaver, and an idle activation time.
Because users should be trained to lock the screen when they
step away from the computer, the automatic locking feature is only
meant as a backup.
The root account can be screen-locked; however, the root account should
never be used to log into an X Windows environment and should only
be used to for direct login via console in emergency circumstances.
For more information about enforcing preferences in the GNOME3 environment using the DConf
configuration system, see http://wiki.gnome.org/dconf and
the man page dconf(1) . For Red Hat specific information on configuring DConf
settings, see https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Desktop_Migration_and_Administration_Guide/part-Configuration_and_Administration.html
|
contains 4 rules |
Set GNOME3 Screensaver Inactivity Timeoutrule
The idle time-out value for inactivity in the GNOME3 desktop is configured via the idle-delay
setting must be set under an appropriate configuration file(s) in the /etc/dconf/db/local.d directory
and locked in /etc/dconf/db/local.d/locks directory to prevent user modification.
For example, to configure the system for a 15 minute delay, add the following to
/etc/dconf/db/local.d/00-security-settings :
[org/gnome/desktop/session]
idle-delay=900
Once the setting has been added, add a lock to
/etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/desktop/session/idle-delay
After the settings have been set, run dconf update .
Rationale:
A session time-out lock is a temporary action taken when a user stops work and moves away from
the immediate physical vicinity of the information system but does not logout because of the
temporary nature of the absence. Rather than relying on the user to manually lock their operating
system session prior to vacating the vicinity, GNOME3 can be configured to identify when
a user's session has idled and take action to initiate a session lock.
Remediation script:
inactivity_timeout_value="900"
# Define constants to be reused below
ORG_GNOME_DESKTOP_SESSION="org/gnome/desktop/session"
SSG_DCONF_IDLE_DELAY_FILE="/etc/dconf/db/local.d/10-scap-security-guide"
SESSION_LOCKS_FILE="/etc/dconf/db/local.d/locks/session"
IDLE_DELAY_DEFINED="FALSE"
# First update '[org/gnome/desktop/session] idle-delay' settings in
# /etc/dconf/db/local.d/* if already defined
for FILE in /etc/dconf/db/local.d/*
do
if grep -q -d skip "$ORG_GNOME_DESKTOP_SESSION" "$FILE"
then
if grep 'idle-delay' "$FILE"
then
sed -i "s/idle-delay=.*/idle-delay=uint32 ${inactivity_timeout_value}/g" "$FILE"
IDLE_DELAY_DEFINED="TRUE"
fi
fi
done
# Then define '[org/gnome/desktop/session] idle-delay' setting
# if still not defined yet
if [ "$IDLE_DELAY_DEFINED" != "TRUE" ]
then
echo "" >> $SSG_DCONF_IDLE_DELAY_FILE
echo "[org/gnome/desktop/session]" >> $SSG_DCONF_IDLE_DELAY_FILE
echo "idle-delay=uint32 ${inactivity_timeout_value}" >> $SSG_DCONF_IDLE_DELAY_FILE
fi
# Verify if 'idle-delay' modification is locked. If not, lock it
if ! grep -q "^/${ORG_GNOME_DESKTOP_SESSION}/idle-delay$" /etc/dconf/db/local.d/locks/*
then
# Check if "$SESSION_LOCK_FILE" exists. If not, create it.
if [ ! -f "$SESSION_LOCKS_FILE" ]
then
touch "$SESSION_LOCKS_FILE"
fi
echo "/${ORG_GNOME_DESKTOP_SESSION}/idle-delay" >> "$SESSION_LOCKS_FILE"
fi
|
Enable GNOME3 Screensaver Idle Activationrule
To activate the screensaver in the GNOME3 desktop after a period of inactivity,
add or set idle-activation-enabled to true in
/etc/dconf/db/local.d/00-security-settings . For example:
[org/gnome/desktop/screensaver]
idle_activation_enabled=true
Once the setting has been added, add a lock to
/etc/dconf/db/gdm.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/desktop/screensaver/idle-activation-enabled
After the settings have been set, run dconf update .
Rationale:
A session time-out lock is a temporary action taken when a user stops work and moves away from the immediate
physical vicinity of the information system but does not logout because of the temporary nature of the absence.
Rather than relying on the user to manually lock their operating system session prior to vacating the vicinity,
GNOME desktops can be configured to identify when a user's session has idled and take action to initiate the
session lock.
Enabling idle activation of the screensaver ensures the screensaver will
be activated after the idle delay. Applications requiring continuous,
real-time screen display (such as network management products) require the
login session does not have administrator rights and the display station is located in a
controlled-access area.
Remediation script:
# Define constants to be reused below
ORG_GNOME_DESKTOP_SCREENSAVER="org/gnome/desktop/screensaver"
SSG_DCONF_IDLE_ACTIVATION_FILE="/etc/dconf/db/local.d/10-scap-security-guide"
SCREENSAVER_LOCKS_FILE="/etc/dconf/db/local.d/locks/screensaver"
IDLE_ACTIVATION_DEFINED="FALSE"
# First update '[org/gnome/desktop/screensaver] idle-activation-enabled' settings in
# /etc/dconf/db/local.d/* if already defined
for FILE in /etc/dconf/db/local.d/*
do
if grep -q -d skip "$ORG_GNOME_DESKTOP_SCREENSAVER" "$FILE"
then
if grep 'idle-activation-enabled' "$FILE"
then
sed -i "s/idle-activation-enabled=.*/idle-activation-enabled=true/g" "$FILE"
IDLE_ACTIVATION_DEFINED="TRUE"
fi
fi
done
# Then define '[org/gnome/desktop/screensaver] idle-activation-enabled' setting
# if still not defined yet
if [ "$IDLE_ACTIVATION_DEFINED" != "TRUE" ]
then
echo "" >> $SSG_DCONF_IDLE_ACTIVATION_FILE
echo "[org/gnome/desktop/screensaver]" >> $SSG_DCONF_IDLE_ACTIVATION_FILE
echo "idle-activation-enabled=true" >> $SSG_DCONF_IDLE_ACTIVATION_FILE
fi
# Verify if 'idle-activation-enabled' modification is locked. If not, lock it
if ! grep -q "^/${ORG_GNOME_DESKTOP_SCREENSAVER}/idle-activation-enabled$" /etc/dconf/db/local.d/locks/*
then
# Check if "$SCREENSAVER_LOCK_FILE" exists. If not, create it.
if [ ! -f "$SCREENSAVER_LOCKS_FILE" ]
then
touch "$SCREENSAVER_LOCKS_FILE"
fi
echo "/${ORG_GNOME_DESKTOP_SCREENSAVER}/idle-activation-enabled" >> "$SCREENSAVER_LOCKS_FILE"
fi
|
Enable GNOME3 Screensaver Lock After Idle Periodrule
To activate locking of the screensaver in the GNOME3 desktop when it is activated,
add or set lock-enabled to true and lock-delay to 0 in
/etc/dconf/db/local.d/00-security-settings . For example:
[org/gnome/desktop/screensaver]
lock-enabled=true
lock-delay=0
Once the settings have been added, add a lock to
/etc/dconf/db/gdm.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/desktop/screensaver/lock-enabled
/org/gnome/desktop/screensaver/lock-delay
After the settings have been set, run dconf update .
Rationale:
A session lock is a temporary action taken when a user stops work and moves away from the immediate physical vicinity
of the information system but does not want to logout because of the temporary nature of the absense.
Remediation script:
# Define constants to be reused below
ORG_GNOME_DESKTOP_SCREENSAVER="org/gnome/desktop/screensaver"
SSG_DCONF_LOCK_ENABLED_FILE="/etc/dconf/db/local.d/10-scap-security-guide"
SCREENSAVER_LOCKS_FILE="/etc/dconf/db/local.d/locks/screensaver"
LOCK_ENABLED_DEFINED="FALSE"
LOCK_DELAY_DEFINED="FALSE"
# First update '[org/gnome/desktop/screensaver] lock-enabled' and
# '[org/gnome/desktop/screensaver] lock-delay' settings in
# /etc/dconf/db/local.d/* if already defined
for FILE in /etc/dconf/db/local.d/*
do
if grep -q -d skip "$ORG_GNOME_DESKTOP_SCREENSAVER" "$FILE"
then
if grep 'lock-enabled' "$FILE"
then
sed -i "s/lock-enabled=.*/lock-enabled=true/g" "$FILE"
LOCK_ENABLED_DEFINED="TRUE"
fi
if grep 'lock-delay' "$FILE"
then
sed -i "s/lock-delay=.*/lock-delay=uint32 0/g" "$FILE"
LOCK_DELAY_DEFINED="TRUE"
fi
fi
done
# Then define '[org/gnome/desktop/screensaver] lock-enabled' setting
# if still not defined yet
if [ "$LOCK_ENABLED_DEFINED" != "TRUE" ] || [ "$LOCK_DELAY_DEFINED" != "TRUE" ]
then
echo "" >> $SSG_DCONF_LOCK_ENABLED_FILE
echo "[org/gnome/desktop/screensaver]" >> $SSG_DCONF_LOCK_ENABLED_FILE
echo "lock-enabled=true" >> $SSG_DCONF_LOCK_ENABLED_FILE
echo "lock-delay=uint32 0" >> $SSG_DCONF_LOCK_ENABLED_FILE
fi
# Verify if 'lock-enabled' modification is locked. If not, lock it
if ! grep -q "^/${ORG_GNOME_DESKTOP_SCREENSAVER}/lock-enabled$" /etc/dconf/db/local.d/locks/*
then
# Check if "$SCREENSAVER_LOCK_FILE" exists. If not, create it.
if [ ! -f "$SCREENSAVER_LOCKS_FILE" ]
then
touch "$SCREENSAVER_LOCKS_FILE"
fi
echo "/${ORG_GNOME_DESKTOP_SCREENSAVER}/lock-enabled" >> "$SCREENSAVER_LOCKS_FILE"
fi
# Verify if 'lock-delay' modification is locked. If not, lock it
if ! grep -q "^/${ORG_GNOME_DESKTOP_SCREENSAVER}/lock-delay$" /etc/dconf/db/local.d/locks/*
then
# Check if "$SCREENSAVER_LOCK_FILE" exists. If not, create it.
if [ ! -f "$SCREENSAVER_LOCKS_FILE" ]
then
touch "$SCREENSAVER_LOCKS_FILE"
fi
echo "/${ORG_GNOME_DESKTOP_SCREENSAVER}/lock-delay" >> "$SCREENSAVER_LOCKS_FILE"
fi
|
Implement Blank Screensaverrule
To set the screensaver mode in the GNOME3 desktop to a blank screen,
add or set picture-uri to '' in
/etc/dconf/db/local.d/00-security-settings . For example:
[org/gnome/desktop/screensaver]
picture-uri=''
Once the settings have been added, add a lock to
/etc/dconf/db/gdm.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/desktop/screensaver/picture-uri
After the settings have been set, run dconf update .
Rationale:
Setting the screensaver mode to blank-only conceals the
contents of the display from passersby.
Remediation script:
# Define constants to be reused below
ORG_GNOME_DESKTOP_SCREENSAVER="org/gnome/desktop/screensaver"
SSG_DCONF_MODE_BLANK_FILE="/etc/dconf/db/local.d/10-scap-security-guide"
SCREENSAVER_LOCKS_FILE="/etc/dconf/db/local.d/locks/screensaver"
MODE_BLANK_DEFINED="FALSE"
# First update '[org/gnome/desktop/screensaver] picture-uri' settings in
# /etc/dconf/db/local.d/* if already defined
for FILE in /etc/dconf/db/local.d/*
do
if grep -q -d skip "$ORG_GNOME_DESKTOP_SCREENSAVER" "$FILE"
then
if grep 'picture-uri' "$FILE"
then
sed -i "s/picture-uri=.*/picture-uri=string ''/g" "$FILE"
MODE_BLANK_DEFINED="TRUE"
fi
fi
done
# Then define '[org/gnome/desktop/screensaver] picture-uri' setting
# if still not defined yet
if [ "$MODE_BLANK_DEFINED" != "TRUE" ]
then
echo "" >> $SSG_DCONF_MODE_BLANK_FILE
echo "[org/gnome/desktop/screensaver]" >> $SSG_DCONF_MODE_BLANK_FILE
echo "picture-uri=string ''" >> $SSG_DCONF_MODE_BLANK_FILE
fi
# Verify if 'picture-uri' modification is locked. If not, lock it
if ! grep -q "^/${ORG_GNOME_DESKTOP_SCREENSAVER}/picture-uri$" /etc/dconf/db/local.d/locks/*
then
# Check if "$SCREENSAVER_LOCK_FILE" exists. If not, create it.
if [ ! -f "$SCREENSAVER_LOCKS_FILE" ]
then
touch "$SCREENSAVER_LOCKS_FILE"
fi
echo "/${ORG_GNOME_DESKTOP_SCREENSAVER}/picture-uri" >> "$SCREENSAVER_LOCKS_FILE"
fi
|
GNOME Media Settingsgroup
GNOME media settings that apply to the graphical interface.
|
contains 2 rules |
Disable GNOME3 AutomountingruleThe system's default desktop environment, GNOME3, will mount
devices and removable media (such as DVDs, CDs and USB flash drives) whenever
they are inserted into the system. To disable automount and autorun within GNOME3, add or set
automount to false , automount-open to false , and
autorun-never to true in /etc/dconf/db/local.d/00-security-settings .
For example:
[org/gnome/desktop/media-handling]
automount=false
automount-open=false
autorun-never=true
Once the settings have been added, add a lock to
/etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/desktop/media-handling/automount
/org/gnome/desktop/media-handling/auto-open
/org/gnome/desktop/media-handling/autorun-never
After the settings have been set, run dconf update .
Rationale:Disabling automatic mounting in GNOME3 can prevent
the introduction of malware via removable media.
It will, however, also prevent desktop users from legitimate use
of removable media.
|
Disable All GNOME3 ThumbnailersruleThe system's default desktop environment, GNOME3, uses
a number of different thumbnailer programs to generate thumbnails
for any new or modified content in an opened folder. To disable the
execution of these thumbnail applications, add or set disable-all
to true in /etc/dconf/db/local.d/00-security-settings .
For example:
[org/gnome/desktop/thumbnailers]
disable-all=true
Once the settings have been added, add a lock to
/etc/dconf/db/local.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/desktop/thumbnailers/disable-all
After the settings have been set, run dconf update .
This effectively prevents an attacker from gaining access to a
system through a flaw in GNOME3's Nautilus thumbnail creators.
Rationale:An attacker with knowledge of a flaw in a GNOME3 thumbnailer application could craft a malicious
file to exploit this flaw. Assuming the attacker could place the malicious file on the local filesystem
(via a web upload for example) and assuming a user browses the same location using Nautilus, the
malicious file would exploit the thumbnailer with the potential for malicious code execution. It
is best to disable these thumbnailer applications unless they are explicitly required. identifiers:
CCE-80123-3 references:
CM-7 |
File Permissions and MasksgroupTraditional Unix security relies heavily on file and
directory permissions to prevent unauthorized users from reading or
modifying files to which they should not have access.
Several of the commands in this section search filesystems
for files or directories with certain characteristics, and are
intended to be run on every local partition on a given system.
When the variable PART appears in one of the commands below,
it means that the command is intended to be run repeatedly, with the
name of each local partition substituted for PART in turn.
The following command prints a list of all xfs partitions on the local
system, which is the default filesystem for Red Hat Enterprise Linux
7 installations:
$ mount -t xfs | awk '{print $3}'
For any systems that use a different
local filesystem type, modify this command as appropriate.
|
contains 43 rules |
Restrict Partition Mount OptionsgroupSystem partitions can be mounted with certain options
that limit what files on those partitions can do. These options
are set in the /etc/fstab configuration file, and can be
used to make certain types of malicious behavior more difficult. |
contains 11 rules |
Add nodev Option to Non-Root Local PartitionsruleThe nodev mount option prevents files from being
interpreted as character or block devices.
Legitimate character and block devices should exist only in
the /dev directory on the root partition or within chroot
jails built for system services.
Add the nodev option to the fourth column of
/etc/fstab for the line which controls mounting of
any non-root local partitions.
Rationale:The nodev mount option prevents files from being
interpreted as character or block devices. The only legitimate location
for device files is the /dev directory located on the root partition.
The only exception to this is chroot jails, for which it is not advised
to set nodev on these filesystems. |
Add nodev Option to Removable Media PartitionsruleThe nodev mount option prevents files from being
interpreted as character or block devices.
Legitimate character and block devices should exist only in
the /dev directory on the root partition or within chroot
jails built for system services.
Add the nodev option to the fourth column of
/etc/fstab for the line which controls mounting of
any removable media partitions.
Rationale:The only legitimate location for device files is the /dev directory
located on the root partition. An exception to this is chroot jails, and it is
not advised to set nodev on partitions which contain their root
filesystems. |
Add noexec Option to Removable Media PartitionsruleThe noexec mount option prevents the direct
execution of binaries on the mounted filesystem.
Preventing the direct execution of binaries from removable media (such as a USB
key) provides a defense against malicious software that may be present on such
untrusted media.
Add the noexec option to the fourth column of
/etc/fstab for the line which controls mounting of
any removable media partitions.
Rationale:Allowing users to execute binaries from removable media such as USB keys exposes
the system to potential compromise. |
Add nosuid Option to Removable Media PartitionsruleThe nosuid mount option prevents set-user-identifier (SUID)
and set-group-identifier (SGID) permissions from taking effect. These permissions
allow users to execute binaries with the same permissions as the owner and group
of the file respectively. Users should not be allowed to introduce SUID and SGID
files into the system via partitions mounted from removeable media.
Add the nosuid option to the fourth column of
/etc/fstab for the line which controls mounting of
any removable media partitions.
Rationale:The presence of SUID and SGID executables should be tightly controlled. Allowing
users to introduce SUID or SGID binaries from partitions mounted off of
removable media would allow them to introduce their own highly-privileged programs. |
Add nodev Option to /tmprule
The nodev mount option can be used to prevent device files from
being created in /tmp .
Legitimate character and block devices should not exist
within temporary directories like /tmp .
Add the nodev option to the fourth column of
/etc/fstab for the line which controls mounting of
/tmp .
Rationale:The only legitimate location for device files is the /dev directory
located on the root partition. The only exception to this is chroot jails. |
Add noexec Option to /tmpruleThe noexec mount option can be used to prevent binaries
from being executed out of /tmp .
Add the noexec option to the fourth column of
/etc/fstab for the line which controls mounting of
/tmp .
Rationale:Allowing users to execute binaries from world-writable directories
such as /tmp should never be necessary in normal operation and
can expose the system to potential compromise. |
Add nosuid Option to /tmpruleThe nosuid mount option can be used to prevent
execution of setuid programs in /tmp . The SUID and SGID permissions
should not be required in these world-writable directories.
Add the nosuid option to the fourth column of
/etc/fstab for the line which controls mounting of
/tmp .
Rationale:The presence of SUID and SGID executables should be tightly controlled. Users
should not be able to execute SUID or SGID binaries from temporary storage partitions. |
Add nodev Option to /dev/shmruleThe nodev mount option can be used to prevent creation
of device files in /dev/shm .
Legitimate character and block devices should not exist
within temporary directories like /dev/shm .
Add the nodev option to the fourth column of
/etc/fstab for the line which controls mounting of
/dev/shm .
Rationale:The only legitimate location for device files is the /dev directory
located on the root partition. The only exception to this is chroot jails. |
Add noexec Option to /dev/shmruleThe noexec mount option can be used to prevent binaries
from being executed out of /dev/shm .
It can be dangerous to allow the execution of binaries
from world-writable temporary storage directories such as /dev/shm .
Add the noexec option to the fourth column of
/etc/fstab for the line which controls mounting of
/dev/shm .
Rationale:Allowing users to execute binaries from world-writable directories
such as /dev/shm can expose the system to potential compromise. |
Add nosuid Option to /dev/shmruleThe nosuid mount option can be used to prevent execution
of setuid programs in /dev/shm . The SUID and SGID permissions should not
be required in these world-writable directories.
Add the nosuid option to the fourth column of
/etc/fstab for the line which controls mounting of
/dev/shm .
Rationale:The presence of SUID and SGID executables should be tightly controlled. Users
should not be able to execute SUID or SGID binaries from temporary storage partitions. |
Bind Mount /var/tmp To /tmpruleThe /var/tmp directory is a world-writable directory.
Bind-mount it to /tmp in order to consolidate temporary storage into
one location protected by the same techniques as /tmp . To do so, edit
/etc/fstab and add the following line:
/tmp /var/tmp none rw,nodev,noexec,nosuid,bind 0 0
See the mount(8) man page for further explanation of bind mounting.
Rationale:Having multiple locations for temporary storage is not required. Unless absolutely
necessary to meet requirements, the storage location /var/tmp should be bind mounted to
/tmp and thus share the same protections. identifiers:
CCE-80155-5 references:
CM-7, 1.1.6 |
Restrict Dynamic Mounting and Unmounting of
FilesystemsgroupLinux includes a number of facilities for the automated addition
and removal of filesystems on a running system. These facilities may be
necessary in many environments, but this capability also carries some risk -- whether direct
risk from allowing users to introduce arbitrary filesystems,
or risk that software flaws in the automated mount facility itself could
allow an attacker to compromise the system.
This command can be used to list the types of filesystems that are
available to the currently executing kernel:
$ find /lib/modules/`uname -r`/kernel/fs -type f -name '*.ko'
If these filesystems are not required then they can be explicitly disabled
in a configuratio file in /etc/modprobe.d .
|
contains 11 rules |
Disable Modprobe Loading of USB Storage Driverrule
To prevent USB storage devices from being used, configure the kernel module loading system
to prevent automatic loading of the USB storage driver.
To configure the system to prevent the usb-storage
kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d :
install usb-storage /bin/true
This will prevent the modprobe program from loading the usb-storage
module, but will not prevent an administrator (or another program) from using the
insmod program to load the module manually.Rationale:USB storage devices such as thumb drives can be used to introduce
malicious software. identifiers:
CCE-27277-3 references:
AC-19(a), AC-19(d), AC-19(e), IA-3, 366, 778, 1958, SRG-OS-000114-GPOS-00059, SRG-OS-000378-GPOS-0016, SRG-OS-000480-GPOS-00227, RHEL-07-020160 Remediation script:echo "install usb-storage /bin/true" > /etc/modprobe.d/usb-storage.conf
|
Disable Kernel Support for USB via Bootloader Configurationrule
All USB support can be disabled by adding the nousb
argument to the kernel's boot loader configuration. To do so,
append "nousb" to the kernel line in /etc/default/grub as shown:
kernel /vmlinuz-VERSION ro vga=ext root=/dev/VolGroup00/LogVol00 rhgb quiet nousb
WARNING: Disabling all kernel support for USB will cause problems for
systems with USB-based keyboards, mice, or printers. This configuration is
infeasible for systems which require USB devices, which is common.Rationale:Disabling the USB subsystem within the Linux kernel at system boot will
protect against potentially malicious USB devices, although it is only practical
in specialized systems.
Remediation script:
# Correct the form of default kernel command line in /etc/default/grub
if ! grep -q ^GRUB_CMDLINE_LINUX=\".*nousb.*\" /etc/default/grub;
then
# Edit configuration setting
# Append 'nousb' argument to /etc/default/grub (if not present yet)
sed -i "s/\(GRUB_CMDLINE_LINUX=\)\"\(.*\)\"/\1\"\2 nousb\"/" /etc/default/grub
# Edit runtime setting
# Correct the form of kernel command line for each installed kernel in the bootloader
/sbin/grubby --update-kernel=ALL --args="nousb"
fi
|
Disable Booting from USB Devices in Boot FirmwareruleConfigure the system boot firmware (historically called BIOS on PC
systems) to disallow booting from USB drives.
Rationale:Booting a system from a USB device would allow an attacker to
circumvent any security measures provided by the operating system. Attackers
could mount partitions and modify the configuration of the OS. |
Disable the AutomounterruleThe autofs daemon mounts and unmounts filesystems, such as user
home directories shared via NFS, on demand. In addition, autofs can be used to handle
removable media, and the default configuration provides the cdrom device as /misc/cd .
However, this method of providing access to removable media is not common, so autofs
can almost always be disabled if NFS is not in use. Even if NFS is required, it may be
possible to configure filesystem mounts statically by editing /etc/fstab
rather than relying on the automounter.
The autofs service can be disabled with the following command:
$ sudo systemctl disable autofs.service
Rationale:Disabling the automounter permits the administrator to
statically control filesystem mounting through /etc/fstab .
identifiers:
CCE-27498-5 references:
AC-19(a), AC-19(d), AC-19(e), IA-3, 366, 778, 1958, SRG-OS-000114-GPOS-00059, SRG-OS-000378-GPOS-00163, SRG-OS-000480-GPOS-00227, RHEL-07-020160 Remediation script:#
# Disable autofs.service for all systemd targets
#
systemctl disable autofs.service
#
# Stop autofs.service if currently running
#
systemctl stop autofs.service
|
Disable Mounting of cramfsrule
To configure the system to prevent the cramfs
kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d :
install cramfs /bin/true
This effectively prevents usage of this uncommon filesystem.
Rationale:Linux kernel modules which implement filesystems that are not needed by the
local system should be disabled. Remediation script:echo "install cramfs /bin/true" > /etc/modprobe.d/cramfs.conf
|
Disable Mounting of freevxfsrule
To configure the system to prevent the freevxfs
kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d :
install freevxfs /bin/true
This effectively prevents usage of this uncommon filesystem.
Rationale:Linux kernel modules which implement filesystems that are not needed by the
local system should be disabled. Remediation script:echo "install freevxfs /bin/true" > /etc/modprobe.d/freevxfs.conf
|
Disable Mounting of jffs2rule
To configure the system to prevent the jffs2
kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d :
install jffs2 /bin/true
This effectively prevents usage of this uncommon filesystem.
Rationale:Linux kernel modules which implement filesystems that are not needed by the
local system should be disabled. Remediation script:echo "install jffs2 /bin/true" > /etc/modprobe.d/jffs2.conf
|
Disable Mounting of hfsrule
To configure the system to prevent the hfs
kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d :
install hfs /bin/true
This effectively prevents usage of this uncommon filesystem.
Rationale:Linux kernel modules which implement filesystems that are not needed by the
local system should be disabled. Remediation script:echo "install hfs /bin/true" > /etc/modprobe.d/hfs.conf
|
Disable Mounting of hfsplusrule
To configure the system to prevent the hfsplus
kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d :
install hfsplus /bin/true
This effectively prevents usage of this uncommon filesystem.
Rationale:Linux kernel modules which implement filesystems that are not needed by the
local system should be disabled. Remediation script:echo "install hfsplus /bin/true" > /etc/modprobe.d/hfsplus.conf
|
Disable Mounting of squashfsrule
To configure the system to prevent the squashfs
kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d :
install squashfs /bin/true
This effectively prevents usage of this uncommon filesystem.
Rationale:Linux kernel modules which implement filesystems that are not needed by the
local system should be disabled. Remediation script:echo "install squashfs /bin/true" > /etc/modprobe.d/squashfs.conf
|
Disable Mounting of udfrule
To configure the system to prevent the udf
kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d :
install udf /bin/true
This effectively prevents usage of this uncommon filesystem.
Rationale:Linux kernel modules which implement filesystems that are not needed by the
local system should be disabled. Remediation script:echo "install udf /bin/true" > /etc/modprobe.d/udf.conf
|
Verify Permissions on Important Files and
DirectoriesgroupPermissions for many files on a system must be set
restrictively to ensure sensitive information is properly protected.
This section discusses important
permission restrictions which can be verified
to ensure that no harmful discrepancies have
arisen. |
contains 20 rules |
Verify Permissions on Files with Local Account Information and CredentialsgroupThe default restrictive permissions for files which act as
important security databases such as passwd , shadow ,
group , and gshadow files must be maintained. Many utilities
need read access to the passwd file in order to function properly, but
read access to the shadow file allows malicious attacks against system
passwords, and should never be enabled. |
contains 12 rules |
Verify User Who Owns shadow Filerule
To properly set the owner of /etc/shadow , run the command:
$ sudo chown root /etc/shadow
Rationale:The /etc/shadow file contains the list of local
system accounts and stores password hashes. Protection of this file is
critical for system security. Failure to give ownership of this file
to root provides the designated owner with access to sensitive information
which could weaken the system security posture. Remediation script:chown root /etc/shadow
|
Verify Group Who Owns shadow Filerule
To properly set the group owner of /etc/shadow , run the command:
$ sudo chgrp root /etc/shadow
Rationale:The /etc/shadow file stores password hashes. Protection of this file is
critical for system security. Remediation script:chgrp root /etc/shadow
|
Verify Permissions on shadow Filerule
To properly set the permissions of /etc/shadow , run the command:
$ sudo chmod 0000 /etc/shadow
Rationale:The /etc/shadow file contains the list of local
system accounts and stores password hashes. Protection of this file is
critical for system security. Failure to give ownership of this file
to root provides the designated owner with access to sensitive information
which could weaken the system security posture. Remediation script:chmod 0000 /etc/shadow
|
Verify User Who Owns group Filerule
To properly set the owner of /etc/group , run the command:
$ sudo chown root /etc/group
Rationale:The /etc/group file contains information regarding groups that are configured
on the system. Protection of this file is important for system security. Remediation script:chown root /etc/group
|
Verify Group Who Owns group Filerule
To properly set the group owner of /etc/group , run the command:
$ sudo chgrp root /etc/group
Rationale:The /etc/group file contains information regarding groups that are configured
on the system. Protection of this file is important for system security. Remediation script:chgrp root /etc/group
|
Verify Permissions on group Filerule
To properly set the permissions of /etc/group , run the command:
$ sudo chmod 644 /etc/group
Rationale:The /etc/group file contains information regarding groups that are configured
on the system. Protection of this file is important for system security. Remediation script:chmod 644 /etc/group
|
Verify User Who Owns gshadow Filerule
To properly set the owner of /etc/gshadow , run the command:
$ sudo chown root /etc/gshadow
Rationale:The /etc/gshadow file contains group password hashes. Protection of this file
is critical for system security. Remediation script:chown root /etc/gshadow
|
Verify Group Who Owns gshadow Filerule
To properly set the group owner of /etc/gshadow , run the command:
$ sudo chgrp root /etc/gshadow
Rationale:The /etc/gshadow file contains group password hashes. Protection of this file
is critical for system security. Remediation script:chgrp root /etc/gshadow
|
Verify Permissions on gshadow Filerule
To properly set the permissions of /etc/gshadow , run the command:
$ sudo chmod 0000 /etc/gshadow
Rationale:The /etc/gshadow file contains group password hashes. Protection of this file
is critical for system security. Remediation script:chmod 0000 /etc/gshadow
|
Verify User Who Owns passwd Filerule
To properly set the owner of /etc/passwd , run the command:
$ sudo chown root /etc/passwd
Rationale:The /etc/passwd file contains information about the users that are configured on
the system. Protection of this file is critical for system security. Remediation script:chown root /etc/passwd
|
Verify Group Who Owns passwd Filerule
To properly set the group owner of /etc/passwd , run the command:
$ sudo chgrp root /etc/passwd
Rationale:The /etc/passwd file contains information about the users that are configured on
the system. Protection of this file is critical for system security. Remediation script:chgrp root /etc/passwd
|
Verify Permissions on passwd Filerule
To properly set the permissions of /etc/passwd , run the command:
$ sudo chmod 0644 /etc/passwd
Rationale:If the /etc/passwd file is writable by a group-owner or the
world the risk of its compromise is increased. The file contains the list of
accounts on the system and associated information, and protection of this file
is critical for system security. Remediation script:chmod 0644 /etc/passwd
|
Verify File Permissions Within Some Important DirectoriesgroupSome directories contain files whose confidentiality or integrity
is notably important and may also be susceptible to misconfiguration over time, particularly if
unpackaged software is installed. As such,
an argument exists to verify that files' permissions within these directories remain
configured correctly and restrictively.
|
contains 3 rules |
Verify that Shared Library Files Have Root OwnershipruleSystem-wide shared library files, which are linked to executables
during process load time or run time, are stored in the following directories
by default:
/lib
/lib64
/usr/lib
/usr/lib64
Kernel modules, which can be added to the kernel during runtime, are also
stored in /lib/modules . All files in these directories should be
owned by the root user. If the directory, or any file in these
directories, is found to be owned by a user other than root correct its
ownership with the following command:
$ sudo chown root FILE
Rationale:Files from shared library directories are loaded into the address
space of processes (including privileged ones) or of the kernel itself at
runtime. Proper ownership is necessary to protect the integrity of the system.
Remediation script:for LIBDIR in /usr/lib /usr/lib64 /lib /lib64
do
if [ -d $LIBDIR ]
then
find -L $LIBDIR \! -user root -exec chown root {} \;
fi
done
|
Verify that System Executables Have Restrictive Permissionsrule
System executables are stored in the following directories by default:
/bin
/sbin
/usr/bin
/usr/libexec
/usr/local/bin
/usr/local/sbin
/usr/sbin
All files in these directories should not be group-writable or world-writable.
If any file FILE in these directories is found
to be group-writable or world-writable, correct its permission with the
following command:
$ sudo chmod go-w FILE
Rationale:System binaries are executed by privileged users, as well as system services,
and restrictive permissions are necessary to ensure execution of these programs
cannot be co-opted.
Remediation script:DIRS="/bin /usr/bin /usr/local/bin /sbin /usr/sbin /usr/local/sbin /usr/libexec"
for dirPath in $DIRS; do
find "$dirPath" -perm /022 -exec chmod go-w '{}' \;
done
|
Verify that System Executables Have Root Ownershiprule
System executables are stored in the following directories by default:
/bin
/sbin
/usr/bin
/usr/libexec
/usr/local/bin
/usr/local/sbin
/usr/sbin
All files in these directories should be owned by the root user.
If any file FILE in these directories is found
to be owned by a user other than root, correct its ownership with the
following command:
$ sudo chown root FILE
Rationale:System binaries are executed by privileged users as well as system services,
and restrictive permissions are necessary to ensure that their
execution of these programs cannot be co-opted.
Remediation script:find /bin/ \
/usr/bin/ \
/usr/local/bin/ \
/sbin/ \
/usr/sbin/ \
/usr/local/sbin/ \
/usr/libexec \
\! -user root -execdir chown root {} \;
|
Verify that All World-Writable Directories Have Sticky Bits SetruleWhen the so-called 'sticky bit' is set on a directory,
only the owner of a given file may remove that file from the
directory. Without the sticky bit, any user with write access to a
directory may remove any file in the directory. Setting the sticky
bit prevents users from removing each other's files. In cases where
there is no reason for a directory to be world-writable, a better
solution is to remove that permission rather than to set the sticky
bit. However, if a directory is used by a particular application,
consult that application's documentation instead of blindly
changing modes.
To set the sticky bit on a world-writable directory DIR, run the
following command:
$ sudo chmod +t DIR
Rationale:
Failing to set the sticky bit on public directories allows unauthorized users to delete files in the directory structure.
The only authorized public directories are those temporary directories supplied with the system,
or those designed to be temporary file repositories. The setting is normally reserved for directories
used by the system, by users for temporary file storage (such as /tmp ), and for directories
requiring global read/write access.
|
Ensure No World-Writable Files ExistruleIt is generally a good idea to remove global (other) write
access to a file when it is discovered. However, check with
documentation for specific applications before making changes.
Also, monitor for recurring world-writable files, as these may be
symptoms of a misconfigured application or user
account. Rationale:
Data in world-writable files can be modified by any
user on the system. In almost all circumstances, files can be
configured using a combination of user and group permissions to
support whatever legitimate access is needed without the risk
caused by world-writable files. identifiers:
CCE-80131-6 references:
AC-6 |
Ensure All Files Are Owned by a UserruleIf any files are not owned by a user, then the
cause of their lack of ownership should be investigated.
Following this, the files should be deleted or assigned to an
appropriate user.
Rationale:
Unowned files do not directly imply a security problem, but they are generally
a sign that something is amiss. They may
be caused by an intruder, by incorrect software installation or
draft software removal, or by failure to remove all files belonging
to a deleted account. The files should be repaired so they
will not cause problems when accounts are created in the future,
and the cause should be discovered and addressed.
|
Ensure All Files Are Owned by a GroupruleIf any files are not owned by a group, then the
cause of their lack of group-ownership should be investigated.
Following this, the files should be deleted or assigned to an
appropriate group.
Rationale:
Unowned files do not directly imply a security problem, but they are generally
a sign that something is amiss. They may
be caused by an intruder, by incorrect software installation or
draft software removal, or by failure to remove all files belonging
to a deleted account. The files should be repaired so they
will not cause problems when accounts are created in the future,
and the cause should be discovered and addressed.
|
Ensure All World-Writable Directories Are Owned by a System AccountruleAll directories in local partitions which are
world-writable should be owned by root or another
system account. If any world-writable directories are not
owned by a system account, this should be investigated.
Following this, the files should be deleted or assigned to an
appropriate group.
Rationale:
Allowing a user account to own a world-writable directory is
undesirable because it allows the owner of that directory to remove
or replace any files that may be placed in the directory by other
users.
|
Restrict Programs from Dangerous Execution PatternsgroupThe recommendations in this section are designed to
ensure that the system's features to protect against potentially
dangerous program execution are activated.
These protections are applied at the system initialization or
kernel level, and defend against certain types of badly-configured
or compromised programs. |
contains 1 rule |
Daemon UmaskgroupThe umask is a per-process setting which limits
the default permissions for creation of new files and directories.
The system includes initialization scripts which set the default umask
for system daemons.
|
contains 1 rule |
Set Daemon UmaskruleThe file /etc/init.d/functions includes initialization
parameters for most or all daemons started at boot time. The default umask of
022 prevents creation of group- or world-writable files. To set the default
umask for daemons, edit the following line, inserting 022 or 027 for
UMASK appropriately:
umask 022
Setting the umask to too restrictive a setting can cause serious errors at
runtime. Many daemons on the system already individually restrict themselves to
a umask of 077 in their own init scripts.
Rationale:The umask influences the permissions assigned to files created by a
process at run time. An unnecessarily permissive umask could result in files
being created with insecure permissions. Remediation script:
var_umask_for_daemons="022"
grep -q ^umask /etc/init.d/functions && \
sed -i "s/umask.*/umask $var_umask_for_daemons/g" /etc/init.d/functions
if ! [ $? -eq 0 ]; then
echo "umask $var_umask_for_daemons" >> /etc/init.d/functions
fi
|
SELinuxgroupSELinux is a feature of the Linux kernel which can be
used to guard against misconfigured or compromised programs.
SELinux enforces the idea that programs should be limited in what
files they can access and what actions they can take.
The default SELinux policy, as configured on Red Hat Enterprise Linux 7, has been
sufficiently developed and debugged that it should be usable on
almost any Red Hat machine with minimal configuration and a small
amount of system administrator training. This policy prevents
system services - including most of the common network-visible
services such as mail servers, FTP servers, and DNS servers - from
accessing files which those services have no valid reason to
access. This action alone prevents a huge amount of possible damage
from network attacks against services, from trojaned software, and
so forth.
This guide recommends that SELinux be enabled using the
default (targeted) policy on every Red Hat system, unless that
system has unusual requirements which make a stronger policy
appropriate.
|
contains 4 rules |
Ensure SELinux Not Disabled in /etc/default/grubruleSELinux can be disabled at boot time by an argument in
/etc/default/grub .
Remove any instances of selinux=0 from the kernel arguments in that
file to prevent SELinux from being disabled at boot.
Rationale:
Disabling a major host protection feature, such as SELinux, at boot time prevents
it from confining system services at boot time. Further, it increases
the chances that it will remain off during system operation.
Remediation script:sed -i --follow-symlinks "s/selinux=0//gI" /etc/default/grub /etc/grub2.cfg /etc/grub.d/*
sed -i --follow-symlinks "s/enforcing=0//gI" /etc/default/grub /etc/grub2.cfg /etc/grub.d/*
|
Ensure SELinux State is EnforcingruleThe SELinux state should be set to enforcing at
system boot time. In the file /etc/selinux/config , add or correct the
following line to configure the system to boot into enforcing mode:
SELINUX=enforcing
Rationale:
Setting the SELinux state to enforcing ensures SELinux is able to confine
potentially compromised processes to the security policy, which is designed to
prevent them from causing damage to the system or further elevating their
privileges.
Remediation script:
var_selinux_state="enforcing"
function replace_or_append {
local config_file=$1
local key=$2
local value=$3
local cce=$4
local format=$5
# Check sanity of the input
if [ $# -lt "3" ]
then
echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
echo
echo "If symlinks need to be taken into account, add yes/no to the last argument"
echo "to allow to 'follow_symlinks'."
echo "Aborting."
exit 1
fi
# Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
# Otherwise, regular sed command will do.
if test -L $config_file; then
sed_command="sed -i --follow-symlinks"
else
sed_command="sed -i"
fi
# Test that the cce arg is not empty or does not equal CCENUM.
# If CCENUM exists, it means that there is no CCE assigned.
if ! [ "x$cce" = x ] && [ "$cce" != 'CCENUM' ]; then
cce="CCE-${cce}"
else
cce="CCE"
fi
# Strip any search characters in the key arg so that the key can be replaced without
# adding any search characters to the config file.
stripped_key=${key//[!a-zA-Z]/}
# If there is no print format specified in the last arg, use the default format.
if ! [ "x$format" = x ] ; then
printf -v formatted_output "$format" $stripped_key $value
else
formatted_output="$stripped_key = $value"
fi
# If the key exists, change it. Otherwise, add it to the config_file.
if `grep -qi $key $config_file` ; then
$sed_command "s/$key.*/$formatted_output/g" $config_file
else
echo -ne "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
echo -ne "\n$formatted_output" >> $config_file
fi
}
replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state 'CCENUM' '%s=%s'
|
Configure SELinux PolicyruleThe SELinux targeted policy is appropriate for
general-purpose desktops and servers, as well as systems in many other roles.
To configure the system to use this policy, add or correct the following line
in /etc/selinux/config :
SELINUXTYPE=targeted
Other policies, such as mls , provide additional security labeling
and greater confinement but are not compatible with many general-purpose
use cases.
Rationale:
Setting the SELinux policy to targeted or a more specialized policy
ensures the system will confine processes that are likely to be
targeted for exploitation, such as network or system services.
Note: During the development or debugging of SELinux modules, it is common to
temporarily place non-production systems in permissive mode. In such
temporary cases, SELinux policies should be developed, and once work
is completed, the system should be reconfigured to
targeted .
Remediation script:
var_selinux_policy_name="targeted"
function replace_or_append {
local config_file=$1
local key=$2
local value=$3
local cce=$4
local format=$5
# Check sanity of the input
if [ $# -lt "3" ]
then
echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
echo
echo "If symlinks need to be taken into account, add yes/no to the last argument"
echo "to allow to 'follow_symlinks'."
echo "Aborting."
exit 1
fi
# Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
# Otherwise, regular sed command will do.
if test -L $config_file; then
sed_command="sed -i --follow-symlinks"
else
sed_command="sed -i"
fi
# Test that the cce arg is not empty or does not equal CCENUM.
# If CCENUM exists, it means that there is no CCE assigned.
if ! [ "x$cce" = x ] && [ "$cce" != 'CCENUM' ]; then
cce="CCE-${cce}"
else
cce="CCE"
fi
# Strip any search characters in the key arg so that the key can be replaced without
# adding any search characters to the config file.
stripped_key=${key//[!a-zA-Z]/}
# If there is no print format specified in the last arg, use the default format.
if ! [ "x$format" = x ] ; then
printf -v formatted_output "$format" $stripped_key $value
else
formatted_output="$stripped_key = $value"
fi
# If the key exists, change it. Otherwise, add it to the config_file.
if `grep -qi $key $config_file` ; then
$sed_command "s/$key.*/$formatted_output/g" $config_file
else
echo -ne "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
echo -ne "\n$formatted_output" >> $config_file
fi
}
replace_or_append '/etc/sysconfig/selinux' '^SELINUXTYPE=' $var_selinux_policy_name 'CCENUM' '%s=%s'
|
Ensure No Daemons are Unconfined by SELinuxrule
Daemons for which the SELinux policy does not contain rules will inherit the
context of the parent process. Because daemons are launched during
startup and descend from the init process, they inherit the initrc_t context.
To check for unconfined daemons, run the following command:
$ sudo ps -eZ | egrep "initrc" | egrep -vw "tr|ps|egrep|bash|awk" | tr ':' ' ' | awk '{ print $NF }'
It should produce no output in a well-configured system.
Rationale:
Daemons which run with the initrc_t context may cause AVC denials,
or allow privileges that the daemon does not require.
|
Account and Access ControlgroupIn traditional Unix security, if an attacker gains
shell access to a certain login account, they can perform any action
or access any file to which that account has access. Therefore,
making it more difficult for unauthorized people to gain shell
access to accounts, particularly to privileged accounts, is a
necessary part of securing a system. This section introduces
mechanisms for restricting access to accounts under
Red Hat Enterprise Linux 7. |
contains 11 rules |
Protect Accounts by Restricting Password-Based LogingroupConventionally, Unix shell accounts are accessed by
providing a username and password to a login program, which tests
these values for correctness using the /etc/passwd and
/etc/shadow files. Password-based login is vulnerable to
guessing of weak passwords, and to sniffing and man-in-the-middle
attacks against passwords entered over a network or at an insecure
console. Therefore, mechanisms for accessing accounts by entering
usernames and passwords should be restricted to those which are
operationally necessary. |
contains 5 rules |
Restrict Root Loginsgroup
Direct root logins should be allowed only for emergency use.
In normal situations, the administrator should access the system
via a unique unprivileged account, and then use su or sudo to execute
privileged commands. Discouraging administrators from accessing the
root account directly ensures an audit trail in organizations with
multiple administrators. Locking down the channels through which
root can connect directly also reduces opportunities for
password-guessing against the root account. The login program
uses the file /etc/securetty to determine which interfaces
should allow root logins.
The virtual devices /dev/console
and /dev/tty* represent the system consoles (accessible via
the Ctrl-Alt-F1 through Ctrl-Alt-F6 keyboard sequences on a default
installation). The default securetty file also contains /dev/vc/* .
These are likely to be deprecated in most environments, but may be retained
for compatibility. Root should also be prohibited from connecting
via network protocols. Other sections of this document
include guidance describing how to prevent root from logging in via SSH.
|
contains 3 rules |
Restrict Virtual Console Root Loginsrule
To restrict root logins through the (deprecated) virtual console devices,
ensure lines of this form do not appear in /etc/securetty :
vc/1
vc/2
vc/3
vc/4
Rationale:
Preventing direct root login to virtual console devices
helps ensure accountability for actions taken on the system
using the root account.
Remediation script:sed -i '/^vc\//d' /etc/securetty
|
Restrict Serial Port Root LoginsruleTo restrict root logins on serial ports,
ensure lines of this form do not appear in /etc/securetty :
ttyS0
ttyS1
Rationale:
Preventing direct root login to serial port interfaces
helps ensure accountability for actions taken on the systems
using the root account.
Remediation script:sed -i '/ttyS/d' /etc/securetty
|
Verify Only Root Has UID 0rule
If any account other than root has a UID of 0, this misconfiguration should
be investigated and the accounts other than root should be removed or
have their UID changed.
If the account is associated with system commands or applications the UID should be changed
to one greater than "0" but less than "1000." Otherwise assign a UID greater than "1000" that
has not already been assigned.
Rationale:
An account has root authority if it has a UID of 0. Multiple accounts
with a UID of 0 afford more opportunity for potential intruders to
guess a password for a privileged account. Proper configuration of
sudo is recommended to afford multiple system administrators
access to root privileges in an accountable manner.
Remediation script:awk -F: '$3 == 0 && $1 != "root" { print $1 }' /etc/passwd | xargs passwd -l
|
Set Account Expiration ParametersgroupAccounts can be configured to be automatically disabled
after a certain time period,
meaning that they will require administrator interaction to become usable again.
Expiration of accounts after inactivity can be set for all accounts by default
and also on a per-account basis, such as for accounts that are known to be temporary.
To configure automatic expiration of an account following
the expiration of its password (that is, after the password has expired and not been changed),
run the following command, substituting NUM_DAYS and USER appropriately:
$ sudo chage -I NUM_DAYS USER
Accounts, such as temporary accounts, can also be configured to expire on an explicitly-set date with the
-E option.
The file /etc/default/useradd controls
default settings for all newly-created accounts created with the system's
normal command line utilities.
|
contains 2 rules |
Set Account Expiration Following InactivityruleTo specify the number of days after a password expires (which
signifies inactivity) until an account is permanently disabled, add or correct
the following lines in /etc/default/useradd , substituting
NUM_DAYS appropriately:
INACTIVE=UNDEFINED_SUB
A value of 35 is recommended.
If a password is currently on the
verge of expiration, then 35 days remain until the account is automatically
disabled. However, if the password will not expire for another 60 days, then 95
days could elapse until the account would be automatically disabled. See the
useradd man page for more information. Determining the inactivity
timeout must be done with careful consideration of the length of a "normal"
period of inactivity for users in the particular environment. Setting
the timeout too low incurs support costs and also has the potential to impact
availability of the system to legitimate users.
Rationale:
Disabling inactive accounts ensures that accounts which may not
have been responsibly removed are not available to attackers
who may have compromised their credentials.
Remediation script:
var_account_disable_post_pw_expiration="40"
grep -q ^INACTIVE /etc/default/useradd && \
sed -i "s/INACTIVE.*/INACTIVE=$var_account_disable_post_pw_expiration/g" /etc/default/useradd
if ! [ $? -eq 0 ]; then
echo "INACTIVE=$var_account_disable_post_pw_expiration" >> /etc/default/useradd
fi
|
Assign Expiration Date to Temporary Accountsrule
Temporary accounts are established as part of normal account activation procedures
when there is a need for short-term accounts. In the event temporary
or emergency accounts are required, configure the system to terminate
them after a documented time period. For every temporary and
emergency account, run the following command to set an expiration date on it,
substituting USER and YYYY-MM-DD appropriately:
$ sudo chage -E YYYY-MM-DD USER
YYYY-MM-DD indicates the documented expiration date for the account.
For U.S. Government systems, the operating system must be configured to automatically terminate
these typoes of accounts after a period of 72 hours.
Rationale:
If temporary user accounts remain active when no longer needed or for
an excessive period, these accounts may be used to gain unauthorized access.
To mitigate this risk, automated termination of all temporary accounts
must be set upon account creation.
|
Protect Accounts by Configuring PAMgroupPAM, or Pluggable Authentication Modules, is a system
which implements modular authentication for Linux programs. PAM provides
a flexible and configurable architecture for authentication, and it should be configured
to minimize exposure to unnecessary risk. This section contains
guidance on how to accomplish that.
PAM is implemented as a set of shared objects which are
loaded and invoked whenever an application wishes to authenticate a
user. Typically, the application must be running as root in order
to take advantage of PAM, because PAM's modules often need to be able
to access sensitive stores of account information, such as /etc/shadow.
Traditional privileged network listeners
(e.g. sshd) or SUID programs (e.g. sudo) already meet this
requirement. An SUID root application, userhelper, is provided so
that programs which are not SUID or privileged themselves can still
take advantage of PAM.
PAM looks in the directory /etc/pam.d for
application-specific configuration information. For instance, if
the program login attempts to authenticate a user, then PAM's
libraries follow the instructions in the file /etc/pam.d/login
to determine what actions should be taken.
One very important file in /etc/pam.d is
/etc/pam.d/system-auth . This file, which is included by
many other PAM configuration files, defines 'default' system authentication
measures. Modifying this file is a good way to make far-reaching
authentication changes, for instance when implementing a
centralized authentication service. warning
Be careful when making changes to PAM's
configuration files. The syntax for these files is complex, and
modifications can have unexpected consequences. The default
configurations shipped with applications should be sufficient for
most users. warning
Running authconfig or
system-config-authentication will re-write the PAM configuration
files, destroying any manually made changes and replacing them with
a series of system defaults. One reference to the configuration
file syntax can be found at
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/sag-configuration-file.html. |
contains 3 rules |
Set Lockouts for Failed Password AttemptsgroupThe pam_faillock PAM module provides the capability to
lock out user accounts after a number of failed login attempts. Its
documentation is available in
/usr/share/doc/pam-VERSION/txts/README.pam_faillock .
warning
Locking out user accounts presents the
risk of a denial-of-service attack. The lockout policy
must weigh whether the risk of such a
denial-of-service attack outweighs the benefits of thwarting
password guessing attacks. |
contains 3 rules |
Set Deny For Failed Password Attemptsrule
To configure the system to lock out accounts after a number of incorrect login
attempts using pam_faillock.so , modify the content of both
/etc/pam.d/system-auth and /etc/pam.d/password-auth as follows:
- add the following line immediately
before the pam_unix.so statement in the AUTH section:
auth required pam_faillock.so preauth silent deny=3 unlock_time=900 fail_interval=900 - add the following line immediately
after the pam_unix.so statement in the AUTH section:
auth [default=die] pam_faillock.so authfail deny=3 unlock_time=900 fail_interval=900 - add the following line immediately
before the pam_unix.so statement in the ACCOUNT section:
account required pam_faillock.so
Rationale:
Locking out user accounts after a number of incorrect attempts
prevents direct password guessing attacks.
Remediation script:
var_accounts_passwords_pam_faillock_deny="3"
AUTH_FILES[0]="/etc/pam.d/system-auth"
AUTH_FILES[1]="/etc/pam.d/password-auth"
for pamFile in "${AUTH_FILES[@]}"
do
# pam_faillock.so already present?
if grep -q "^auth.*pam_faillock.so.*" $pamFile; then
# pam_faillock.so present, deny directive present?
if grep -q "^auth.*[default=die].*pam_faillock.so.*authfail.*deny=" $pamFile; then
# both pam_faillock.so & deny present, just correct deny directive value
sed -i --follow-symlinks "s/\(^auth.*required.*pam_faillock.so.*preauth.*silent.*\)\(deny *= *\).*/\1\2$var_accounts_passwords_pam_faillock_deny/" $pamFile
sed -i --follow-symlinks "s/\(^auth.*[default=die].*pam_faillock.so.*authfail.*\)\(deny *= *\).*/\1\2$var_accounts_passwords_pam_faillock_deny/" $pamFile
# pam_faillock.so present, but deny directive not yet
else
# append correct deny value to appropriate places
sed -i --follow-symlinks "/^auth.*required.*pam_faillock.so.*preauth.*silent.*/ s/$/ deny=$var_accounts_passwords_pam_faillock_deny/" $pamFile
sed -i --follow-symlinks "/^auth.*[default=die].*pam_faillock.so.*authfail.*/ s/$/ deny=$var_accounts_passwords_pam_faillock_deny/" $pamFile
fi
# pam_faillock.so not present yet
else
# insert pam_faillock.so preauth & authfail rows with proper value of the 'deny' option
sed -i --follow-symlinks "/^auth.*sufficient.*pam_unix.so.*/i auth required pam_faillock.so preauth silent deny=$var_accounts_passwords_pam_faillock_deny" $pamFile
sed -i --follow-symlinks "/^auth.*sufficient.*pam_unix.so.*/a auth [default=die] pam_faillock.so authfail deny=$var_accounts_passwords_pam_faillock_deny" $pamFile
sed -i --follow-symlinks "/^account.*required.*pam_unix.so/i account required pam_faillock.so" $pamFile
fi
done
|
Set Lockout Time For Failed Password Attemptsrule
To configure the system to lock out accounts after a number of incorrect login
attempts and require an administrator to unlock the account using pam_faillock.so ,
modify the content of both /etc/pam.d/system-auth and /etc/pam.d/password-auth as follows:
- add the following line immediately
before the pam_unix.so statement in the AUTH section:
auth required pam_faillock.so preauth silent deny=3 unlock_time=900 fail_interval=900 - add the following line immediately
after the pam_unix.so statement in the AUTH section:
auth [default=die] pam_faillock.so authfail deny=3 unlock_time=900 fail_interval=900 - add the following line immediately
before the pam_unix.so statement in the ACCOUNT section:
account required pam_faillock.so
Rationale:
Locking out user accounts after a number of incorrect attempts
prevents direct password guessing attacks. Ensuring that an administrator is
involved in unlocking locked accounts draws appropriate attention to such
situations.
Remediation script:
var_accounts_passwords_pam_faillock_unlock_time="900"
AUTH_FILES[0]="/etc/pam.d/system-auth"
AUTH_FILES[1]="/etc/pam.d/password-auth"
for pamFile in "${AUTH_FILES[@]}"
do
# pam_faillock.so already present?
if grep -q "^auth.*pam_faillock.so.*" $pamFile; then
# pam_faillock.so present, unlock_time directive present?
if grep -q "^auth.*[default=die].*pam_faillock.so.*authfail.*unlock_time=" $pamFile; then
# both pam_faillock.so & unlock_time present, just correct unlock_time directive value
sed -i --follow-symlinks "s/\(^auth.*required.*pam_faillock.so.*preauth.*silent.*\)\(unlock_time *= *\).*/\1\2$var_accounts_passwords_pam_faillock_unlock_time/" $pamFile
sed -i --follow-symlinks "s/\(^auth.*[default=die].*pam_faillock.so.*authfail.*\)\(unlock_time *= *\).*/\1\2$var_accounts_passwords_pam_faillock_unlock_time/" $pamFile
# pam_faillock.so present, but unlock_time directive not yet
else
# append correct unlock_time value to appropriate places
sed -i --follow-symlinks "/^auth.*required.*pam_faillock.so.*preauth.*silent.*/ s/$/ unlock_time=$var_accounts_passwords_pam_faillock_unlock_time/" $pamFile
sed -i --follow-symlinks "/^auth.*[default=die].*pam_faillock.so.*authfail.*/ s/$/ unlock_time=$var_accounts_passwords_pam_faillock_unlock_time/" $pamFile
fi
# pam_faillock.so not present yet
else
# insert pam_faillock.so preauth & authfail rows with proper value of the 'unlock_time' option
sed -i --follow-symlinks "/^auth.*sufficient.*pam_unix.so.*/i auth required pam_faillock.so preauth silent unlock_time=$var_accounts_passwords_pam_faillock_unlock_time" $pamFile
sed -i --follow-symlinks "/^auth.*sufficient.*pam_unix.so.*/a auth [default=die] pam_faillock.so authfail unlock_time=$var_accounts_passwords_pam_faillock_unlock_time" $pamFile
sed -i --follow-symlinks "/^account.*required.*pam_unix.so/i account required pam_faillock.so" $pamFile
fi
done
|
Set Interval For Counting Failed Password Attemptsrule
Utilizing pam_faillock.so , the fail_interval directive configures the system to lock out accounts after a number of incorrect login
attempts. Modify the content of both /etc/pam.d/system-auth and /etc/pam.d/password-auth as follows:
- add the following line immediately
before the pam_unix.so statement in the AUTH section:
auth required pam_faillock.so preauth silent deny=3 unlock_time=900 fail_interval=900 - add the following line immediately
after the pam_unix.so statement in the AUTH section:
auth [default=die] pam_faillock.so authfail deny=3 unlock_time=900 fail_interval=900 - add the following line immediately
before the pam_unix.so statement in the ACCOUNT section:
account required pam_faillock.so
Rationale:
Locking out user accounts after a number of incorrect attempts within a
specific period of time prevents direct password guessing attacks.
Remediation script:
var_accounts_passwords_pam_faillock_fail_interval="900"
AUTH_FILES[0]="/etc/pam.d/system-auth"
AUTH_FILES[1]="/etc/pam.d/password-auth"
for pamFile in "${AUTH_FILES[@]}"
do
# pam_faillock.so already present?
if grep -q "^auth.*pam_faillock.so.*" $pamFile; then
# pam_faillock.so present, 'fail_interval' directive present?
if grep -q "^auth.*[default=die].*pam_faillock.so.*authfail.*fail_interval=" $pamFile; then
# both pam_faillock.so & 'fail_interval' present, just correct 'fail_interval' directive value
sed -i --follow-symlinks "s/\(^auth.*required.*pam_faillock.so.*preauth.*silent.*\)\(fail_interval *= *\).*/\1\2$var_accounts_passwords_pam_faillock_fail_interval/" $pamFile
sed -i --follow-symlinks "s/\(^auth.*[default=die].*pam_faillock.so.*authfail.*\)\(fail_interval *= *\).*/\1\2$var_accounts_passwords_pam_faillock_fail_interval/" $pamFile
# pam_faillock.so present, but 'fail_interval' directive not yet
else
# append correct 'fail_interval' value to appropriate places
sed -i --follow-symlinks "/^auth.*required.*pam_faillock.so.*preauth.*silent.*/ s/$/ fail_interval=$var_accounts_passwords_pam_faillock_fail_interval/" $pamFile
sed -i --follow-symlinks "/^auth.*[default=die].*pam_faillock.so.*authfail.*/ s/$/ fail_interval=$var_accounts_passwords_pam_faillock_fail_interval/" $pamFile
fi
# pam_faillock.so not present yet
else
# insert pam_faillock.so preauth & authfail rows with proper value of the 'fail_interval' option
sed -i --follow-symlinks "/^auth.*sufficient.*pam_unix.so.*/i auth required pam_faillock.so preauth silent fail_interval=$var_accounts_passwords_pam_faillock_fail_interval" $pamFile
sed -i --follow-symlinks "/^auth.*sufficient.*pam_unix.so.*/a auth [default=die] pam_faillock.so authfail fail_interval=$var_accounts_passwords_pam_faillock_fail_interval" $pamFile
sed -i --follow-symlinks "/^account.*required.*pam_unix.so/i account required pam_faillock.so" $pamFile
fi
done
|
Warning Banners for System AccessesgroupEach system should expose as little information about
itself as possible.
System banners, which are typically displayed just before a
login prompt, give out information about the service or the host's
operating system. This might include the distribution name and the
system kernel version, and the particular version of a network
service. This information can assist intruders in gaining access to
the system as it can reveal whether the system is running
vulnerable software. Most network services can be configured to
limit what information is displayed.
Many organizations implement security policies that require a
system banner provide notice of the system's ownership, provide
warning to unauthorized users, and remind authorized users of their
consent to monitoring. |
contains 3 rules |
Implement a GUI Warning BannergroupIn the default graphical environment, users logging
directly into the system are greeted with a login screen provided
by the GNOME3 Display Manager (GDM). The warning banner should be
displayed in this graphical environment for these users.
The following sections describe how to configure the GDM login
banner.
|
contains 2 rules |
Enable GNOME3 Login Warning Bannerrule
To enable displaying a login warning banner in the GNOME
Display Manager's login screen, the banner-message-enable setting must be
set under an appropriate configuration file(s) in the /etc/dconf/db/gdm.d directory
and locked in /etc/dconf/db/gdm.d/locks directory to prevent user modification.
After the settings have been set, run dconf update .
To display a banner, this setting must be enabled, and the user must be prevented
from making changes. The banner text must also be set.
Rationale:
Display of a standardized and approved use notification before granting access to the operating system
ensures privacy and security notification verbiage used is consistent with applicable federal laws,
Executive Orders, directives, policies, regulations, standards, and guidance.
For U.S. Government systems, system use notifications are required only for access via login interfaces
with human users and are not required when such human interfaces do not exist.
|
Set the GNOME3 Login Warning Banner Textrule
To set the text shown by the GNOME3 Display Manager
in the login screen, the banner-message-text setting must be set under an
appropriate configuration file(s) in the /etc/dconf/db/gdm.d directory and locked
in /etc/dconf/db/gdm.d/locks directory to prevent user modification.
After the settings have been set, run dconf update .
When entering a warning banner that spans several lines, remember
to begin and end the string with ' and use \n for new lines.
Rationale:
An appropriate warning message reinforces policy awareness during the logon
process and facilitates possible legal action against attackers.
identifiers:
CCE-26892-0 references:
AC-8(a), AC-8(b), AC-8(c), 48, 50, 1384, 1385, 1386, 1387, 1388, 23 |
Modify the System Login Bannerrule
To configure the system login banner edit /etc/issue . Replace
the default text with a message compliant with the local site policy
or a legal disclaimer.
The DoD required text is either:
You are accessing a U.S. Government (USG) Information System (IS) that is
provided for USG-authorized use only. By using this IS (which includes any
device attached to this IS), you consent to the following conditions:
-The USG routinely intercepts and monitors communications on this IS for purposes
including, but not limited to, penetration testing, COMSEC monitoring, network
operations and defense, personnel misconduct (PM), law enforcement (LE), and
counterintelligence (CI) investigations.
-At any time, the USG may inspect and seize data stored on this IS.
-Communications using, or data stored on, this IS are not private, are subject
to routine monitoring, interception, and search, and may be disclosed or used
for any USG-authorized purpose.
-This IS includes security measures (e.g., authentication and access controls)
to protect USG interests -- not for your personal benefit or privacy.
-Notwithstanding the above, using this IS does not constitute consent to PM, LE or CI investigative
searching or monitoring of the content of privileged communications, or work
product, related to personal representation or services by attorneys,
psychotherapists, or clergy, and their assistants. Such communications and work
product are private and confidential. See User Agreement for details.
OR:
I've read & consent to terms in IS user agreem't.
Rationale:
Display of a standardized and approved use notification before granting access to the operating system
ensures privacy and security notification verbiage used is consistent with applicable federal laws,
Executive Orders, directives, policies, regulations, standards, and guidance.
System use notifications are required only for access via login interfaces with human users and
are not required when such human interfaces do not exist.
Remediation script:
login_banner_text="--[\s\n]+WARNING[\s\n]+--[\s\n]*This[\s\n]+system[\s\n]+is[\s\n]+for[\s\n]+the[\s\n]+use[\s\n]+of[\s\n]+authorized[\s\n]+users[\s\n]+only.[\s\n]+Individuals[\s\n]*using[\s\n]+this[\s\n]+computer[\s\n]+system[\s\n]+without[\s\n]+authority[\s\n]+or[\s\n]+in[\s\n]+excess[\s\n]+of[\s\n]+their[\s\n]*authority[\s\n]+are[\s\n]+subject[\s\n]+to[\s\n]+having[\s\n]+all[\s\n]+their[\s\n]+activities[\s\n]+on[\s\n]+this[\s\n]+system[\s\n]*monitored[\s\n]+and[\s\n]+recorded[\s\n]+by[\s\n]+system[\s\n]+personnel.[\s\n]+Anyone[\s\n]+using[\s\n]+this[\s\n]*system[\s\n]+expressly[\s\n]+consents[\s\n]+to[\s\n]+such[\s\n]+monitoring[\s\n]+and[\s\n]+is[\s\n]+advised[\s\n]+that[\s\n]*if[\s\n]+such[\s\n]+monitoring[\s\n]+reveals[\s\n]+possible[\s\n]+evidence[\s\n]+of[\s\n]+criminal[\s\n]+activity[\s\n]*system[\s\n]+personal[\s\n]+may[\s\n]+provide[\s\n]+the[\s\n]+evidence[\s\n]+of[\s\n]+such[\s\n]+monitoring[\s\n]+to[\s\n]+law[\s\n]*enforcement[\s\n]+officials."
# There was a regular-expression matching various banners, needs to be expanded
expanded=$(echo "$login_banner_text" | sed 's/\[\\s\\n\][+*]/ /g;s/\\//g;s/[^-]- /\n\n-/g')
formatted=$(echo "$expanded" | fold -sw 80)
cat <<EOF >/etc/issue
$formatted
EOF
printf "\n" >> /etc/issue
|
Network Configuration and FirewallsgroupMost machines must be connected to a network of some
sort, and this brings with it the substantial risk of network
attack. This section discusses the security impact of decisions
about networking which must be made when configuring a system.
This section also discusses firewalls, network access
controls, and other network security frameworks, which allow
system-level rules to be written that can limit an attackers' ability
to connect to your system. These rules can specify that network
traffic should be allowed or denied from certain IP addresses,
hosts, and networks. The rules can also specify which of the
system's network services are available to particular hosts or
networks. |
contains 28 rules |
Kernel Parameters Which Affect NetworkinggroupThe sysctl utility is used to set
parameters which affect the operation of the Linux kernel. Kernel parameters
which affect networking and have security implications are described here.
|
contains 14 rules |
Network Parameters for Hosts OnlygroupIf the system is not going to be used as a router, then setting certain
kernel parameters ensure that the host will not perform routing
of network traffic. |
contains 3 rules |
Disable Kernel Parameter for Sending ICMP Redirects by Defaultrule
To set the runtime status of the net.ipv4.conf.default.send_redirects kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.conf.default.send_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.default.send_redirects = 0
Rationale:ICMP redirect messages are used by routers to inform hosts that a more
direct route exists for a particular destination. These messages contain information
from the system's route table possibly revealing portions of the network topology.
The ability to send ICMP redirects is only appropriate for systems acting as routers.
Remediation script:#
# Set runtime for net.ipv4.conf.default.send_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.send_redirects=0
#
# If net.ipv4.conf.default.send_redirects present in /etc/sysctl.conf, change value to "0"
# else, add "net.ipv4.conf.default.send_redirects = 0" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.conf.default.send_redirects /etc/sysctl.conf ; then
sed -i 's/^net.ipv4.conf.default.send_redirects.*/net.ipv4.conf.default.send_redirects = 0/g' /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.conf.default.send_redirects to 0 per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.conf.default.send_redirects = 0" >> /etc/sysctl.conf
fi
|
Disable Kernel Parameter for Sending ICMP Redirects for All Interfacesrule
To set the runtime status of the net.ipv4.conf.all.send_redirects kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.conf.all.send_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.all.send_redirects = 0
Rationale:ICMP redirect messages are used by routers to inform hosts that a more
direct route exists for a particular destination. These messages contain information
from the system's route table possibly revealing portions of the network topology.
The ability to send ICMP redirects is only appropriate for systems acting as routers.
Remediation script:#
# Set runtime for net.ipv4.conf.all.send_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.send_redirects=0
#
# If net.ipv4.conf.all.send_redirects present in /etc/sysctl.conf, change value to "0"
# else, add "net.ipv4.conf.all.send_redirects = 0" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.conf.all.send_redirects /etc/sysctl.conf ; then
sed -i 's/^net.ipv4.conf.all.send_redirects.*/net.ipv4.conf.all.send_redirects = 0/g' /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.conf.all.send_redirects to 0 per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.conf.all.send_redirects = 0" >> /etc/sysctl.conf
fi
|
Disable Kernel Parameter for IP Forwardingrule
To set the runtime status of the net.ipv4.ip_forward kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.ip_forward=0
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.ip_forward = 0
Rationale:IP forwarding permits the kernel to forward packets from one network
interface to another. The ability to forward packets between two networks is
only appropriate for systems acting as routers. Remediation script:#
# Set runtime for net.ipv4.ip_forward
#
/sbin/sysctl -q -n -w net.ipv4.ip_forward=0
#
# If net.ipv4.ip_forward present in /etc/sysctl.conf, change value to "0"
# else, add "net.ipv4.ip_forward = 0" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.ip_forward /etc/sysctl.conf ; then
sed -i 's/^net.ipv4.ip_forward.*/net.ipv4.ip_forward = 0/g' /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.ip_forward to 0 per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.ip_forward = 0" >> /etc/sysctl.conf
fi
|
Network Related Kernel Runtime Parameters for Hosts and RoutersgroupCertain kernel parameters should be set for systems which are
acting as either hosts or routers to improve the system's ability defend
against certain types of IPv4 protocol attacks. |
contains 11 rules |
Configure Kernel Parameter for Accepting Source-Routed Packets for All Interfacesrule
To set the runtime status of the net.ipv4.conf.all.accept_source_route kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.conf.all.accept_source_route=0
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.all.accept_source_route = 0
Rationale:Source-routed packets allow the source of the packet to suggest routers
forward the packet along a different path than configured on the router, which can
be used to bypass network security measures. This requirement applies only to the
forwarding of source-routerd traffic, such as when IPv4 forwarding is enabled and
the system is functioning as a router.
Accepting source-routed packets in the IPv4 protocol has few legitimate
uses. It should be disabled unless it is absolutely required. Remediation script:
sysctl_net_ipv4_conf_all_accept_source_route_value="disabled"
#
# Set runtime for net.ipv4.conf.all.accept_source_route
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.accept_source_route=$sysctl_net_ipv4_conf_all_accept_source_route_value
#
# If net.ipv4.conf.all.accept_source_route present in /etc/sysctl.conf, change value to appropriate value
# else, add "net.ipv4.conf.all.accept_source_route = value" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.conf.all.accept_source_route /etc/sysctl.conf ; then
sed -i "s/^net.ipv4.conf.all.accept_source_route.*/net.ipv4.conf.all.accept_source_route = $sysctl_net_ipv4_conf_all_accept_source_route_value/g" /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.conf.all.accept_source_route to $sysctl_net_ipv4_conf_all_accept_source_route_value per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.conf.all.accept_source_route = $sysctl_net_ipv4_conf_all_accept_source_route_value" >> /etc/sysctl.conf
fi
|
Configure Kernel Parameter for Accepting ICMP Redirects for All Interfacesrule
To set the runtime status of the net.ipv4.conf.all.accept_redirects kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.conf.all.accept_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.all.accept_redirects = 0
Rationale:ICMP redirect messages are used by routers to inform hosts that a more direct
route exists for a particular destination. These messages modify the host's route table
and are unauthenticated. An illicit ICMP redirect message could result in a man-in-the-middle
attack.
This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless
absolutely required. Remediation script:
sysctl_net_ipv4_conf_all_accept_redirects_value="disabled"
#
# Set runtime for net.ipv4.conf.all.accept_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.accept_redirects=$sysctl_net_ipv4_conf_all_accept_redirects_value
#
# If net.ipv4.conf.all.accept_redirects present in /etc/sysctl.conf, change value to appropriate value
# else, add "net.ipv4.conf.all.accept_redirects = value" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.conf.all.accept_redirects /etc/sysctl.conf ; then
sed -i "s/^net.ipv4.conf.all.accept_redirects.*/net.ipv4.conf.all.accept_redirects = $sysctl_net_ipv4_conf_all_accept_redirects_value/g" /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.conf.all.accept_redirects to $sysctl_net_ipv4_conf_all_accept_redirects_value per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.conf.all.accept_redirects = $sysctl_net_ipv4_conf_all_accept_redirects_value" >> /etc/sysctl.conf
fi
|
Configure Kernel Parameter for Accepting Secure Redirects for All Interfacesrule
To set the runtime status of the net.ipv4.conf.all.secure_redirects kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.conf.all.secure_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.all.secure_redirects = 0
Rationale:Accepting "secure" ICMP redirects (from those gateways listed as
default gateways) has few legitimate uses. It should be disabled unless it is
absolutely required. Remediation script:
sysctl_net_ipv4_conf_all_secure_redirects_value="1"
#
# Set runtime for net.ipv4.conf.all.secure_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.secure_redirects=$sysctl_net_ipv4_conf_all_secure_redirects_value
#
# If net.ipv4.conf.all.secure_redirects present in /etc/sysctl.conf, change value to appropriate value
# else, add "net.ipv4.conf.all.secure_redirects = value" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.conf.all.secure_redirects /etc/sysctl.conf ; then
sed -i "s/^net.ipv4.conf.all.secure_redirects.*/net.ipv4.conf.all.secure_redirects = $sysctl_net_ipv4_conf_all_secure_redirects_value/g" /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.conf.all.secure_redirects to $sysctl_net_ipv4_conf_all_secure_redirects_value per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.conf.all.secure_redirects = $sysctl_net_ipv4_conf_all_secure_redirects_value" >> /etc/sysctl.conf
fi
|
Configure Kernel Parameter to Log Martian Packetsrule
To set the runtime status of the net.ipv4.conf.all.log_martians kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.conf.all.log_martians=1
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.all.log_martians = 1
Rationale:The presence of "martian" packets (which have impossible addresses)
as well as spoofed packets, source-routed packets, and redirects could be a
sign of nefarious network activity. Logging these packets enables this activity
to be detected. Remediation script:
sysctl_net_ipv4_conf_all_log_martians_value="1"
#
# Set runtime for net.ipv4.conf.all.log_martians
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.log_martians=$sysctl_net_ipv4_conf_all_log_martians_value
#
# If net.ipv4.conf.all.log_martians present in /etc/sysctl.conf, change value to appropriate value
# else, add "net.ipv4.conf.all.log_martians = value" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.conf.all.log_martians /etc/sysctl.conf ; then
sed -i "s/^net.ipv4.conf.all.log_martians.*/net.ipv4.conf.all.log_martians = $sysctl_net_ipv4_conf_all_log_martians_value/g" /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.conf.all.log_martians to $sysctl_net_ipv4_conf_all_log_martians_value per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.conf.all.log_martians = $sysctl_net_ipv4_conf_all_log_martians_value" >> /etc/sysctl.conf
fi
|
Configure Kernel Parameter for Accepting Source-Routed Packets By Defaultrule
To set the runtime status of the net.ipv4.conf.default.accept_source_route kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.conf.default.accept_source_route=0
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.default.accept_source_route = 0
Rationale:Source-routed packates allow the source of the packet to suggest routers
forward the packet along a different path than configured on the router, which can
be used to bypass network security measures.
Accepting source-routed packets in the IPv4 protocol has few legitimate
uses. It should be disabled unless it is absolutely required, such as when
IPv4 forwarding is enabled and the system is legitimately functioning as
a router. Remediation script:
sysctl_net_ipv4_conf_default_accept_source_route_value="0"
#
# Set runtime for net.ipv4.conf.default.accept_source_route
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.accept_source_route=$sysctl_net_ipv4_conf_default_accept_source_route_value
#
# If net.ipv4.conf.default.accept_source_route present in /etc/sysctl.conf, change value to appropriate value
# else, add "net.ipv4.conf.default.accept_source_route = value" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.conf.default.accept_source_route /etc/sysctl.conf ; then
sed -i "s/^net.ipv4.conf.default.accept_source_route.*/net.ipv4.conf.default.accept_source_route = $sysctl_net_ipv4_conf_default_accept_source_route_value/g" /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.conf.default.accept_source_route to $sysctl_net_ipv4_conf_default_accept_source_route_value per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.conf.default.accept_source_route = $sysctl_net_ipv4_conf_default_accept_source_route_value" >> /etc/sysctl.conf
fi
|
Configure Kernel Parameter for Accepting ICMP Redirects By Defaultrule
To set the runtime status of the net.ipv4.conf.default.accept_redirects kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.conf.default.accept_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.default.accept_redirects = 0
Rationale:ICMP redirect messages are used by routers to inform hosts that a more direct
route exists for a particular destination. These messages modify the host's route table
and are unauthenticated. An illicit ICMP redirect message could result in a man-in-the-middle
attack.
This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless
absolutely required. Remediation script:
sysctl_net_ipv4_conf_default_accept_redirects_value="0"
#
# Set runtime for net.ipv4.conf.default.accept_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.accept_redirects=$sysctl_net_ipv4_conf_default_accept_redirects_value
#
# If net.ipv4.conf.default.accept_redirects present in /etc/sysctl.conf, change value to appropriate value
# else, add "net.ipv4.conf.default.accept_redirects = value" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.conf.default.accept_redirects /etc/sysctl.conf ; then
sed -i "s/^net.ipv4.conf.default.accept_redirects.*/net.ipv4.conf.default.accept_redirects = $sysctl_net_ipv4_conf_default_accept_redirects_value/g" /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.conf.default.accept_redirects to $sysctl_net_ipv4_conf_default_accept_redirects_value per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.conf.default.accept_redirects = $sysctl_net_ipv4_conf_default_accept_redirects_value" >> /etc/sysctl.conf
fi
|
Configure Kernel Parameter for Accepting Secure Redirects By Defaultrule
To set the runtime status of the net.ipv4.conf.default.secure_redirects kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.conf.default.secure_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.default.secure_redirects = 0
Rationale:Accepting "secure" ICMP redirects (from those gateways listed as
default gateways) has few legitimate uses. It should be disabled unless it is
absolutely required. Remediation script:
sysctl_net_ipv4_conf_default_secure_redirects_value="1"
#
# Set runtime for net.ipv4.conf.default.secure_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.secure_redirects=$sysctl_net_ipv4_conf_default_secure_redirects_value
#
# If net.ipv4.conf.default.secure_redirects present in /etc/sysctl.conf, change value to appropriate value
# else, add "net.ipv4.conf.default.secure_redirects = value" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.conf.default.secure_redirects /etc/sysctl.conf ; then
sed -i "s/^net.ipv4.conf.default.secure_redirects.*/net.ipv4.conf.default.secure_redirects = $sysctl_net_ipv4_conf_default_secure_redirects_value/g" /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.conf.default.secure_redirects to $sysctl_net_ipv4_conf_default_secure_redirects_value per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.conf.default.secure_redirects = $sysctl_net_ipv4_conf_default_secure_redirects_value" >> /etc/sysctl.conf
fi
|
Configure Kernel Parameter to Ignore ICMP Broadcast Echo Requestsrule
To set the runtime status of the net.ipv4.icmp_echo_ignore_broadcasts kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.icmp_echo_ignore_broadcasts=1
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.icmp_echo_ignore_broadcasts = 1
Rationale:Responding to broadcast (ICMP) echoes facilitates network mapping
and provides a vector for amplification attacks.
Ignoring ICMP echo requests (pings) sent to broadcast or multicast
addresses makes the system slightly more difficult to enumerate on the network.
Remediation script:
sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value="1"
#
# Set runtime for net.ipv4.icmp_echo_ignore_broadcasts
#
/sbin/sysctl -q -n -w net.ipv4.icmp_echo_ignore_broadcasts=$sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value
#
# If net.ipv4.icmp_echo_ignore_broadcasts present in /etc/sysctl.conf, change value to appropriate value
# else, add "net.ipv4.icmp_echo_ignore_broadcasts = value" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.icmp_echo_ignore_broadcasts /etc/sysctl.conf ; then
sed -i "s/^net.ipv4.icmp_echo_ignore_broadcasts.*/net.ipv4.icmp_echo_ignore_broadcasts = $sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value/g" /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.icmp_echo_ignore_broadcasts to $sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.icmp_echo_ignore_broadcasts = $sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value" >> /etc/sysctl.conf
fi
|
Configure Kernel Parameter to Ignore Bogus ICMP Error Responsesrule
To set the runtime status of the net.ipv4.icmp_ignore_bogus_error_responses kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.icmp_ignore_bogus_error_responses=1
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.icmp_ignore_bogus_error_responses = 1
Rationale:Ignoring bogus ICMP error responses reduces
log size, although some activity would not be logged. Remediation script:
sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value="1"
#
# Set runtime for net.ipv4.icmp_ignore_bogus_error_responses
#
/sbin/sysctl -q -n -w net.ipv4.icmp_ignore_bogus_error_responses=$sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value
#
# If net.ipv4.icmp_ignore_bogus_error_responses present in /etc/sysctl.conf, change value to appropriate value
# else, add "net.ipv4.icmp_ignore_bogus_error_responses = value" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.icmp_ignore_bogus_error_responses /etc/sysctl.conf ; then
sed -i "s/^net.ipv4.icmp_ignore_bogus_error_responses.*/net.ipv4.icmp_ignore_bogus_error_responses = $sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value/g" /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.icmp_ignore_bogus_error_responses to $sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.icmp_ignore_bogus_error_responses = $sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value" >> /etc/sysctl.conf
fi
|
Configure Kernel Parameter to Use Reverse Path Filtering for All Interfacesrule
To set the runtime status of the net.ipv4.conf.all.rp_filter kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.conf.all.rp_filter=1
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.all.rp_filter = 1
Rationale:Enabling reverse path filtering drops packets with source addresses
that should not have been able to be received on the interface they were
received on. It should not be used on systems which are routers for
complicated networks, but is helpful for end hosts and routers serving small
networks. Remediation script:
sysctl_net_ipv4_conf_all_rp_filter_value="1"
#
# Set runtime for net.ipv4.conf.all.rp_filter
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.rp_filter=$sysctl_net_ipv4_conf_all_rp_filter_value
#
# If net.ipv4.conf.all.rp_filter present in /etc/sysctl.conf, change value to appropriate value
# else, add "net.ipv4.conf.all.rp_filter = value" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.conf.all.rp_filter /etc/sysctl.conf ; then
sed -i "s/^net.ipv4.conf.all.rp_filter.*/net.ipv4.conf.all.rp_filter = $sysctl_net_ipv4_conf_all_rp_filter_value/g" /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.conf.all.rp_filter to $sysctl_net_ipv4_conf_all_rp_filter_value per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.conf.all.rp_filter = $sysctl_net_ipv4_conf_all_rp_filter_value" >> /etc/sysctl.conf
fi
|
Configure Kernel Parameter to Use Reverse Path Filtering by Defaultrule
To set the runtime status of the net.ipv4.conf.default.rp_filter kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv4.conf.default.rp_filter=1
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv4.conf.default.rp_filter = 1
Rationale:Enabling reverse path filtering drops packets with source addresses
that should not have been able to be received on the interface they were
received on. It should not be used on systems which are routers for
complicated networks, but is helpful for end hosts and routers serving small
networks. Remediation script:
sysctl_net_ipv4_conf_default_rp_filter_value="1"
#
# Set runtime for net.ipv4.conf.default.rp_filter
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.rp_filter=$sysctl_net_ipv4_conf_default_rp_filter_value
#
# If net.ipv4.conf.default.rp_filter present in /etc/sysctl.conf, change value to appropriate value
# else, add "net.ipv4.conf.default.rp_filter = value" to /etc/sysctl.conf
#
if grep --silent ^net.ipv4.conf.default.rp_filter /etc/sysctl.conf ; then
sed -i "s/^net.ipv4.conf.default.rp_filter.*/net.ipv4.conf.default.rp_filter = $sysctl_net_ipv4_conf_default_rp_filter_value/g" /etc/sysctl.conf
else
echo -e "\n# Set net.ipv4.conf.default.rp_filter to $sysctl_net_ipv4_conf_default_rp_filter_value per security requirements" >> /etc/sysctl.conf
echo "net.ipv4.conf.default.rp_filter = $sysctl_net_ipv4_conf_default_rp_filter_value" >> /etc/sysctl.conf
fi
|
Wireless NetworkinggroupWireless networking, such as 802.11
(WiFi) and Bluetooth, can present a security risk to sensitive or
classified systems and networks. Wireless networking hardware is
much more likely to be included in laptop or portable systems than
in desktops or servers.
Removal of hardware provides the greatest assurance that the wireless
capability remains disabled. Acquisition policies often include provisions to
prevent the purchase of equipment that will be used in sensitive spaces and
includes wireless capabilities. If it is impractical to remove the wireless
hardware, and policy permits the device to enter sensitive spaces as long
as wireless is disabled, efforts should instead focus on disabling wireless capability
via software. |
contains 4 rules |
Disable Wireless Through Software ConfigurationgroupIf it is impossible to remove the wireless hardware
from the device in question, disable as much of it as possible
through software. The following methods can disable software
support for wireless networking, but note that these methods do not
prevent malicious software or careless users from re-activating the
devices. |
contains 4 rules |
Disable WiFi or Bluetooth in BIOSruleSome systems that include built-in wireless support offer the
ability to disable the device through the BIOS. This is system-specific;
consult your hardware manual or explore the BIOS setup during
boot. Rationale:Disabling wireless support in the BIOS prevents easy
activation of the wireless interface, generally requiring administrators
to reboot the system first.
|
Deactivate Wireless Network InterfacesruleDeactivating wireless network interfaces should prevent
normal usage of the wireless capability.
First, identify the interfaces available with the command:
$ ifconfig -a
Additionally, the following command may be used to
determine whether wireless support is included for a
particular interface, though this may not always be a clear
indicator:
$ iwconfig
After identifying any wireless interfaces (which may have
names like wlan0 , ath0 , wifi0 , em1 or
eth0 ), deactivate the interface with the command:
$ sudo ifdown interface
These changes will only last until the next reboot. To
disable the interface for future boots, remove the appropriate
interface file from /etc/sysconfig/network-scripts :
$ sudo rm /etc/sysconfig/network-scripts/ifcfg-interface
Rationale:Wireless networking allows attackers within physical proximity to
launch network-based attacks against systems, including those against local LAN
protocols which were not designed with security in mind.
|
Disable Bluetooth Servicerule
The bluetooth service can be disabled with the following command:
$ sudo systemctl disable bluetooth.service
$ sudo service bluetooth stop
Rationale:Disabling the bluetooth service prevents the system from attempting
connections to Bluetooth devices, which entails some security risk.
Nevertheless, variation in this risk decision may be expected due to the
utility of Bluetooth connectivity and its limited range. Remediation script:grep -qi disable /etc/xinetd.d/bluetooth && \
sed -i 's/disable.*/disable = yes/gI' /etc/xinetd.d/bluetooth
#
# Disable bluetooth.service for all systemd targets
#
systemctl disable bluetooth.service
#
# Stop bluetooth.service if currently running
#
systemctl stop bluetooth.service
|
Disable Bluetooth Kernel ModulesruleThe kernel's module loading system can be configured to prevent
loading of the Bluetooth module. Add the following to
the appropriate /etc/modprobe.d configuration file
to prevent the loading of the Bluetooth module:
install bluetooth /bin/true
Rationale:If Bluetooth functionality must be disabled, preventing the kernel
from loading the kernel module provides an additional safeguard against its
activation. Remediation script:echo "install bluetooth /bin/true" > /etc/modprobe.d/bluetooth.conf
|
IPv6groupThe system includes support for Internet Protocol
version 6. A major and often-mentioned improvement over IPv4 is its
enormous increase in the number of available addresses. Another
important feature is its support for automatic configuration of
many network settings. |
contains 4 rules |
Disable Support for IPv6 Unless Neededgroup
Despite configuration that suggests support for IPv6 has
been disabled, link-local IPv6 address auto-configuration occurs
even when only an IPv4 address is assigned. The only way to
effectively prevent execution of the IPv6 networking stack is to
instruct the system not to activate the IPv6 kernel module.
|
contains 2 rules |
Disable IPv6 Networking Support Automatic LoadingruleTo disable support for (ipv6 ) add the following line to
/etc/sysctl.d/ipv6.conf (or another file in
/etc/sysctl.d ):
net.ipv6.conf.all.disable_ipv6 = 1
This disables IPv6 on all network interfaces as other services and system
functionality require the IPv6 stack loaded to work.
Rationale:
Any unnecessary network stacks - including IPv6 - should be disabled, to reduce
the vulnerability to exploitation.
|
Disable Support for RPC IPv6ruleRPC services for NFSv4 try to load transport modules for
udp6 and tcp6 by default, even if IPv6 has been disabled in
/etc/modprobe.d . To prevent RPC services such as rpc.mountd
from attempting to start IPv6 network listeners, remove or comment out the
following two lines in /etc/netconfig :
udp6 tpi_clts v inet6 udp - -
tcp6 tpi_cots_ord v inet6 tcp - -
identifiers:
CCE-80177-9 references:
CM-7 |
Configure IPv6 Settings if NecessarygroupA major feature of IPv6 is the extent to which systems
implementing it can automatically configure their networking
devices using information from the network. From a security
perspective, manually configuring important configuration
information is preferable to accepting it from the network
in an unauthenticated fashion. |
contains 2 rules |
Disable Automatic ConfigurationgroupDisable the system's acceptance of router
advertisements and redirects by adding or correcting the following
line in /etc/sysconfig/network (note that this does not disable
sending router solicitations):
IPV6_AUTOCONF=no
|
contains 2 rules |
Configure Accepting IPv6 Router Advertisementsrule
To set the runtime status of the net.ipv6.conf.default.accept_ra kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv6.conf.default.accept_ra=0
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv6.conf.default.accept_ra = 0
Rationale:
An illicit router advertisement message could result in a man-in-the-middle attack.
Remediation script:
sysctl_net_ipv6_conf_default_accept_ra_value="0"
#
# Set runtime for net.ipv6.conf.default.accept_ra
#
/sbin/sysctl -q -n -w net.ipv6.conf.default.accept_ra=$sysctl_net_ipv6_conf_default_accept_ra_value
#
# If net.ipv6.conf.default.accept_ra present in /etc/sysctl.conf, change value to appropriate value
# else, add "net.ipv6.conf.default.accept_ra = value" to /etc/sysctl.conf
#
if grep --silent ^net.ipv6.conf.default.accept_ra /etc/sysctl.conf ; then
sed -i "s/^net.ipv6.conf.default.accept_ra.*/net.ipv6.conf.default.accept_ra = $sysctl_net_ipv6_conf_default_accept_ra_value/g" /etc/sysctl.conf
else
echo -e "\n# Set net.ipv6.conf.default.accept_ra to $sysctl_net_ipv6_conf_default_accept_ra_value per security requirements" >> /etc/sysctl.conf
echo "net.ipv6.conf.default.accept_ra = $sysctl_net_ipv6_conf_default_accept_ra_value" >> /etc/sysctl.conf
fi
|
Configure Accepting IPv6 Redirects By Defaultrule
To set the runtime status of the net.ipv6.conf.default.accept_redirects kernel parameter,
run the following command:
$ sudo sysctl -w net.ipv6.conf.default.accept_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf :
net.ipv6.conf.default.accept_redirects = 0
Rationale:
An illicit ICMP redirect message could result in a man-in-the-middle attack.
Remediation script:
sysctl_net_ipv6_conf_default_accept_redirects_value="0"
#
# Set runtime for net.ipv6.conf.default.accept_redirects
#
/sbin/sysctl -q -n -w net.ipv6.conf.default.accept_redirects=$sysctl_net_ipv6_conf_default_accept_redirects_value
#
# If net.ipv6.conf.default.accept_redirects present in /etc/sysctl.conf, change value to appropriate value
# else, add "net.ipv6.conf.default.accept_redirects = value" to /etc/sysctl.conf
#
if grep --silent ^net.ipv6.conf.default.accept_redirects /etc/sysctl.conf ; then
sed -i "s/^net.ipv6.conf.default.accept_redirects.*/net.ipv6.conf.default.accept_redirects = $sysctl_net_ipv6_conf_default_accept_redirects_value/g" /etc/sysctl.conf
else
echo -e "\n# Set net.ipv6.conf.default.accept_redirects to $sysctl_net_ipv6_conf_default_accept_redirects_value per security requirements" >> /etc/sysctl.conf
echo "net.ipv6.conf.default.accept_redirects = $sysctl_net_ipv6_conf_default_accept_redirects_value" >> /etc/sysctl.conf
fi
|
firewalldgroupThe dynamic firewall daemon firewalld provides a
dynamically managed firewall with support for network “zones” to assign
a level of trust to a network and its associated connections and interfaces.
It has support for IPv4 and IPv6 firewall settings. It supports Ethernet
bridges and has a separation of runtime and permanent configuration options.
It also has an interface for services or applications to add firewall rules
directly.
A graphical configuration tool, firewall-config , is used to configure
firewalld , which in turn uses iptables tool to communicate
with Netfilter in the kernel which implements packet filtering.
The firewall service provided by firewalld is dynamic rather than
static because changes to the configuration can be made at anytime and are
immediately implemented. There is no need to save or apply the changes. No
unintended disruption of existing network connections occurs as no part of
the firewall has to be reloaded.
|
contains 2 rules |
Inspect and Activate Default firewalld RulesgroupFirewalls can be used to separate networks into different zones
based on the level of trust the user has decided to place on the devices and
traffic within that network. NetworkManager informs firewalld to which
zone an interface belongs. An interface's assigned zone can be changed by
NetworkManager or via the firewall-config tool.
The zone settings in /etc/firewalld/ are a range of preset settings
which can be quickly applied to a network interface. These are the zones
provided by firewalld sorted according to the default trust level of the
zones from untrusted to trusted:
drop
Any incoming network packets are dropped, there is no
reply. Only outgoing network connections are possible. block
Any incoming network connections are rejected with an
icmp-host-prohibited message for IPv4 and icmp6-adm-prohibited
for IPv6. Only network connections initiated from within the system are
possible. public
For use in public areas. You do not trust the other
computers on the network to not harm your computer. Only selected incoming
connections are accepted. external
For use on external networks with masquerading enabled
especially for routers. You do not trust the other computers on the network to
not harm your computer. Only selected incoming connections are accepted. dmz
For computers in your demilitarized zone that are
publicly-accessible with limited access to your internal network. Only selected
incoming connections are accepted. work
For use in work areas. You mostly trust the other computers
on networks to not harm your computer. Only selected incoming connections are
accepted. home
For use in home areas. You mostly trust the other computers
on networks to not harm your computer. Only selected incoming connections are
accepted. internal
For use on internal networks. You mostly trust the
other computers on the networks to not harm your computer. Only selected
incoming connections are accepted. trusted
All network connections are accepted.
It is possible to designate one of these zones to be the default zone. When
interface connections are added to NetworkManager , they are assigned
to the default zone. On installation, the default zone in firewalld is set to
be the public zone.
To find out all the settings of a zone, for example the public zone,
enter the following command as root:
# firewall-cmd --zone=public --list-all
Example output of this command might look like the following:
# firewall-cmd --zone=public --list-all
public
interfaces:
services: mdns dhcpv6-client ssh
ports:
forward-ports:
icmp-blocks: source-quench
To view the network zones currently active, enter the following command as root:
# firewall-cmd --get-service
The following listing displays the result of this command on common Red Hat
Enterprise Linux 7 Server system:
# firewall-cmd --get-service
amanda-client bacula bacula-client dhcp dhcpv6 dhcpv6-client dns ftp
high-availability http https imaps ipp ipp-client ipsec kerberos kpasswd
ldap ldaps libvirt libvirt-tls mdns mountd ms-wbt mysql nfs ntp openvpn
pmcd pmproxy pmwebapi pmwebapis pop3s postgresql proxy-dhcp radius rpc-bind
samba samba-client smtp ssh telnet tftp tftp-client transmission-client
vnc-server wbem-https
Finally to view the network zones that will be active after the next firewalld
service reload, enter the following command as root:
# firewall-cmd --get-service --permanent
|
contains 1 rule |
Verify firewalld Enabledrule
The firewalld service can be enabled with the following command:
$ sudo systemctl enable firewalld.service
Rationale:
Access control methods provide the ability to enhance system security posture
by restricting services and known good IP addresses and address ranges. This
prevents connections from unknown hosts and protocols.
Remediation script:#
# Enable firewalld.service for all systemd targets
#
systemctl enable firewalld.service
#
# Start firewalld.service if not currently running
#
systemctl start firewalld.service
|
Strengthen the Default RulesetgroupThe default rules can be strengthened. The system
scripts that activate the firewall rules expect them to be defined
in configuration files under the /etc/firewalld/services
and /etc/firewalld/zones directories.
The following recommendations describe how to strengthen the
default ruleset configuration file. An alternative to editing this
configuration file is to create a shell script that makes calls to
the firewall-cmd program to load in rules under the /etc/firewalld/services
and /etc/firewalld/zones directories.
Instructions apply to both unless otherwise noted. Language and address
conventions for regular firewalld rules are used throughout this section.
warning
The program firewall-config
allows additional services to penetrate the default firewall rules
and automatically adjusts the firewalld ruleset(s). |
contains 1 rule |
Set Default firewalld Zone for Incoming PacketsruleTo set the default zone to drop for
the built-in default zone which processes incoming IPv4 and IPv6 packets,
modify the following line in
/etc/firewalld/firewalld.conf to be:
DefaultZone=drop
Rationale:In firewalld the default zone is applied only after all
the applicable rules in the table are examined for a match. Setting the
default zone to drop implements proper design for a firewall, i.e.
any packets which are not explicitly permitted should not be
accepted. Remediation script:grep -q ^DefaultZone= /etc/firewalld/firewalld.conf && \
sed -i "s/DefaultZone=.*/DefaultZone=drop/g" /etc/firewalld/firewalld.conf
if ! [ $? -eq 0 ]; then
echo "DefaultZone=drop" >> /etc/firewalld/firewalld.conf
fi
|
Uncommon Network ProtocolsgroupThe system includes support for several network
protocols which are not commonly used. Although security vulnerabilities
in kernel networking code are not frequently
discovered, the consequences can be dramatic. Ensuring uncommon
network protocols are disabled reduces the system's risk to attacks
targeted at its implementation of those protocols. warning
Although these protocols are not commonly used, avoid disruption
in your network environment by ensuring they are not needed
prior to disabling them.
|
contains 2 rules |
Disable DCCP Supportrule
The Datagram Congestion Control Protocol (DCCP) is a
relatively new transport layer protocol, designed to support
streaming media and telephony.
To configure the system to prevent the dccp
kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d :
install dccp /bin/true
Rationale:
Disabling DCCP protects
the system against exploitation of any flaws in its implementation.
Remediation script:echo "install dccp /bin/true" > /etc/modprobe.d/dccp.conf
|
Disable SCTP Supportrule
The Stream Control Transmission Protocol (SCTP) is a
transport layer protocol, designed to support the idea of
message-oriented communication, with several streams of messages
within one connection.
To configure the system to prevent the sctp
kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d :
install sctp /bin/true
Rationale:
Disabling SCTP protects
the system against exploitation of any flaws in its implementation.
Remediation script:echo "install sctp /bin/true" > /etc/modprobe.d/sctp.conf
|
Disable Zeroconf NetworkingruleZeroconf networking allows the system to assign itself an IP
address and engage in IP communication without a statically-assigned address or
even a DHCP server. Automatic address assignment via Zeroconf (or DHCP) is not
recommended. To disable Zeroconf automatic route assignment in the 169.254.0.0
subnet, add or correct the following line in /etc/sysconfig/network :
NOZEROCONF=yes
Rationale:Zeroconf addresses are in the network 169.254.0.0. The networking
scripts add entries to the system's routing table for these addresses. Zeroconf
address assignment commonly occurs when the system is configured to use DHCP
but fails to receive an address assignment from the DHCP server.
identifiers:
CCE-80173-8 references:
CM-7 Remediation script:echo "NOZEROCONF=yes" >> /etc/sysconfig/network
|
Ensure System is Not Acting as a Network SnifferruleThe system should not be acting as a network sniffer, which can
capture all traffic on the network to which it is connected. Run the following
to determine if any interface is running in promiscuous mode:
$ ip link | grep PROMISC
Rationale:If any results are returned, then a sniffing process (such as tcpdump
or Wireshark) is likely to be using the interface and this should be
investigated.
identifiers:
CCE-80174-6 references:
CM-7, MA-3 |
Configure SysloggroupThe syslog service has been the default Unix logging mechanism for
many years. It has a number of downsides, including inconsistent log format,
lack of authentication for received messages, and lack of authentication,
encryption, or reliable transport for messages sent over a network. However,
due to its long history, syslog is a de facto standard which is supported by
almost all Unix applications.
In Red Hat Enterprise Linux 7, rsyslog has replaced ksyslogd as the
syslog daemon of choice, and it includes some additional security features
such as reliable, connection-oriented (i.e. TCP) transmission of logs, the
option to log to database formats, and the encryption of log data en route to
a central logging server.
This section discusses how to configure rsyslog for
best effect, and how to use tools provided with the system to maintain and
monitor logs. |
contains 5 rules |
Ensure Proper Configuration of Log Filesgroup
The file /etc/rsyslog.conf controls where log message are written.
These are controlled by lines called rules, which consist of a
selector and an action.
These rules are often customized depending on the role of the system, the
requirements of the environment, and whatever may enable
the administrator to most effectively make use of log data.
The default rules in Red Hat Enterprise Linux 7 are:
*.info;mail.none;authpriv.none;cron.none /var/log/messages
authpriv.* /var/log/secure
mail.* -/var/log/maillog
cron.* /var/log/cron
*.emerg *
uucp,news.crit /var/log/spooler
local7.* /var/log/boot.log
See the man page rsyslog.conf(5) for more information.
Note that the rsyslog daemon can be configured to use a timestamp format that
some log processing programs may not understand. If this occurs,
edit the file /etc/rsyslog.conf and add or edit the following line:
$ ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat
|
contains 2 rules |
Ensure Log Files Are Owned By Appropriate UserruleThe owner of all log files written by
rsyslog should be root.
These log files are determined by the second part of each Rule line in
/etc/rsyslog.conf and typically all appear in /var/log .
For each log file LOGFILE referenced in /etc/rsyslog.conf ,
run the following command to inspect the file's owner:
$ ls -l LOGFILE
If the owner is not root , run the following command to
correct this:
$ sudo chown root LOGFILE
Rationale:The log files generated by rsyslog contain valuable information regarding system
configuration, user authentication, and other such information. Log files should be
protected from unauthorized access. |
Ensure Log Files Are Owned By Appropriate GroupruleThe group-owner of all log files written by
rsyslog should be root.
These log files are determined by the second part of each Rule line in
/etc/rsyslog.conf and typically all appear in /var/log .
For each log file LOGFILE referenced in /etc/rsyslog.conf ,
run the following command to inspect the file's group owner:
$ ls -l LOGFILE
If the owner is not root , run the following command to
correct this:
$ sudo chgrp root LOGFILE
Rationale:The log files generated by rsyslog contain valuable information regarding system
configuration, user authentication, and other such information. Log files should be
protected from unauthorized access. |
Rsyslog Logs Sent To Remote Hostgroup
If system logs are to be useful in detecting malicious
activities, it is necessary to send logs to a remote server. An
intruder who has compromised the root account on a machine may
delete the log entries which indicate that the system was attacked
before they are seen by an administrator.
However, it is recommended that logs be stored on the local
host in addition to being sent to the loghost, especially if
rsyslog has been configured to use the UDP protocol to send
messages over a network. UDP does not guarantee reliable delivery,
and moderately busy sites will lose log messages occasionally,
especially in periods of high traffic which may be the result of an
attack. In addition, remote rsyslog messages are not
authenticated in any way by default, so it is easy for an attacker to
introduce spurious messages to the central log server. Also, some
problems cause loss of network connectivity, which will prevent the
sending of messages to the central server. For all of these reasons, it is
better to store log messages both centrally and on each host, so
that they can be correlated if necessary. |
contains 1 rule |
Ensure Logs Sent To Remote Hostrule
To configure rsyslog to send logs to a remote log server,
open /etc/rsyslog.conf and read and understand the last section of the file,
which describes the multiple directives necessary to activate remote
logging.
Along with these other directives, the system can be configured
to forward its logs to a particular log server by
adding or correcting one of the following lines,
substituting loghost.example.com appropriately.
The choice of protocol depends on the environment of the system;
although TCP and RELP provide more reliable message delivery,
they may not be supported in all environments.
To use UDP for log message delivery:
*.* @loghost.example.com
To use TCP for log message delivery:
*.* @@loghost.example.com
To use RELP for log message delivery:
*.* :omrelp:loghost.example.com
Rationale:A log server (loghost) receives syslog messages from one or more
systems. This data can be used as an additional log source in the event a
system is compromised and its local logs are suspect. Forwarding log messages
to a remote loghost also provides system administrators with a centralized
place to view the status of multiple hosts within the enterprise.
|
Ensure rsyslog is Installedrule
Rsyslog is installed by default.
The rsyslog package can be installed with the following command:
$ sudo yum install rsyslog
Rationale:
The rsyslog package provides the rsyslog daemon, which provides
system logging services.
Remediation script:yum -y install rsyslog
|
Enable rsyslog ServiceruleThe rsyslog service provides syslog-style logging by default on Red Hat Enterprise Linux 7.
The rsyslog service can be enabled with the following command:
$ sudo systemctl enable rsyslog.service
Rationale:The rsyslog service must be running in order to provide
logging services, which are essential to system administration.
Remediation script:#
# Enable rsyslog.service for all systemd targets
#
systemctl enable rsyslog.service
#
# Start rsyslog.service if not currently running
#
systemctl start rsyslog.service
|
System Accounting with auditdgroupThe audit service provides substantial capabilities
for recording system activities. By default, the service audits about
SELinux AVC denials and certain types of security-relevant events
such as system logins, account modifications, and authentication
events performed by programs such as sudo.
Under its default configuration, auditd has modest disk space
requirements, and should not noticeably impact system performance.
NOTE: The Linux Audit daemon auditd can be configured to use
the augenrules program to read audit rules files (*.rules )
located in /etc/audit/rules.d location and compile them to create
the resulting form of the /etc/audit/audit.rules configuration file
during the daemon startup (default configuration). Alternatively, the auditd
daemon can use the auditctl utility to read audit rules from the
/etc/audit/audit.rules configuration file during daemon startup,
and load them into the kernel. The expected behavior is configured via the
appropriate ExecStartPost directive setting in the
/usr/lib/systemd/system/auditd.service configuration file.
To instruct the auditd daemon to use the augenrules program
to read audit rules (default configuration), use the following setting:
ExecStartPost=-/sbin/augenrules --load
in the /usr/lib/systemd/system/auditd.service configuration file.
In order to instruct the auditd daemon to use the auditctl
utility to read audit rules, use the following setting:
ExecStartPost=-/sbin/auditctl -R /etc/audit/audit.rules
in the /usr/lib/systemd/system/auditd.service configuration file.
Refer to [Service] section of the /usr/lib/systemd/system/auditd.service
configuration file for further details.
Government networks often have substantial auditing
requirements and auditd can be configured to meet these
requirements.
Examining some example audit records demonstrates how the Linux audit system
satisfies common requirements.
The following example from Fedora Documentation available at
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/sect-Security-Enhanced_Linux-Troubleshooting-Fixing_Problems.html#sect-Security-Enhanced_Linux-Fixing_Problems-Raw_Audit_Messages
shows the substantial amount of information captured in a
two typical "raw" audit messages, followed by a breakdown of the most important
fields. In this example the message is SELinux-related and reports an AVC
denial (and the associated system call) that occurred when the Apache HTTP
Server attempted to access the /var/www/html/file1 file (labeled with
the samba_share_t type):
type=AVC msg=audit(1226874073.147:96): avc: denied { getattr } for pid=2465 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file
type=SYSCALL msg=audit(1226874073.147:96): arch=40000003 syscall=196 success=no exit=-13
a0=b98df198 a1=bfec85dc a2=54dff4 a3=2008171 items=0 ppid=2463 pid=2465 auid=502 uid=48
gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=6 comm="httpd"
exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)
msg=audit(1226874073.147:96) - The number in parentheses is the unformatted time stamp (Epoch time)
for the event, which can be converted to standard time by using the
date command.
{ getattr } - The item in braces indicates the permission that was denied.
getattr
indicates the source process was trying to read the target file's status information.
This occurs before reading files. This action is denied due to the file being
accessed having the wrong label. Commonly seen permissions include getattr ,
read , and write .
comm="httpd" - The executable that launched the process. The full path of the executable is
found in the
exe= section of the system call (SYSCALL ) message,
which in this case, is exe="/usr/sbin/httpd" .
path="/var/www/html/file1" - The path to the object (target) the process attempted to access.
scontext="unconfined_u:system_r:httpd_t:s0" - The SELinux context of the process that attempted the denied action. In
this case, it is the SELinux context of the Apache HTTP Server, which is running
in the
httpd_t domain.
tcontext="unconfined_u:object_r:samba_share_t:s0" - The SELinux context of the object (target) the process attempted to access.
In this case, it is the SELinux context of
file1 . Note: the samba_share_t
type is not accessible to processes running in the httpd_t domain.
- From the system call (
SYSCALL ) message, two items are of interest:
success=no : indicates whether the denial (AVC) was enforced or not.
success=no indicates the system call was not successful (SELinux denied
access). success=yes indicates the system call was successful - this can
be seen for permissive domains or unconfined domains, such as initrc_t
and kernel_t .
exe="/usr/sbin/httpd" : the full path to the executable that launched
the process, which in this case, is exe="/usr/sbin/httpd" .
|
contains 41 rules |
Configure auditd Data Retentiongroup
The audit system writes data to /var/log/audit/audit.log . By default,
auditd rotates 5 logs by size (6MB), retaining a maximum of 30MB of
data in total, and refuses to write entries when the disk is too
full. This minimizes the risk of audit data filling its partition
and impacting other services. This also minimizes the risk of the audit
daemon temporarily disabling the system if it cannot write audit log (which
it can be configured to do).
For a busy
system or a system which is thoroughly auditing system activity, the default settings
for data retention may be
insufficient. The log file size needed will depend heavily on what types
of events are being audited. First configure auditing to log all the events of
interest. Then monitor the log size manually for awhile to determine what file
size will allow you to keep the required data for the correct time period.
Using a dedicated partition for /var/log/audit prevents the
auditd logs from disrupting system functionality if they fill, and,
more importantly, prevents other activity in /var from filling the
partition and stopping the audit trail. (The audit logs are size-limited and
therefore unlikely to grow without bound unless configured to do so.) Some
machines may have requirements that no actions occur which cannot be audited.
If this is the case, then auditd can be configured to halt the machine
if it runs out of space. Note: Since older logs are rotated,
configuring auditd this way does not prevent older logs from being
rotated away before they can be viewed.
If your system is configured to halt when logging cannot be performed, make
sure this can never happen under normal circumstances! Ensure that
/var/log/audit is on its own partition, and that this partition is
larger than the maximum amount of data auditd will retain
normally.
references:
AU-11, 138 |
contains 7 rules |
Configure auditd Number of Logs RetainedruleDetermine how many log files
auditd should retain when it rotates logs.
Edit the file /etc/audit/auditd.conf . Add or modify the following
line, substituting NUMLOGS with the correct value of 5:
num_logs = NUMLOGS
Set the value to 5 for general-purpose systems.
Note that values less than 2 result in no log rotation.Rationale:The total storage for audit log files must be large enough to retain
log information over the period required. This is a function of the maximum log
file size and the number of logs retained. Remediation script:
var_auditd_num_logs="5"
AUDITCONFIG=/etc/audit/auditd.conf
grep -q ^num_logs $AUDITCONFIG && \
sed -i 's/^num_logs.*/num_logs = '"$var_auditd_num_logs"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
echo "num_logs = $var_auditd_num_logs" >> $AUDITCONFIG
fi
|
Configure auditd Max Log File SizeruleDetermine the amount of audit data (in megabytes)
which should be retained in each log file. Edit the file
/etc/audit/auditd.conf . Add or modify the following line, substituting
the correct value of 6 for STOREMB:
max_log_file = STOREMB
Set the value to 6 (MB) or higher for general-purpose systems.
Larger values, of course,
support retention of even more audit data.Rationale:The total storage for audit log files must be large enough to retain
log information over the period required. This is a function of the maximum
log file size and the number of logs retained. Remediation script:
var_auditd_max_log_file="6"
AUDITCONFIG=/etc/audit/auditd.conf
grep -q ^max_log_file $AUDITCONFIG && \
sed -i 's/^max_log_file.*/max_log_file = '"$var_auditd_max_log_file"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
echo "max_log_file = $var_auditd_max_log_file" >> $AUDITCONFIG
fi
|
Configure auditd max_log_file_action Upon Reaching Maximum Log Sizerule The default action to take when the logs reach their maximum size
is to rotate the log files, discarding the oldest one. To configure the action taken
by auditd , add or correct the line in /etc/audit/auditd.conf :
max_log_file_action = ACTION
Possible values for ACTION are described in the auditd.conf man
page. These include:
ignore syslog suspend rotate keep_logs
Set the ACTION to rotate to ensure log rotation
occurs. This is the default. The setting is case-insensitive.
Rationale:Automatically rotating logs (by setting this to rotate )
minimizes the chances of the system unexpectedly running out of disk space by
being overwhelmed with log data. However, for systems that must never discard
log data, or which use external processes to transfer it and reclaim space,
keep_logs can be employed. Remediation script:
var_auditd_max_log_file_action="rotate"
AUDITCONFIG=/etc/audit/auditd.conf
grep -q ^max_log_file_action $AUDITCONFIG && \
sed -i 's/^max_log_file_action.*/max_log_file_action = '"$var_auditd_max_log_file_action"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
echo "max_log_file_action = $var_auditd_max_log_file_action" >> $AUDITCONFIG
fi
|
Configure auditd space_left Action on Low Disk SpaceruleThe auditd service can be configured to take an action
when disk space starts to run low.
Edit the file /etc/audit/auditd.conf . Modify the following line,
substituting ACTION appropriately:
space_left_action = ACTION
Possible values for ACTION are described in the auditd.conf man page.
These include:
ignore syslog email exec suspend single halt
Set this to email (instead of the default,
which is suspend ) as it is more likely to get prompt attention. Acceptable values
also include suspend , single , and halt .
Rationale:Notifying administrators of an impending disk space problem may
allow them to take corrective action prior to any disruption. Remediation script:
var_auditd_space_left_action="email"
grep -q ^space_left_action /etc/audit/auditd.conf && \
sed -i "s/space_left_action.*/space_left_action = $var_auditd_space_left_action/g" /etc/audit/auditd.conf
if ! [ $? -eq 0 ]; then
echo "space_left_action = $var_auditd_space_left_action" >> /etc/audit/auditd.conf
fi
|
Configure auditd admin_space_left Action on Low Disk SpaceruleThe auditd service can be configured to take an action
when disk space is running low but prior to running out of space completely.
Edit the file /etc/audit/auditd.conf . Add or modify the following line,
substituting ACTION appropriately:
admin_space_left_action = ACTION
Set this value to single to cause the system to switch to single user
mode for corrective action. Acceptable values also include suspend and
halt . For certain systems, the need for availability
outweighs the need to log all actions, and a different setting should be
determined. Details regarding all possible values for ACTION are described in the
auditd.conf man page.
Rationale:Administrators should be made aware of an inability to record
audit records. If a separate partition or logical volume of adequate size
is used, running low on space for audit records should never occur.
Remediation script:
var_auditd_admin_space_left_action="single"
grep -q ^admin_space_left_action /etc/audit/auditd.conf && \
sed -i "s/admin_space_left_action.*/admin_space_left_action = $var_auditd_admin_space_left_action/g" /etc/audit/auditd.conf
if ! [ $? -eq 0 ]; then
echo "admin_space_left_action = $var_auditd_admin_space_left_action" >> /etc/audit/auditd.conf
fi
|
Configure auditd mail_acct Action on Low Disk SpaceruleThe auditd service can be configured to send email to
a designated account in certain situations. Add or correct the following line
in /etc/audit/auditd.conf to ensure that administrators are notified
via email for those situations:
action_mail_acct = root
Rationale:Email sent to the root account is typically aliased to the
administrators of the system, who can take appropriate action. Remediation script:
var_auditd_action_mail_acct="root"
AUDITCONFIG=/etc/audit/auditd.conf
grep -q ^action_mail_acct $AUDITCONFIG && \
sed -i 's/^action_mail_acct.*/action_mail_acct = '"$var_auditd_action_mail_acct"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
echo "action_mail_acct = $var_auditd_action_mail_acct" >> $AUDITCONFIG
fi
|
Configure auditd to use audispd's syslog pluginruleTo configure the auditd service to use the
syslog plug-in of the audispd audit event multiplexor, set
the active line in /etc/audisp/plugins.d/syslog.conf to
yes . Restart the auditd service:
$ sudo service auditd restart
Rationale:The auditd service does not include the ability to send audit
records to a centralized server for management directly. It does, however,
include a plug-in for audit event multiplexor (audispd) to pass audit records
to the local syslog server Remediation script:
grep -q ^active /etc/audisp/plugins.d/syslog.conf && \
sed -i "s/active.*/active = yes/g" /etc/audisp/plugins.d/syslog.conf
if ! [ $? -eq 0 ]; then
echo "active = yes" >> /etc/audisp/plugins.d/syslog.conf
fi
|
Configure auditd Rules for Comprehensive AuditinggroupThe auditd program can perform comprehensive
monitoring of system activity. This section describes recommended
configuration settings for comprehensive auditing, but a full
description of the auditing system's capabilities is beyond the
scope of this guide. The mailing list linux-audit@redhat.com exists
to facilitate community discussion of the auditing system.
The audit subsystem supports extensive collection of events, including:
- Tracing of arbitrary system calls (identified by name or number)
on entry or exit.
- Filtering by PID, UID, call success, system call argument (with
some limitations), etc.
- Monitoring of specific files for modifications to the file's
contents or metadata.
Auditing rules at startup are controlled by the file /etc/audit/audit.rules .
Add rules to it to meet the auditing requirements for your organization.
Each line in /etc/audit/audit.rules represents a series of arguments
that can be passed to auditctl and can be individually tested
during runtime. See documentation in /usr/share/doc/audit-VERSION and
in the related man pages for more details.
If copying any example audit rulesets from /usr/share/doc/audit-VERSION ,
be sure to comment out the
lines containing arch= which are not appropriate for your system's
architecture. Then review and understand the following rules,
ensuring rules are activated as needed for the appropriate
architecture.
After reviewing all the rules, reading the following sections, and
editing as needed, the new rules can be activated as follows:
$ sudo service auditd restart
|
contains 32 rules |
Records Events that Modify Date and Time InformationgroupArbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time. All changes to the system
time should be audited. |
contains 5 rules |
Record attempts to alter time through adjtimexruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S adjtimex -k audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -k audit_time_rules
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S adjtimex -k audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -k audit_time_rules
The -k option allows for the specification of a key in string form that can be
used for better reporting capability through ausearch and aureport. Multiple
system calls can be defined on the same line to save space if desired, but is
not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex -S settimeofday -k audit_time_rules
Rationale:Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. identifiers:
CCE-27290-6 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 5.2.4, Req-10.4.2.b, 1487, 169 Remediation script:
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
function rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation {
# Perform the remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on Red Hat Enterprise Linux 7 or Fedora OSes
#
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
# Create expected audit group and audit rule form for particular system call & architecture
if [ ${ARCH} = "b32" ]
then
# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
# so append it to the list of time group system calls to be audited
GROUP="\(adjtimex\|settimeofday\|stime\)"
FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
elif [ ${ARCH} = "b64" ]
then
# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
# therefore don't add it to the list of time group system calls to be audited
GROUP="\(adjtimex\|settimeofday\)"
FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
fi
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
}
rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation
|
Record attempts to alter time through settimeofdayruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S settimeofday -k audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -k audit_time_rules
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S settimeofday -k audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -k audit_time_rules
The -k option allows for the specification of a key in string form that can be
used for better reporting capability through ausearch and aureport. Multiple
system calls can be defined on the same line to save space if desired, but is
not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex -S settimeofday -k audit_time_rules
Rationale:Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. identifiers:
CCE-27216-1 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 5.2.4, Req-10.4.2.b, 1487, 169 Remediation script:
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
function rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation {
# Perform the remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on Red Hat Enterprise Linux 7 or Fedora OSes
#
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
# Create expected audit group and audit rule form for particular system call & architecture
if [ ${ARCH} = "b32" ]
then
# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
# so append it to the list of time group system calls to be audited
GROUP="\(adjtimex\|settimeofday\|stime\)"
FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
elif [ ${ARCH} = "b64" ]
then
# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
# therefore don't add it to the list of time group system calls to be audited
GROUP="\(adjtimex\|settimeofday\)"
FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
fi
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
}
rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation
|
Record Attempts to Alter Time Through stimeruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d for both 32 bit and 64 bit systems:
-a always,exit -F arch=b32 -S stime -k audit_time_rules
Since the 64 bit version of the "stime" system call is not defined in the audit
lookup table, the corresponding "-F arch=b64" form of this rule is not expected
to be defined on 64 bit systems (the aforementioned "-F arch=b32" stime rule
form itself is sufficient for both 32 bit and 64 bit systems). If the
auditd daemon is configured to use the auditctl utility to
read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file for both 32 bit and 64 bit systems:
-a always,exit -F arch=b32 -S stime -k audit_time_rules
Since the 64 bit version of the "stime" system call is not defined in the audit
lookup table, the corresponding "-F arch=b64" form of this rule is not expected
to be defined on 64 bit systems (the aforementioned "-F arch=b32" stime rule
form itself is sufficient for both 32 bit and 64 bit systems). The -k option
allows for the specification of a key in string form that can be used for
better reporting capability through ausearch and aureport. Multiple system
calls can be defined on the same line to save space if desired, but is not
required. See an example of multiple combined system calls:
-a always,exit -F arch=b64 -S adjtimex -S settimeofday -k audit_time_rules
Rationale:Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. identifiers:
CCE-27299-7 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, Req-10.4.2.b, 1487, 169 Remediation script:
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
function rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation {
# Perform the remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on Red Hat Enterprise Linux 7 or Fedora OSes
#
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
# Create expected audit group and audit rule form for particular system call & architecture
if [ ${ARCH} = "b32" ]
then
# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
# so append it to the list of time group system calls to be audited
GROUP="\(adjtimex\|settimeofday\|stime\)"
FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
elif [ ${ARCH} = "b64" ]
then
# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
# therefore don't add it to the list of time group system calls to be audited
GROUP="\(adjtimex\|settimeofday\)"
FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
fi
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
}
rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation
|
Record Attempts to Alter Time Through clock_settimeruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
The -k option allows for the specification of a key in string form that can
be used for better reporting capability through ausearch and aureport.
Multiple system calls can be defined on the same line to save space if
desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex -S settimeofday -k audit_time_rules
Rationale:Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. identifiers:
CCE-27219-5 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 5.2.4, Req-10.4.2.b, 1487, 169 Remediation script:
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S clock_settime -F a0=.* \(-F key=\|-k \).*"
GROUP="clock_settime"
FULL_RULE="-a always,exit -F arch=$ARCH -S clock_settime -F a0=0x0 -k time-change"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Attempts to Alter the localtime FileruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the default),
add the following line to a file with suffix .rules in the directory
/etc/audit/rules.d :
-w /etc/localtime -p wa -k audit_time_rules
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-w /etc/localtime -p wa -k audit_time_rules
The -k option allows for the specification of a key in string form that can
be used for better reporting capability through ausearch and aureport and
should always be used.
Rationale:Arbitrary changes to the system time can be used to obfuscate
nefarious activities in log files, as well as to confuse network services that
are highly dependent upon an accurate system time (such as sshd). All changes
to the system time should be audited. identifiers:
CCE-27310-2 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(b), IR-5, 5.2.4, Req-10.4.2.b, 1487, 169 Remediation script:
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
fix_audit_watch_rule "augenrules" "/etc/localtime" "wa" "audit_time_rules"
|
Record Events that Modify the System's Discretionary Access ControlsgroupAt a minimum the audit system should collect file permission
changes for all users and root. Note that the "-F arch=b32" lines should be
present even on a 64 bit system. These commands identify system calls for
auditing. Even if the system is 64 bit it can still execute 32 bit system
calls. Additionally, these rules can be configured in a number of ways while
still achieving the desired effect. An example of this is that the "-S" calls
could be split up and placed on separate lines, however, this is less efficient.
Add the following to /etc/audit/audit.rules :
-a always,exit -F arch=b32 -S chmod -S fchmod -S fchmodat -F auid>=1000 -F auid!=4294967295 -k perm_mod
-a always,exit -F arch=b32 -S chown -S fchown -S fchownat -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod
-a always,exit -F arch=b32 -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If your system is 64 bit then these lines should be duplicated and the
arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S chmod -S fchmod -S fchmodat -F auid>=1000 -F auid!=4294967295 -k perm_mod
-a always,exit -F arch=b64 -S chown -S fchown -S fchownat -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod
-a always,exit -F arch=b64 -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
|
contains 13 rules |
Record Events that Modify the System's Discretionary Access Controls - chmodruleAt a minimum the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=4294967295 -k perm_mod
warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. identifiers:
CCE-27339-1 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.5.5, 5.2.10 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="chmod"
FULL_RULE="-a always,exit -F arch=$ARCH -S chmod -S fchmod -S fchmodat -F auid>=1000 -F auid!=4294967295 -k perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Events that Modify the System's Discretionary Access Controls - chownruleAt a minimum the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=4294967295 -k perm_mod
warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. identifiers:
CCE-27364-9 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.5.5, 5.2.10 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=${ARCH} -S .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="chown"
FULL_RULE="-a always,exit -F arch=${ARCH} -S chown -S fchown -S fchownat -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Events that Modify the System's Discretionary Access Controls - fchmodruleAt a minimum the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=4294967295 -k perm_mod
warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. identifiers:
CCE-27393-8 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.5.5, 5.2.10 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="chmod"
FULL_RULE="-a always,exit -F arch=$ARCH -S chmod -S fchmod -S fchmodat -F auid>=1000 -F auid!=4294967295 -k perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Events that Modify the System's Discretionary Access Controls - fchmodatruleAt a minimum the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=4294967295 -k perm_mod
warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. identifiers:
CCE-27388-8 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.5.5, 5.2.10 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="chmod"
FULL_RULE="-a always,exit -F arch=$ARCH -S chmod -S fchmod -S fchmodat -F auid>=1000 -F auid!=4294967295 -k perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Events that Modify the System's Discretionary Access Controls - fchownruleAt a minimum the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=4294967295 -k perm_mod
warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. identifiers:
CCE-27356-5 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.5.5, 5.2.10 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=${ARCH} -S .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="chown"
FULL_RULE="-a always,exit -F arch=${ARCH} -S chown -S fchown -S fchownat -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Events that Modify the System's Discretionary Access Controls - fchownatruleAt a minimum the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=4294967295 -k perm_mod
warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. identifiers:
CCE-27387-0 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.5.5, 5.2.10 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=${ARCH} -S .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="chown"
FULL_RULE="-a always,exit -F arch=${ARCH} -S chown -S fchown -S fchownat -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Events that Modify the System's Discretionary Access Controls - fremovexattrruleAt a minimum the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. identifiers:
CCE-27353-2 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.5.5, 5.2.10 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="xattr"
FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Events that Modify the System's Discretionary Access Controls - fsetxattrruleAt a minimum the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. identifiers:
CCE-27389-6 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.5.5, 5.2.10 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="xattr"
FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Events that Modify the System's Discretionary Access Controls - lchownruleAt a minimum the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod
warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. identifiers:
CCE-27083-5 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.5.5, 5.2.10 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=${ARCH} -S .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="chown"
FULL_RULE="-a always,exit -F arch=${ARCH} -S chown -S fchown -S fchownat -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Events that Modify the System's Discretionary Access Controls - lremovexattrruleAt a minimum the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. identifiers:
CCE-27410-0 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.5.5, 5.2.10 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="xattr"
FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Events that Modify the System's Discretionary Access Controls - lsetxattrruleAt a minimum the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. identifiers:
CCE-27280-7 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.5.5, 5.2.10 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="xattr"
FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Events that Modify the System's Discretionary Access Controls - removexattrruleAt a minimum the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. identifiers:
CCE-27367-2 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.5.5, 5.2.10 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="xattr"
FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Events that Modify the System's Discretionary Access Controls - setxattrruleAt a minimum the audit system should collect file permission
changes for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following line to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=4294967295 -k perm_mod
warning
Note that these rules can be configured in a
number of ways while still achieving the desired effect. Here the system calls
have been placed independent of other system calls. Grouping these system
calls with others as identifying earlier in this guide is more efficient.
Rationale:The changing of file permissions could indicate that a user is attempting to
gain access to information that would otherwise be disallowed. Auditing DAC modifications
can facilitate the identification of patterns of abuse among both authorized and
unauthorized users. identifiers:
CCE-27213-8 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.5.5, 5.2.10 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="xattr"
FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Record Events that Modify User/Group InformationruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d , in order to capture events that modify
account changes:
-w /etc/group -p wa -k audit_rules_usergroup_modification
-w /etc/passwd -p wa -k audit_rules_usergroup_modification
-w /etc/gshadow -p wa -k audit_rules_usergroup_modification
-w /etc/shadow -p wa -k audit_rules_usergroup_modification
-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file, in order to capture events that modify
account changes:
-w /etc/group -p wa -k audit_rules_usergroup_modification
-w /etc/passwd -p wa -k audit_rules_usergroup_modification
-w /etc/gshadow -p wa -k audit_rules_usergroup_modification
-w /etc/shadow -p wa -k audit_rules_usergroup_modification
-w /etc/security/opasswd -p wa -k audit_rules_usergroup_modification
Rationale:In addition to auditing new user and group accounts, these watches
will alert the system administrator(s) to any modifications. Any unexpected
users, groups, or modifications should be investigated for legitimacy. identifiers:
CCE-27192-4 references:
AC-2(4), AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 18, 172, 1403, 2130, RHEL-07-030710, Req-10.2.5, 5.2.5, SRG–OS–000004–GPOS–00004, SRG–OS–000239–GPOS–00089, SRG–OS–000241–GPOS–00090, SRG–OS–000241–GPOS–00091, SRG–OS–000303–GPOS–00120, SRG–OS–000476–GPOS–00221 Remediation script:
# Perform the remediation
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/group" "wa" "audit_rules_usergroup_modification"
fix_audit_watch_rule "augenrules" "/etc/group" "wa" "audit_rules_usergroup_modification"
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/passwd" "wa" "audit_rules_usergroup_modification"
fix_audit_watch_rule "augenrules" "/etc/passwd" "wa" "audit_rules_usergroup_modification"
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/gshadow" "wa" "audit_rules_usergroup_modification"
fix_audit_watch_rule "augenrules" "/etc/gshadow" "wa" "audit_rules_usergroup_modification"
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/shadow" "wa" "audit_rules_usergroup_modification"
fix_audit_watch_rule "augenrules" "/etc/shadow" "wa" "audit_rules_usergroup_modification"
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/security/opasswd" "wa" "audit_rules_usergroup_modification"
fix_audit_watch_rule "augenrules" "/etc/security/opasswd" "wa" "audit_rules_usergroup_modification"
|
Record Events that Modify the System's Network EnvironmentruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d , setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S sethostname -S setdomainname -k audit_rules_networkconfig_modification
-w /etc/issue -p wa -k audit_rules_networkconfig_modification
-w /etc/issue.net -p wa -k audit_rules_networkconfig_modification
-w /etc/hosts -p wa -k audit_rules_networkconfig_modification
-w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S sethostname -S setdomainname -k audit_rules_networkconfig_modification
-w /etc/issue -p wa -k audit_rules_networkconfig_modification
-w /etc/issue.net -p wa -k audit_rules_networkconfig_modification
-w /etc/hosts -p wa -k audit_rules_networkconfig_modification
-w /etc/sysconfig/network -p wa -k audit_rules_networkconfig_modification
Rationale:The network environment should not be modified by anything other
than administrator action. Any change to network parameters should be
audited. Remediation script:
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S .* -k *"
# Use escaped BRE regex to specify rule group
GROUP="set\(host\|domain\)name"
FULL_RULE="-a always,exit -F arch=$ARCH -S sethostname -S setdomainname -k audit_rules_networkconfig_modification"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
# Then perform the remediations for the watch rules
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/issue" "wa" "audit_rules_networkconfig_modification"
fix_audit_watch_rule "augenrules" "/etc/issue" "wa" "audit_rules_networkconfig_modification"
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/issue.net" "wa" "audit_rules_networkconfig_modification"
fix_audit_watch_rule "augenrules" "/etc/issue.net" "wa" "audit_rules_networkconfig_modification"
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/hosts" "wa" "audit_rules_networkconfig_modification"
fix_audit_watch_rule "augenrules" "/etc/hosts" "wa" "audit_rules_networkconfig_modification"
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/sysconfig/network" "wa" "audit_rules_networkconfig_modification"
fix_audit_watch_rule "augenrules" "/etc/sysconfig/network" "wa" "audit_rules_networkconfig_modification"
|
System Audit Logs Must Have Mode 0640 or Less Permissiverule
If log_group in /etc/audit/auditd.conf is set to a group other than the root
group account, change the mode of the audit log files with the following command:
$ sudo chmod 0640 audit_file
Otherwise, change the mode of the audit log files with the following command:
$ sudo chmod 0600 audit_file
Rationale:
If users can write to audit logs, audit trails can be modified or destroyed.
Remediation script:
if `grep -q ^log_group /etc/audit/auditd.conf` ; then
GROUP=$(awk -F "=" '/log_group/ {print $2}' /etc/audit/auditd.conf | tr -d ' ')
if ! [ "${GROUP}" == 'root' ] ; then
chmod 0640 /var/log/audit/audit.log
chmod 0440 /var/log/audit/audit.log.*
else
chmod 0600 /var/log/audit/audit.log
chmod 0400 /var/log/audit/audit.log.*
fi
chmod 0640 /etc/audit/audit*
chmod 0640 /etc/audit/rules.d/*
else
chmod 0600 /var/log/audit/audit.log
chmod 0400 /var/log/audit/audit.log.*
chmod 0640 /etc/audit/audit*
chmod 0640 /etc/audit/rules.d/*
fi
|
System Audit Logs Must Be Owned By Rootrule
To properly set the owner of /var/log , run the command:
$ sudo chown root /var/log
Rationale:Unauthorized disclosure of audit records can reveal system and configuration data to
attackers, thus compromising its confidentiality. Remediation script:
if `grep -q ^log_group /etc/audit/auditd.conf` ; then
GROUP=$(awk -F "=" '/log_group/ {print $2}' /etc/audit/auditd.conf | tr -d ' ')
if ! [ "${GROUP}" == 'root' ] ; then
chown root.${GROUP} /var/log/audit
chown root.${GROUP} /var/log/audit/audit.log*
else
chown root.root /var/log/audit
chown root.root /var/log/audit/audit.log*
fi
else
chown root.root /var/log/audit
chown root.root /var/log/audit/audit.log*
fi
|
Record Events that Modify the System's Mandatory Access ControlsruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d :
-w /etc/selinux/ -p wa -k MAC-policy
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-w /etc/selinux/ -p wa -k MAC-policy
Rationale:The system's mandatory access policy (SELinux) should not be
arbitrarily changed by anything other than administrator action. All changes to
MAC policy should be audited. Remediation script:
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/selinux/" "wa" "MAC-policy"
fix_audit_watch_rule "augenrules" "/etc/selinux/" "wa" "MAC-policy"
|
Record Attempts to Alter Logon and Logout EventsruleThe audit system already collects login information for all users
and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d in order to watch for attempted manual
edits of files involved in storing logon events:
-w /var/log/tallylog -p wa -k logins
-w /var/run/faillock/ -p wa -k logins
-w /var/log/lastlog -p wa -k logins
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file in order to watch for unattempted manual
edits of files involved in storing logon events:
-w /var/log/tallylog -p wa -k logins
-w /var/run/faillock/ -p wa -k logins
-w /var/log/lastlog -p wa -k logins
Rationale:Manual editing of these files may indicate nefarious activity, such
as an attacker attempting to remove evidence of an intrusion. identifiers:
CCE-27204-7 references:
AC-17(7), AU-1(b), AU-12(a), AU-12(c), IR-5, 172, 2884, SRG-OS-000392-GPOS-00172, SRG-OS-000470-GPOS-00214, SRG-OS-000473-GPOS-00218, RHEL-07-030490, Req-10.2.3, 5.2.8 Remediation script:
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/var/log/tallylog" "wa" "logins"
fix_audit_watch_rule "augenrules" "/var/log/tallylog" "wa" "logins"
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/var/run/faillock/" "wa" "logins"
fix_audit_watch_rule "augenrules" "/var/run/faillock/" "wa" "logins"
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/var/log/lastlog" "wa" "logins"
fix_audit_watch_rule "augenrules" "/var/log/lastlog" "wa" "logins"
|
Record Attempts to Alter Process and Session Initiation InformationruleThe audit system already collects process information for all
users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following lines to a file with suffix .rules in the
directory /etc/audit/rules.d in order to watch for attempted manual
edits of files involved in storing such process information:
-w /var/run/utmp -p wa -k session
-w /var/log/btmp -p wa -k session
-w /var/log/wtmp -p wa -k session
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file in order to watch for attempted manual
edits of files involved in storing such process information:
-w /var/run/utmp -p wa -k session
-w /var/log/btmp -p wa -k session
-w /var/log/wtmp -p wa -k session
Rationale:Manual editing of these files may indicate nefarious activity, such
as an attacker attempting to remove evidence of an intrusion. Remediation script:
# Perform the remediation
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/var/run/utmp" "wa" "session"
fix_audit_watch_rule "augenrules" "/var/run/utmp" "wa" "session"
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/var/log/btmp" "wa" "session"
fix_audit_watch_rule "augenrules" "/var/log/btmp" "wa" "session"
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/var/log/wtmp" "wa" "session"
fix_audit_watch_rule "augenrules" "/var/log/wtmp" "wa" "session"
|
Ensure auditd Collects Unauthorized Access Attempts to Files (unsuccessful)ruleAt a minimum the audit system should collect unauthorized file
accesses for all users and root. If the auditd daemon is configured
to use the augenrules program to read audit rules during daemon
startup (the default), add the following lines to a file with suffix
.rules in the directory /etc/audit/rules.d :
-a always,exit -F arch=b32 -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -k access
-a always,exit -F arch=b32 -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -k access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -k access
-a always,exit -F arch=b64 -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -k access
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following lines to
/etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -k access
-a always,exit -F arch=b32 -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -k access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -k access
-a always,exit -F arch=b64 -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -k access
Rationale:Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing
these events could serve as evidence of potential system compromise. identifiers:
CCE-27347-4 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 172, 2884, SRG-OS-000064-GPOS-00033, SRG-OS-000458-GPOS-00203, SRG-OS-000461-GPOS-00205, SRG-OS-000392-GPOS-00172, RHEL-07-030420, Req-10.2.4, Req-10.2.1, 5.2.10 Remediation script:
# Perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
# First fix the -EACCES requirement
PATTERN="-a always,exit -F arch=$ARCH -S .* -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -k *"
# Use escaped BRE regex to specify rule group
GROUP="\(creat\|open\|truncate\)"
FULL_RULE="-a always,exit -F arch=$ARCH -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -k access"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
# Then fix the -EPERM requirement
PATTERN="-a always,exit -F arch=$ARCH -S .* -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -k *"
# No need to change content of $GROUP variable - it's the same as for -EACCES case above
FULL_RULE="-a always,exit -F arch=$ARCH -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -k access"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Ensure auditd Collects Information on the Use of Privileged CommandsruleAt a minimum the audit system should collect the execution of
privileged commands for all users and root. To find the relevant setuid /
setgid programs, run the following command for each local partition
PART:
$ sudo find PART -xdev -type f -perm -4000 -o -type f -perm -2000 2>/dev/null
If the auditd daemon is configured to use the augenrules
program to read audit rules during daemon startup (the default), add a line of
the following form to a file with suffix .rules in the directory
/etc/audit/rules.d for each setuid / setgid program on the system,
replacing the SETUID_PROG_PATH part with the full path of that setuid /
setgid program in the list:
-a always,exit -F path=SETUID_PROG_PATH -F perm=x -F auid>=1000 -F auid!=4294967295 -k privileged
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add a line of the following
form to /etc/audit/audit.rules for each setuid / setgid program on the
system, replacing the SETUID_PROG_PATH part with the full path of that
setuid / setgid program in the list:
-a always,exit -F path=SETUID_PROG_PATH -F perm=x -F auid>=1000 -F auid!=4294967295 -k privileged
Rationale:Misuse of privileged functions, either intentionally or unintentionally by
authorized users, or by unauthorized external entities that have compromised system accounts,
is a serious and ongoing concern and can have significant adverse impacts on organizations.
Auditing the use of privileged functions is one way to detect such misuse and identify
the risk from insider and advanced persistent threast.
Privileged programs are subject to escalation-of-privilege attacks,
which attempt to subvert their normal role of providing some necessary but
limited capability. As such, motivation exists to monitor these programs for
unusual activity.
identifiers:
CCE-27437-3 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-2(4), AU-6(9), AU-12(a), AU-12(c), IR-5, 2234, SRG-OS-000327-GPOS-00127, RHEL-07-030310, Req-10.2.2, 5.2.10, Test attestation on 20121024 by DS Remediation script:
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function perform_audit_rules_privileged_commands_remediation {
#
# Load function arguments into local variables
local tool="$1"
local min_auid="$2"
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: perform_audit_rules_privileged_commands_remediation 'auditctl | augenrules' '500 | 1000'"
echo "Aborting."
exit 1
fi
declare -a files_to_inspect=()
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then:
# * add '/etc/audit/audit.rules'to the list of files to be inspected,
# * specify '/etc/audit/audit.rules' as the output audit file, where
# missing rules should be inserted
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("/etc/audit/audit.rules")
output_audit_file="/etc/audit/audit.rules"
#
# If the audit tool is 'augenrules', then:
# * add '/etc/audit/rules.d/*.rules' to the list of files to be inspected
# (split by newline),
# * specify /etc/audit/rules.d/privileged.rules' as the output file, where
# missing rules should be inserted
elif [ "$tool" == 'augenrules' ]
then
IFS=$'\n' files_to_inspect=($(find /etc/audit/rules.d -maxdepth 1 -type f -name *.rules -print))
output_audit_file="/etc/audit/rules.d/privileged.rules"
fi
# Obtain the list of SUID/SGID binaries on the particular system (split by newline)
# into privileged_binaries array
IFS=$'\n' privileged_binaries=($(find / -xdev -type f -perm -4000 -o -type f -perm -2000 2>/dev/null))
# Keep list of SUID/SGID binaries that have been already handled within some previous iteration
declare -a sbinaries_to_skip=()
# For each found sbinary in privileged_binaries list
for sbinary in "${privileged_binaries[@]}"
do
# Replace possible slash '/' character in sbinary definition so we could use it in sed expressions below
sbinary_esc=${sbinary//$'/'/$'\/'}
# Check if this sbinary wasn't already handled in some of the previous iterations
# Return match only if whole sbinary definition matched (not in the case just prefix matched!!!)
if [[ $(sed -ne "/${sbinary_esc}$/p" <<< ${sbinaries_to_skip[@]}) ]]
then
# If so, don't process it second time & go to process next sbinary
continue
fi
# Reset the counter of inspected files when starting to check
# presence of existing audit rule for new sbinary
local count_of_inspected_files=0
# For each audit rules file from the list of files to be inspected
for afile in "${files_to_inspect[@]}"
do
# Search current audit rules file's content for match. Match criteria:
# * existing rule is for the same SUID/SGID binary we are currently processing (but
# can contain multiple -F path= elements covering multiple SUID/SGID binaries)
# * existing rule contains all arguments from expected rule form (though can contain
# them in arbitrary order)
base_search=$(sed -e "/-a always,exit/!d" -e "/-F path=${sbinary_esc}$/!d" \
-e "/-F path=[^[:space:]]\+/!d" -e "/-F perm=.*/!d" \
-e "/-F auid>=${min_auid}/!d" -e "/-F auid!=4294967295/!d" \
-e "/-k privileged/!d" $afile)
# Increase the count of inspected files for this sbinary
count_of_inspected_files=$((count_of_inspected_files + 1))
# Define expected rule form for this binary
expected_rule="-a always,exit -F path=${sbinary} -F perm=x -F auid>=${min_auid} -F auid!=4294967295 -k privileged"
# Require execute access type to be set for existing audit rule
exec_access='x'
# Search current audit rules file's content for presence of rule pattern for this sbinary
if [[ $base_search ]]
then
# Current audit rules file already contains rule for this binary =>
# Store the exact form of found rule for this binary for further processing
concrete_rule=$base_search
# Select all other SUID/SGID binaries possibly also present in the found rule
IFS=$'\n' handled_sbinaries=($(grep -o -e "-F path=[^[:space:]]\+" <<< $concrete_rule))
IFS=$' ' handled_sbinaries=(${handled_sbinaries[@]//-F path=/})
# Merge the list of such SUID/SGID binaries found in this iteration with global list ignoring duplicates
sbinaries_to_skip=($(for i in "${sbinaries_to_skip[@]}" "${handled_sbinaries[@]}"; do echo $i; done | sort -du))
# Separate concrete_rule into three sections using hash '#'
# sign as a delimiter around rule's permission section borders
concrete_rule=$(echo $concrete_rule | sed -n "s/\(.*\)\+\(-F perm=[rwax]\+\)\+/\1#\2#/p")
# Split concrete_rule into head, perm, and tail sections using hash '#' delimiter
IFS=$'#' read rule_head rule_perm rule_tail <<< "$concrete_rule"
# Extract already present exact access type [r|w|x|a] from rule's permission section
access_type=${rule_perm//-F perm=/}
# Verify current permission access type(s) for rule contain 'x' (execute) permission
if ! grep -q "$exec_access" <<< "$access_type"
then
# If not, append the 'x' (execute) permission to the existing access type bits
access_type="$access_type$exec_access"
# Reconstruct the permissions section for the rule
new_rule_perm="-F perm=$access_type"
# Update existing rule in current audit rules file with the new permission section
sed -i "s#${rule_head}\(.*\)${rule_tail}#${rule_head}${new_rule_perm}${rule_tail}#" $afile
fi
# If the required audit rule for particular sbinary wasn't found yet, insert it under following conditions:
#
# * in the "auditctl" mode of operation insert particular rule each time
# (because in this mode there's only one file -- /etc/audit/audit.rules to be inspected for presence of this rule),
#
# * in the "augenrules" mode of operation insert particular rule only once and only in case we have already
# searched all of the files from /etc/audit/rules.d/*.rules location (since that audit rule can be defined
# in any of those files and if not, we want it to be inserted only once into /etc/audit/rules.d/privileged.rules file)
#
elif [ "$tool" == "auditctl" ] || [[ "$tool" == "augenrules" && $count_of_inspected_files -eq "${#files_to_inspect[@]}" ]]
then
# Current audit rules file's content doesn't contain expected rule for this
# SUID/SGID binary yet => append it
echo $expected_rule >> $output_audit_file
fi
done
done
}
perform_audit_rules_privileged_commands_remediation "auditctl" "1000"
perform_audit_rules_privileged_commands_remediation "augenrules" "1000"
|
Ensure auditd Collects Information on Exporting to Media (successful)ruleAt a minimum the audit system should collect media exportation
events for all users and root. If the auditd daemon is configured to
use the augenrules program to read audit rules during daemon startup
(the default), add the following line to a file with suffix .rules in
the directory /etc/audit/rules.d , setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S mount -F auid>=1000 -F auid!=4294967295 -k export
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S mount -F auid>=1000 -F auid!=4294967295 -k export
Rationale:The unauthorized exportation of data to external media could result in an information leak
where classified information, Privacy Act information, and intellectual property could be lost. An audit
trail should be created each time a filesystem is mounted to help identify and guard against information
loss. identifiers:
CCE-27447-2 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-3(1), AU-12(a), AU-12(c), IR-5, 135, 2884, SRG-OS-000042-GPOS-00020, SRG-OS-000392-GPOS-00172, RHEL-07-030530, Req-10.2.7, 5.2.13, Test attestation on 20121024 by DS Remediation script:
# Perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=1000 -F auid!=4294967295 -k *"
GROUP="mount"
FULL_RULE="-a always,exit -F arch=$ARCH -S mount -F auid>=1000 -F auid!=4294967295 -k export"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Ensure auditd Collects File Deletion Events by UserruleAt a minimum the audit system should collect file deletion events
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d , setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir -S unlink -S unlinkat -S rename -S renameat -F auid>=1000 -F auid!=4294967295 -k delete
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file, setting ARCH to either b32 or b64 as
appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir -S unlink -S unlinkat -S rename -S renameat -F auid>=1000 -F auid!=4294967295 -k delete
Rationale:Auditing file deletions will create an audit trail for files that are removed
from the system. The audit trail could aid in system troubleshooting, as well as, detecting
malicious processes that attempt to delete log files to conceal their presence. identifiers:
CCE-27206-2 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 366, SRG-OS-000480-GPOS-00227, RHEL-07-030750, Req-10.2.7, 5.2.14 Remediation script:
# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=1000 -F auid!=4294967295 -k *"
# Use escaped BRE regex to specify rule group
GROUP="\(rmdir\|unlink\|rename\)"
FULL_RULE="-a always,exit -F arch=$ARCH -S rmdir -S unlink -S unlinkat -S rename -S renameat -F auid>=1000 -F auid!=4294967295 -k delete"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
|
Ensure auditd Collects System Administrator ActionsruleAt a minimum the audit system should collect administrator actions
for all users and root. If the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the default),
add the following line to a file with suffix .rules in the directory
/etc/audit/rules.d :
-w /etc/sudoers -p wa -k actions
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file:
-w /etc/sudoers -p wa -k actions
Rationale:The actions taken by system administrators should be audited to keep a record
of what was executed on the system, as well as, for accountability purposes. identifiers:
CCE-27461-3 references:
AC-2(7)(b), AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 126, Req-10.2.2, Req-10.2.5.b, Test attestation on 20121024 by DS Remediation script:
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/etc/sudoers" "wa" "actions"
fix_audit_watch_rule "augenrules" "/etc/sudoers" "wa" "actions"
|
Ensure auditd Collects Information on Kernel Module Loading and UnloadingruleIf the auditd daemon is configured to use the augenrules program
to read audit rules during daemon startup (the default), add the following lines to a file
with suffix .rules in the directory /etc/audit/rules.d to capture kernel module
loading and unloading events, setting ARCH to either b32 or b64 as appropriate for your system:
-w /usr/sbin/insmod -p x -k modules
-w /usr/sbin/rmmod -p x -k modules
-w /usr/sbin/modprobe -p x -k modules
-a always,exit -F arch=ARCH -S init_module -S delete_module -k modules
If the auditd daemon is configured to use the auditctl utility to read audit
rules during daemon startup, add the following lines to /etc/audit/audit.rules file
in order to capture kernel module loading and unloading events, setting ARCH to either b32 or
b64 as appropriate for your system:
-w /usr/sbin/insmod -p x -k modules
-w /usr/sbin/rmmod -p x -k modules
-w /usr/sbin/modprobe -p x -k modules
-a always,exit -F arch=ARCH -S init_module -S delete_module -k modules
Rationale:The addition/removal of kernel modules can be used to alter the behavior of
the kernel and potentially introduce malicious code into kernel space. It is important
to have an audit trail of modules that have been introduced into the kernel. identifiers:
CCE-27129-6 references:
AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 172, SRG-OS-000471-GPOS-00216, SRG-OS-000477, GPOS-00222, RHEL-07-030670, Req-10.2.7, 5.2.17 Remediation script:
# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
# Note: 32-bit kernel modules can't be loaded / unloaded on 64-bit kernel =>
# it's not required on a 64-bit system to check also for the presence
# of 32-bit's equivalent of the corresponding rule. Therefore for
# each system it's enought to check presence of system's native rule form.
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b64")
for ARCH in "${RULE_ARCHS[@]}"
do
PATTERN="-a always,exit -F arch=$ARCH -S .* -k *"
# Use escaped BRE regex to specify rule group
GROUP="\(init\|delete\)_module"
FULL_RULE="-a always,exit -F arch=$ARCH -S init_module -S delete_module -k modules"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_syscall_rule {
# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"
# Check sanity of the input
if [ $# -ne "5" ]
then
echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect
# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
# Extract audit $key from audit rule so we can use it later
key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
# Check if particular audit rule is already defined
IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
for match in "${matches[@]}"
do
files_to_inspect=("${files_to_inspect[@]}" "${match}")
done
# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
files_to_inspect="/etc/audit/rules.d/$key.rules"
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0
for audit_file in "${files_to_inspect[@]}"
do
# Filter existing $audit_file rules' definitions to select those that:
# * follow the rule pattern, and
# * meet the hardware architecture requirement, and
# * are current syscall group specific
IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d" "$audit_file"))
# Reset IFS back to default
unset $IFS
# Process rules found case-by-case
for rule in "${existing_rules[@]}"
do
# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
if [ "${rule}" != "${full_rule}" ]
then
# If so, isolate just '(-S \w)+' substring of that rule
rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
# Check if list of '-S syscall' arguments of that rule is subset
# of '-S syscall' list of expected $full_rule
if grep -q -- "$rule_syscalls" <<< "$full_rule"
then
# Rule is covered (i.e. the list of -S syscalls for this rule is
# subset of -S syscalls of $full_rule => existing rule can be deleted
# Thus delete the rule from audit.rules & our array
sed -i -e "/$rule/d" "$audit_file"
existing_rules=("${existing_rules[@]//$rule/}")
else
# Rule isn't covered by $full_rule - it besides -S syscall arguments
# for this group contains also -S syscall arguments for other syscall
# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
# since 'lchown' & 'fchownat' share 'chown' substring
# Therefore:
# * 1) delete the original rule from audit.rules
# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
# * 2) delete the -S syscall arguments for this syscall group, but
# keep those not belonging to this syscall group
# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
# * 3) append the modified (filtered) rule again into audit.rules
# if the same rule not already present
#
# 1) Delete the original rule
sed -i -e "/$rule/d" "$audit_file"
# 2) Delete syscalls for this group, but keep those from other groups
# Convert current rule syscall's string into array splitting by '-S' delimiter
IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
# Reset IFS back to default
unset $IFS
# Declare new empty string to hold '-S syscall' arguments from other groups
new_syscalls_for_rule=''
# Walk through existing '-S syscall' arguments
for syscall_arg in "${rule_syscalls_as_array[@]}"
do
# Skip empty $syscall_arg values
if [ "$syscall_arg" == '' ]
then
continue
fi
# If the '-S syscall' doesn't belong to current group add it to the new list
# (together with adding '-S' delimiter back for each of such item found)
if grep -q -v -- "$group" <<< "$syscall_arg"
then
new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
fi
done
# Replace original '-S syscall' list with the new one for this rule
updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
# Squeeze repeated whitespace characters in rule definition (if any) into one
updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
# 3) Append the modified / filtered rule again into audit.rules
# (but only in case it's not present yet to prevent duplicate definitions)
if ! grep -q -- "$updated_rule" "$audit_file"
then
echo "$updated_rule" >> "$audit_file"
fi
fi
else
# $audit_file already contains the expected rule form for this
# architecture & key => don't insert it second time
append_expected_rule=1
fi
done
# We deleted all rules that were subset of the expected one for this arch & key.
# Also isolated rules containing system calls not from this system calls group.
# Now append the expected rule if it's not present in $audit_file yet
if [[ ${append_expected_rule} -eq "0" ]]
then
echo "$full_rule" >> "$audit_file"
fi
done
}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
# Then perform the remediations for the watch rules
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/usr/sbin/insmod" "x" "modules"
fix_audit_watch_rule "augenrules" "/usr/sbin/insmod" "x" "modules"
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/usr/sbin/rmmod" "x" "modules"
fix_audit_watch_rule "augenrules" "/usr/sbin/rmmod" "x" "modules"
function fix_audit_watch_rule {
# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"
# Check sanity of the input
if [ $# -ne "4" ]
then
echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
echo "Aborting."
exit 1
fi
# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules | Rule already defined | Audit rules file to inspect |
# -----------------------------------------------------------------------------------------
# auditctl | Doesn't matter | /etc/audit/audit.rules |
# -----------------------------------------------------------------------------------------
# augenrules | Yes | /etc/audit/rules.d/*.rules |
# augenrules | No | /etc/audit/rules.d/$key.rules |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
echo "Unknown audit rules loading tool: $1. Aborting."
echo "Use either 'auditctl' or 'augenrules'!"
exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
# Get pair -- filepath : matching_row into @matches array
IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
# Reset IFS back to default
unset $IFS
# For each of the matched entries
for match in "${matches[@]}"
do
# Extract filepath from the match
rulesd_audit_file=$(echo $match | cut -f1 -d ':')
# Append that path into list of files for inspection
files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
done
# Case when particular audit rule isn't defined yet
if [ ${#files_to_inspect[@]} -eq "0" ]
then
# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
files_to_inspect="/etc/audit/rules.d/$key.rules"
# If the $key.rules file doesn't exist yet, create it with correct permissions
if [ ! -e "$files_to_inspect" ]
then
touch "$files_to_inspect"
chmod 0640 "$files_to_inspect"
fi
fi
fi
# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do
# Check if audit watch file system object rule for given path already present
if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
then
# Rule is found => verify yet if existing rule definition contains
# all of the required access type bits
# Escape slashes in path for use in sed pattern below
local esc_path=${path//$'/'/$'\/'}
# Define BRE whitespace class shortcut
local sp="[[:space:]]"
# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
# Split required access bits string into characters array
# (to check bit's presence for one bit at a time)
for access_bit in $(echo "$required_access_bits" | grep -o .)
do
# For each from the required access bits (e.g. 'w', 'a') check
# if they are already present in current access bits for rule.
# If not, append that bit at the end
if ! grep -q "$access_bit" <<< "$current_access_bits"
then
# Concatenate the existing mask with the missing bit
current_access_bits="$current_access_bits$access_bit"
fi
done
# Propagate the updated rule's access bits (original + the required
# ones) back into the /etc/audit/audit.rules file for that rule
sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
else
# Rule isn't present yet. Append it at the end of $audit_rules_file file
# with proper key
echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
fi
done
}
fix_audit_watch_rule "auditctl" "/usr/sbin/modprobe" "x" "modules"
fix_audit_watch_rule "augenrules" "/usr/sbin/modprobe" "x" "modules"
|
Make the auditd Configuration ImmutableruleIf the auditd daemon is configured to use the
augenrules program to read audit rules during daemon startup (the
default), add the following line to a file with suffix .rules in the
directory /etc/audit/rules.d in order to make the auditd configuration
immutable:
-e 2
If the auditd daemon is configured to use the auditctl
utility to read audit rules during daemon startup, add the following line to
/etc/audit/audit.rules file in order to make the auditd configuration
immutable:
-e 2
With this setting, a reboot will be required to change any audit rules.
Rationale:Making the audit configuration immutable prevents accidental as
well as malicious modification of the audit rules, although it may be
problematic if legitimate changes are needed during system
operation Remediation script:
# Traverse all of:
#
# /etc/audit/audit.rules, (for auditctl case)
# /etc/audit/rules.d/*.rules (for augenrules case)
#
# files to check if '-e .*' setting is present in that '*.rules' file already.
# If found, delete such occurrence since auditctl(8) manual page instructs the
# '-e 2' rule should be placed as the last rule in the configuration
find /etc/audit /etc/audit/rules.d -maxdepth 1 -type f -name *.rules -exec sed -i '/-e[[:space:]]\+.*/d' {} ';'
# Append '-e 2' requirement at the end of both:
# * /etc/audit/audit.rules file (for auditctl case)
# * /etc/audit/rules.d/immutable.rules (for augenrules case)
for AUDIT_FILE in "/etc/audit/audit.rules" "/etc/audit/rules.d/immutable.rules"
do
echo '' >> $AUDIT_FILE
echo '# Set the audit.rules configuration immutable per security requirements' >> $AUDIT_FILE
echo '# Reboot is required to change audit rules once this setting is applied' >> $AUDIT_FILE
echo '-e 2' >> $AUDIT_FILE
done
|
Enable auditd ServiceruleThe auditd service is an essential userspace component of
the Linux Auditing System, as it is responsible for writing audit records to
disk.
The auditd service can be enabled with the following command:
$ sudo systemctl enable auditd.service
Rationale:Without establishing what type of events occurred, it would be difficult
to establish, correlate, and investigate the events leading up to an outage or attack.
Ensuring the auditd service is active ensures audit records
generated by the kernel are appropriately recorded.
identifiers:
CCE-27407-6 references:
AU-3, AC-17(1), AU-1(b), AU-10, AU-12(a), AU-12(c), AU-14(1), IR-5, 126, 131, SRG-OS-000038-GPOS-00016, SRG-OS-000039-GPOS-00017, SRG-OS-000042-GPOS-00021, SRG-OS-000254-GPOS-00095, SRG-OS-000255-GPOS-00096, RHEL-07-030010, Req-10, 5.2.2, Test attestation on 20121024 by DS Remediation script:
function service_command {
# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)
# Check sanity of the input
if [ $# -lt "2" ]
then
echo "Usage: service_command 'enable/disable' 'service_name.service'"
echo
echo "To enable or disable xinetd services add \'xinetd=service_name\'"
echo "as the last argument"
echo "Aborting."
exit 1
fi
# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
service_util="/usr/bin/systemctl"
else
service_util="/sbin/service"
chkconfig_util="/sbin/chkconfig"
fi
# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
service_state="enable"
service_operation="start"
chkconfig_state="on"
else
service_state="disable"
service_operation="stop"
chkconfig_state="off"
fi
# If chkconfig_util is not empty, use chkconfig/service commands.
if ! [ "x$chkconfig_util" = x ] ; then
$service_util $service $service_operation
$chkconfig_util --level 0123456 $service $chkconfig_state
else
$service_util $service_operation $service
$service_util $service_state $service
fi
# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if ! [ "x$xinetd" = x ] ; then
grep -qi disable /etc/xinetd.d/$xinetd && \
if ! [ "$service_operation" != 'disable' ] ; then
sed -i "s/disable.*/disable = no/gI" /etc/xinetd.d/$xinetd
else
sed -i "s/disable.*/disable = yes/gI" /etc/xinetd.d/$xinetd
fi
fi
}
service_command enable auditd.service
|
Enable Auditing for Processes Which Start Prior to the Audit DaemonruleTo ensure all processes can be audited, even those which start
prior to the audit daemon, add the argument audit=1 to the default
GRUB 2 command line for the Linux operating system in
/etc/default/grub , in the manner below:
GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=VolGroup/LogVol06 rd.lvm.lv=VolGroup/lv_swap rhgb quiet rd.shell=0 audit=1"
warning
The GRUB 2 configuration file, grub.cfg ,
is automatically updated each time a new kernel is installed. Note that any
changes to /etc/default/grub require rebuilding the grub.cfg
file. To update the GRUB 2 configuration file manually, use the
grub2-mkconfig -o command as follows:
Rationale:
Each process on the system carries an "auditable" flag which indicates whether
its activities can be audited. Although auditd takes care of enabling
this for all processes which launch after it does, adding the kernel argument
ensures it is set for every process during boot.
identifiers:
CCE-27212-0 references:
AC-17(1), AU-14(1), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-10, IR-5, 1464, 130, Req-10.3, 5.2.3 Remediation script:
# Correct the form of default kernel command line in /etc/default/grub
grep -q ^GRUB_CMDLINE_LINUX=\".*audit=0.*\" /etc/default/grub && \
sed -i "s/audit=[^[:space:]\+]/audit=1/g" /etc/default/grub
if ! [ $? -eq 0 ]; then
sed -i "s/\(GRUB_CMDLINE_LINUX=\)\"\(.*\)\"/\1\"\2 audit=1\"/" /etc/default/grub
fi
# Correct the form of kernel command line for each installed kernel
# in the bootloader
/sbin/grubby --update-kernel=ALL --args="audit=1"
|
Servicesgroup
The best protection against vulnerable software is running less software. This section describes how to review
the software which Red Hat Enterprise Linux 7 installs on a system and disable software which is not needed. It
then enumerates the software packages installed on a default Red Hat Enterprise Linux 7 system and provides guidance about which
ones can be safely disabled.
Red Hat Enterprise Linux 7 provides a convenient minimal install option that essentially installs the bare necessities for a functional
system. When building Red Hat Enterprise Linux 7 servers, it is highly recommended to select the minimal packages and then build up
the system from there.
|
contains 60 rules |
Obsolete ServicesgroupThis section discusses a number of network-visible
services which have historically caused problems for system
security, and for which disabling or severely limiting the service
has been the best available guidance for some time. As a result of
this, many of these services are not installed as part of Red Hat Enterprise Linux 7
by default.
Organizations which are running these services should
switch to more secure equivalents as soon as possible.
If it remains absolutely necessary to run one of
these services for legacy reasons, care should be taken to restrict
the service as much as possible, for instance by configuring host
firewall software such as firewalld to restrict access to the
vulnerable service to only those remote hosts which have a known
need to use it. |
contains 14 rules |
XinetdgroupThe xinetd service acts as a dedicated listener for some
network services (mostly, obsolete ones) and can be used to provide access
controls and perform some logging. It has been largely obsoleted by other
features, and it is not installed by default. The older Inetd service
is not even available as part of Red Hat Enterprise Linux 7. |
contains 2 rules |
Disable xinetd Servicerule
The xinetd service can be disabled with the following command:
$ sudo systemctl disable xinetd.service
Rationale:
The xinetd service provides a dedicated listener service for some programs,
which is no longer necessary for commonly-used network services. Disabling
it ensures that these uncommon services are not running, and also prevents
attacks against xinetd itself.
Remediation script:#
# Disable xinetd.service for all systemd targets
#
systemctl disable xinetd.service
#
# Stop xinetd.service if currently running
#
systemctl stop xinetd.service
|
Uninstall xinetd PackageruleThe xinetd package can be uninstalled with the following command:
$ sudo yum erase xinetd
Rationale:
Removing the xinetd package decreases the risk of the
xinetd service's accidental (or intentional) activation.
Remediation script:
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command remove xinetd
|
TelnetgroupThe telnet protocol does not provide confidentiality or integrity
for information transmitted on the network. This includes authentication
information such as passwords. Organizations which use telnet should be
actively working to migrate to a more secure protocol. |
contains 2 rules |
Disable telnet Servicerule
The telnet service configuration file /etc/xinetd.d/telnet
is not created automatically. If it was created manually, check the
/etc/xinetd.d/telnet file and ensure that disable = no
is changed to read disable = yes as follows below:
# description: The telnet server serves telnet sessions; it uses \\
# unencrypted username/password pairs for authentication.
service telnet
{
flags = REUSE
socket_type = stream
wait = no
user = root
server = /usr/sbin/in.telnetd
log_on_failure += USERID
disable = yes
}
If the /etc/xinetd.d/telnet file does not exist, make sure that
the activation of the telnet service on system boot is disabled
via the following command:
The rexec socket can be disabled with the following command:
$ sudo systemctl disable rexec.socket
Rationale:
The telnet protocol uses unencrypted network communication, which
means that data from the login session, including passwords and
all other information transmitted during the session, can be
stolen by eavesdroppers on the network. The telnet protocol is also
subject to man-in-the-middle attacks.
Remediation script:grep -qi disable /etc/xinetd.d/telnet && \
sed -i "s/disable.*/disable = yes/gI" /etc/xinetd.d/telnet
#
# Disable telnet.socket for all systemd targets
#
systemctl disable telnet.socket
#
# Stop telnet.socket if currently running
#
systemctl stop telnet.socket
|
Uninstall telnet-server PackageruleThe telnet-server package can be uninstalled with
the following command:
$ sudo yum erase telnet-server Rationale:
It is detrimental for operating systems to provide, or install by default, functionality exceeding
requirements or mission objectives. These unnecessary capabilities are often overlooked and therefore
may remain unsecure. They increase the risk to the platform by providing additional attack vectors.
The telnet service provides an unencrypted remote access service which does not provide for the
confidentiality and integrity of user passwords or the remote session. If a privileged user were
to login using this service, the privileged user password could be compromised.
Removing the telnet-server package decreases the risk of the telnet service's accidental
(or intentional) activation.
Remediation script:if rpm -qa | grep -q telnet-server; then
yum -y remove telnet-server
fi
|
Rlogin, Rsh, and RexecgroupThe Berkeley r-commands are legacy services which
allow cleartext remote access and have an insecure trust
model. |
contains 5 rules |
Disable rexec ServiceruleThe rexec service, which is available with
the rsh-server package and runs as a service through xinetd or separately
as a systemd socket, should be disabled.
If using xinetd, set disable to yes in /etc/xinetd.d/rexec .
If using systemd,
The rexec socket can be disabled with the following command:
$ sudo systemctl disable rexec.socket
Rationale:The rexec service uses unencrypted network communications, which
means that data from the login session, including passwords and
all other information transmitted during the session, can be
stolen by eavesdroppers on the network.
Remediation script:grep -qi disable /etc/xinetd.d/rexec && \
sed -i "s/disable.*/disable = yes/gI" /etc/xinetd.d/rexec
#
# Disable rexec.socket for all systemd targets
#
systemctl disable rexec.socket
#
# Stop rexec.socket if currently running
#
systemctl stop rexec.socket
|
Disable rsh ServiceruleThe rsh service, which is available with
the rsh-server package and runs as a service through xinetd or separately
as a systemd socket, should be disabled.
If using xinetd, set disable to yes in /etc/xinetd.d/rsh .
If using systemd,
The rsh socket can be disabled with the following command:
$ sudo systemctl disable rsh.socket
Rationale:The rsh service uses unencrypted network communications, which
means that data from the login session, including passwords and
all other information transmitted during the session, can be
stolen by eavesdroppers on the network.
Remediation script:grep -qi disable /etc/xinetd.d/rsh && \
sed -i "s/disable.*/disable = yes/gI" /etc/xinetd.d/rsh
#
# Disable rsh.socket for all systemd targets
#
systemctl disable rsh.socket
#
# Stop rsh.socket if currently running
#
systemctl stop rsh.socket
|
Uninstall rsh PackageruleThe rsh package contains the client commands
for the rsh services Rationale:These legacy clients contain numerous security exposures and have
been replaced with the more secure SSH package. Even if the server is removed,
it is best to ensure the clients are also removed to prevent users from
inadvertently attempting to use these commands and therefore exposing
their credentials. Note that removing the rsh package removes
the clients for rsh ,rcp , and rlogin .
Remediation script:
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command remove rsh
|
Disable rlogin ServiceruleThe rlogin service, which is available with
the rsh-server package and runs as a service through xinetd or separately
as a systemd socket, should be disabled.
If using xinetd, set disable to yes in /etc/xinetd.d/rlogin .
If using systemd,
The rlogin socket can be disabled with the following command:
$ sudo systemctl disable rlogin.socket
Rationale:The rlogin service uses unencrypted network communications, which
means that data from the login session, including passwords and
all other information transmitted during the session, can be
stolen by eavesdroppers on the network.
Remediation script:grep -qi disable /etc/xinetd.d/rlogin && \
sed -i "s/disable.*/disable = yes/gI" /etc/xinetd.d/rlogin
#
# Disable rlogin.socket for all systemd targets
#
systemctl disable rlogin.socket
#
# Stop rlogin.socket if currently running
#
systemctl stop rlogin.socket
|
Remove Rsh Trust FilesruleThe files /etc/hosts.equiv and ~/.rhosts (in
each user's home directory) list remote hosts and users that are trusted by the
local system when using the rshd daemon.
To remove these files, run the following command to delete them from any
location:
$ sudo rm /etc/hosts.equiv
$ rm ~/.rhosts
Rationale:Trust files are convenient, but when
used in conjunction with the R-services, they can allow
unauthenticated access to a system. Remediation script:find -type f -name .rhosts -exec rm -f '{}' \;
rm /etc/hosts.equiv
|
NISgroupThe Network Information Service (NIS), also known as 'Yellow
Pages' (YP), and its successor NIS+ have been made obsolete by
Kerberos, LDAP, and other modern centralized authentication
services. NIS should not be used because it suffers from security
problems inherent in its design, such as inadequate protection of
important authentication information. |
contains 2 rules |
Uninstall ypserv PackageruleThe ypserv package can be uninstalled with
the following command:
$ sudo yum erase ypserv
Rationale:The NIS service provides an unencrypted authentication service which does not
provide for the confidentiality and integrity of user passwords or the remote session.
Removing the ypserv package decreases the risk of the accidental (or intentional)
activation of NIS or NIS+ services.
Remediation script:
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command remove ypserv
|
Disable ypbind ServiceruleThe ypbind service, which allows the system to act as a client in
a NIS or NIS+ domain, should be disabled.
The ypbind service can be disabled with the following command:
$ sudo systemctl disable ypbind.service
Rationale:
Disabling the ypbind service ensures the system is not acting
as a client in a NIS or NIS+ domain.
Remediation script:
function service_command {
# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)
# Check sanity of the input
if [ $# -lt "2" ]
then
echo "Usage: service_command 'enable/disable' 'service_name.service'"
echo
echo "To enable or disable xinetd services add \'xinetd=service_name\'"
echo "as the last argument"
echo "Aborting."
exit 1
fi
# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
service_util="/usr/bin/systemctl"
else
service_util="/sbin/service"
chkconfig_util="/sbin/chkconfig"
fi
# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
service_state="enable"
service_operation="start"
chkconfig_state="on"
else
service_state="disable"
service_operation="stop"
chkconfig_state="off"
fi
# If chkconfig_util is not empty, use chkconfig/service commands.
if ! [ "x$chkconfig_util" = x ] ; then
$service_util $service $service_operation
$chkconfig_util --level 0123456 $service $chkconfig_state
else
$service_util $service_operation $service
$service_util $service_state $service
fi
# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if ! [ "x$xinetd" = x ] ; then
grep -qi disable /etc/xinetd.d/$xinetd && \
if ! [ "$service_operation" != 'disable' ] ; then
sed -i "s/disable.*/disable = no/gI" /etc/xinetd.d/$xinetd
else
sed -i "s/disable.*/disable = yes/gI" /etc/xinetd.d/$xinetd
fi
fi
}
service_command disable ypbind.service
|
TFTP Servergroup
TFTP is a lightweight version of the FTP protocol which has
traditionally been used to configure networking equipment. However,
TFTP provides little security, and modern versions of networking
operating systems frequently support configuration via SSH or other
more secure protocols. A TFTP server should be run only if no more
secure method of supporting existing equipment can be
found. |
contains 3 rules |
Disable tftp ServiceruleThe tftp service should be disabled.
The tftp service can be disabled with the following command:
$ sudo systemctl disable tftp.service
Rationale:
Disabling the tftp service ensures the system is not acting
as a TFTP server, which does not provide encryption or authentication.
|
Remove tftp DaemonruleTrivial File Transfer Protocol (TFTP) is a simple file transfer protocol,
typically used to automatically transfer configuration or boot files between machines.
TFTP does not support authentication and can be easily hacked. The package
tftp is a client program that allows for connections to a tftp server.
Rationale:It is recommended that TFTP be removed, unless there is a specific need
for TFTP (such as a boot server). In that case, use extreme caution when configuring
the services. identifiers:
CCE- references:
2.1.7 |
Ensure tftp Daemon Uses Secure ModeruleIf running the tftp service is necessary, it should be configured
to change its root directory at startup. To do so, ensure
/etc/xinetd.d/tftp includes -s as a command line argument, as shown in
the following example (which is also the default):
server_args = -s /var/lib/tftpboot
Rationale:Using the -s option causes the TFTP service to only serve files from the
given directory. Serving files from an intentionally-specified directory
reduces the risk of sharing files which should remain private.
|
Base ServicesgroupThis section addresses the base services that are installed on a
Red Hat Enterprise Linux 7 default installation which are not covered in other
sections. Some of these services listen on the network and
should be treated with particular discretion. Other services are local
system utilities that may or may not be extraneous. In general, system services
should be disabled if not required. |
contains 23 rules |
Disable Automatic Bug Reporting Tool (abrtd)ruleThe Automatic Bug Reporting Tool (abrtd ) daemon collects
and reports crash data when an application crash is detected. Using a variety
of plugins, abrtd can email crash reports to system administrators, log crash
reports to files, or forward crash reports to a centralized issue tracking
system such as RHTSupport.
The abrtd service can be disabled with the following command:
$ sudo systemctl disable abrtd.service
Rationale: Mishandling crash data could expose sensitive information about
vulnerabilities in software executing on the local machine, as well as sensitive
information from within a process's address space or registers. Remediation script:#
# Disable abrtd.service for all systemd targets
#
systemctl disable abrtd.service
#
# Stop abrtd.service if currently running
#
systemctl stop abrtd.service
|
Disable Advanced Configuration and Power Interface (acpid)ruleThe Advanced Configuration and Power Interface Daemon (acpid )
dispatches ACPI events (such as power/reset button depressed) to userspace
programs.
The acpid service can be disabled with the following command:
$ sudo systemctl disable acpid.service
Rationale:ACPI support is highly desirable for systems in some network roles,
such as laptops or desktops. For other systems, such as servers, it may permit
accidental or trivially achievable denial of service situations and disabling
it is appropriate. identifiers:
CCE-80252-0 references:
CM-7 Remediation script:#
# Disable acpid.service for all systemd targets
#
systemctl disable acpid.service
#
# Stop acpid.service if currently running
#
systemctl stop acpid.service
|
Disable Certmonger Service (certmonger)ruleCertmonger is a D-Bus based service that attempts to simplify interaction
with certifying authorities on networks which use public-key infrastructure. It is often
combined with Red Hat's IPA (Identity Policy Audit) security information management
solution to aid in the management of certificates.
The certmonger service can be disabled with the following command:
$ sudo systemctl disable certmonger.service
Rationale:The services provided by certmonger may be essential for systems
fulfilling some roles a PKI infrastructure, but its functionality is not necessary
for many other use cases. identifiers:
CCE-80253-8 references:
CM-7 Remediation script:#
# Disable certmonger.service for all systemd targets
#
systemctl disable certmonger.service
#
# Stop certmonger.service if currently running
#
systemctl stop certmonger.service
|
Disable Control Group Config (cgconfig)ruleControl groups allow an administrator to allocate system resources (such as CPU,
memory, network bandwidth, etc) among a defined group (or groups) of processes executing on
a system. The cgconfig daemon starts at boot and establishes the predefined control groups.
The cgconfig service can be disabled with the following command:
$ sudo systemctl disable cgconfig.service
Rationale:Unless control groups are used to manage system resources, running the cgconfig
service is not necessary.
identifiers:
CCE-80254-6 references:
CM-7 Remediation script:#
# Disable cgconfig.service for all systemd targets
#
systemctl disable cgconfig.service
#
# Stop cgconfig.service if currently running
#
systemctl stop cgconfig.service
|
Disable Control Group Rules Engine (cgred)ruleThe cgred service moves tasks into control groups according to
parameters set in the /etc/cgrules.conf configuration file.
The cgred service can be disabled with the following command:
$ sudo systemctl disable cgred.service
Rationale:Unless control groups are used to manage system resources, running the cgred service
service is not necessary.
identifiers:
CCE-80255-3 references:
CM-7 Remediation script:#
# Disable cgred.service for all systemd targets
#
systemctl disable cgred.service
#
# Stop cgred.service if currently running
#
systemctl stop cgred.service
|
Disable CPU Speed (cpupower)ruleThe cpupower service can adjust the clock speed of supported CPUs based upon
the current processing load thereby conserving power and reducing heat.
The cpupower service can be disabled with the following command:
$ sudo systemctl disable cpupower.service
Rationale:The cpupower service is only necessary if adjusting the CPU clock speed
provides benefit. Traditionally this has included laptops (to enhance battery life),
but may also apply to server or desktop environments where conserving power is
highly desirable or necessary.
identifiers:
CCE-80256-1 references:
CM-7 |
Enable IRQ Balance (irqbalance)ruleThe irqbalance service optimizes the balance between
power savings and performance through distribution of hardware interrupts across
multiple processors.
The irqbalance service can be enabled with the following command:
$ sudo systemctl enable irqbalance.service
Rationale:In an environment with multiple processors (now common), the irqbalance service
provides potential speedups for handling interrupt requests. identifiers:
CCE-80257-9 references:
CM-7 Remediation script:#
# Enable irqbalance.service for all systemd targets
#
systemctl enable irqbalance.service
#
# Start irqbalance.service if not currently running
#
systemctl start irqbalance.service
|
Disable KDump Kernel Crash Analyzer (kdump)ruleThe kdump service provides a kernel crash dump analyzer. It uses the kexec
system call to boot a secondary kernel ("capture" kernel) following a system
crash, which can load information from the crashed kernel for analysis.
The kdump service can be disabled with the following command:
$ sudo systemctl disable kdump.service
Rationale:
Kernel core dumps may contain the full contents of system memory at the time of the crash.
Kernel core dumps consume a considerable amount of disk space and may result in denial of
service by exhausting the available space on the target file system partition.
Unless the system is used for kernel development or testing, there
is little need to run the kdump service. Remediation script:#
# Disable kdump.service for all systemd targets
#
systemctl disable kdump.service
#
# Stop kdump.service if currently running
#
systemctl stop kdump.service
|
Disable Software RAID Monitor (mdmonitor)ruleThe mdmonitor service is used for monitoring a software RAID array; hardware
RAID setups do not use this service.
The mdmonitor service can be disabled with the following command:
$ sudo systemctl disable mdmonitor.service
Rationale:If software RAID monitoring is not required,
there is no need to run this service. identifiers:
CCE-80259-5 references:
CM-7 Remediation script:#
# Disable mdmonitor.service for all systemd targets
#
systemctl disable mdmonitor.service
#
# Stop mdmonitor.service if currently running
#
systemctl stop mdmonitor.service
|
Disable D-Bus IPC Service (messagebus)ruleD-Bus provides an IPC mechanism used by
a growing list of programs, such as those used for Gnome, Bluetooth, and Avahi.
Due to these dependencies, disabling D-Bus may not be practical for
many systems.
The messagebus service can be disabled with the following command:
$ sudo systemctl disable messagebus.service
Rationale:If no services which require D-Bus are needed, then it
can be disabled. As a broker for IPC between processes of different privilege levels,
it could be a target for attack. However, disabling D-Bus is likely to be
impractical for any system which needs to provide
a graphical login session.
identifiers:
CCE-80260-3 references:
CM-7 Remediation script:#
# Disable messagebus.service for all systemd targets
#
systemctl disable messagebus.service
#
# Stop messagebus.service if currently running
#
systemctl stop messagebus.service
|
Disable Network Console (netconsole)ruleThe netconsole service is responsible for loading the
netconsole kernel module, which logs kernel printk messages over UDP to a
syslog server. This allows debugging of problems where disk logging fails and
serial consoles are impractical.
The netconsole service can be disabled with the following command:
$ sudo systemctl disable netconsole.service
Rationale:The netconsole service is not necessary unless there is a need to debug
kernel panics, which is not common.
Remediation script:#
# Disable netconsole for all run levels
#
chkconfig --level 0123456 netconsole off
#
# Stop netconsole if currently running
#
service netconsole stop
|
Disable ntpdate Service (ntpdate)ruleThe ntpdate service sets the local hardware clock by polling NTP servers
when the system boots. It synchronizes to the NTP servers listed in
/etc/ntp/step-tickers or /etc/ntp.conf
and then sets the local hardware clock to the newly synchronized
system time.
The ntpdate service can be disabled with the following command:
$ sudo systemctl disable ntpdate.service
Rationale:The ntpdate service may only be suitable for systems which
are rebooted frequently enough that clock drift does not cause problems between
reboots. In any event, the functionality of the ntpdate service is now
available in the ntpd program and should be considered deprecated. |
Disable Odd Job Daemon (oddjobd)ruleThe oddjobd service exists to provide an interface and
access control mechanism through which
specified privileged tasks can run tasks for unprivileged client
applications. Communication with oddjobd through the system message bus.
The oddjobd service can be disabled with the following command:
$ sudo systemctl disable oddjobd.service
Rationale:The oddjobd service may provide necessary functionality in
some environments, and can be disabled if it is not needed. Execution of
tasks by privileged programs, on behalf of unprivileged ones, has traditionally
been a source of privilege escalation security issues. Remediation script:#
# Disable oddjobd.service for all systemd targets
#
systemctl disable oddjobd.service
#
# Stop oddjobd.service if currently running
#
systemctl stop oddjobd.service
|
Disable Portreserve (portreserve)ruleThe portreserve service is a TCP port reservation utility that can
be used to prevent portmap from binding to well known TCP ports that are
required for other services.
The portreserve service can be disabled with the following command:
$ sudo systemctl disable portreserve.service
Rationale:The portreserve service provides helpful functionality by
preventing conflicting usage of ports in the reserved port range, but it can be
disabled if not needed. Remediation script:#
# Disable portreserve.service for all systemd targets
#
systemctl disable portreserve.service
#
# Stop portreserve.service if currently running
#
systemctl stop portreserve.service
|
Enable Process Accounting (psacct)ruleThe process accounting service, psacct , works with programs
including acct and ac to allow system administrators to view
user activity, such as commands issued by users of the system.
The psacct service can be enabled with the following command:
$ sudo systemctl enable psacct.service
Rationale:The psacct service can provide administrators a convenient
view into some user activities. However, it should be noted that the auditing
system and its audit records provide more authoritative and comprehensive
records. Remediation script:#
# Enable psacct.service for all systemd targets
#
systemctl enable psacct.service
#
# Start psacct.service if not currently running
#
systemctl start psacct.service
|
Disable Apache Qpid (qpidd)ruleThe qpidd service provides high speed, secure,
guaranteed delivery services. It is an implementation of the Advanced Message
Queuing Protocol. By default the qpidd service will bind to port 5672 and
listen for connection attempts.
The qpidd service can be disabled with the following command:
$ sudo systemctl disable qpidd.service
Rationale:The qpidd service is automatically installed when the "base"
package selection is selected during installation. The qpidd service listens
for network connections, which increases the attack surface of the system. If
the system is not intended to receive AMQP traffic, then the qpidd
service is not needed and should be disabled or removed. Remediation script:#
# Disable qpidd.service for all systemd targets
#
systemctl disable qpidd.service
#
# Stop qpidd.service if currently running
#
systemctl stop qpidd.service
|
Disable Quota Netlink (quota_nld)ruleThe quota_nld service provides notifications to
users of disk space quota violations. It listens to the kernel via a netlink
socket for disk quota violations and notifies the appropriate user of the
violation using D-Bus or by sending a message to the terminal that the user has
last accessed.
The quota_nld service can be disabled with the following command:
$ sudo systemctl disable quota_nld.service
Rationale:If disk quotas are enforced on the local system, then the
quota_nld service likely provides useful functionality and should
remain enabled. However, if disk quotas are not used or user notification of
disk quota violation is not desired then there is no need to run this
service. Remediation script:#
# Disable quota_nld.service for all systemd targets
#
systemctl disable quota_nld.service
#
# Stop quota_nld.service if currently running
#
systemctl stop quota_nld.service
|
Disable Network Router Discovery Daemon (rdisc)ruleThe rdisc service implements the client side of the ICMP
Internet Router Discovery Protocol (IRDP), which allows discovery of routers on
the local subnet. If a router is discovered then the local routing table is
updated with a corresponding default route. By default this daemon is disabled.
The rdisc service can be disabled with the following command:
$ sudo systemctl disable rdisc.service
Rationale:General-purpose systems typically have their network and routing
information configured statically by a system administrator. Workstations or
some special-purpose systems often use DHCP (instead of IRDP) to retrieve
dynamic network configuration information. Remediation script:#
# Disable rdisc.service for all systemd targets
#
systemctl disable rdisc.service
#
# Stop rdisc.service if currently running
#
systemctl stop rdisc.service
|
Disable Red Hat Network Service (rhnsd)ruleThe Red Hat Network service automatically queries Red Hat Network
servers to determine whether there are any actions that should be executed,
such as package updates. This only occurs if the system was registered to an
RHN server or satellite and managed as such.
The rhnsd service can be disabled with the following command:
$ sudo systemctl disable rhnsd.service
Rationale:Although systems management and patching is extremely important to
system security, management by a system outside the enterprise enclave is not
desirable for some environments. However, if the system is being managed by RHN or
RHN Satellite Server the rhnsd daemon can remain on. Remediation script:#
# Disable rhnsd for all run levels
#
chkconfig --level 0123456 rhnsd off
#
# Stop rhnsd if currently running
#
service rhnsd stop
|
Disable Red Hat Subscription Manager Daemon (rhsmcertd)ruleThe Red Hat Subscription Manager (rhsmcertd) periodically checks for
changes in the entitlement certificates for a registered system and updates it
accordingly.
The rhsmcertd service can be disabled with the following command:
$ sudo systemctl disable rhsmcertd.service
Rationale:The rhsmcertd service can provide administrators with some
additional control over which of their systems are entitled to particular
subscriptions. However, for systems that are managed locally or which are not
expected to require remote changes to their subscription status, it is
unnecessary and can be disabled. Remediation script:#
# Disable rhsmcertd.service for all systemd targets
#
systemctl disable rhsmcertd.service
#
# Stop rhsmcertd.service if currently running
#
systemctl stop rhsmcertd.service
|
Disable Cyrus SASL Authentication Daemon (saslauthd)ruleThe saslauthd service handles plaintext authentication requests on
behalf of the SASL library. The service isolates all code requiring superuser
privileges for SASL authentication into a single process, and can also be used
to provide proxy authentication services to clients that do not understand SASL
based authentication.
The saslauthd service can be disabled with the following command:
$ sudo systemctl disable saslauthd.service
Rationale:The saslauthd service provides essential functionality for
performing authentication in some directory environments, such as those which
use Kerberos and LDAP. For others, however, in which only local files may be
consulted, it is not necessary and should be disabled. Remediation script:#
# Disable saslauthd.service for all systemd targets
#
systemctl disable saslauthd.service
#
# Stop saslauthd.service if currently running
#
systemctl stop saslauthd.service
|
Disable SMART Disk Monitoring Service (smartd)ruleSMART (Self-Monitoring, Analysis, and Reporting Technology) is a
feature of hard drives that allows them to detect symptoms of disk failure and
relay an appropriate warning.
The smartd service can be disabled with the following command:
$ sudo systemctl disable smartd.service
Rationale:SMART can help protect against denial of
service due to failing hardware. Nevertheless, if it is not needed or the
system's drives are not SMART-capable (such as solid state drives), it can be
disabled. Remediation script:#
# Disable smartd.service for all systemd targets
#
systemctl disable smartd.service
#
# Stop smartd.service if currently running
#
systemctl stop smartd.service
|
Disable System Statistics Reset Service (sysstat)ruleThe sysstat service resets various I/O and CPU
performance statistics to zero in order to begin counting from a fresh state
at boot time.
The sysstat service can be disabled with the following command:
$ sudo systemctl disable sysstat.service
Rationale:By default the sysstat service merely runs a program at
boot to reset the statistics, which can be retrieved using programs such as
sar and sadc . These may provide useful insight into system
operation, but unless used this service can be disabled. Remediation script:#
# Disable sysstat.service for all systemd targets
#
systemctl disable sysstat.service
#
# Stop sysstat.service if currently running
#
systemctl stop sysstat.service
|
Cron and At DaemonsgroupThe cron and at services are used to allow commands to
be executed at a later time. The cron service is required by almost
all systems to perform necessary maintenance tasks, while at may or
may not be required on a given system. Both daemons should be
configured defensively. |
contains 2 rules |
Enable cron ServiceruleThe crond service is used to execute commands at
preconfigured times. It is required by almost all systems to perform necessary
maintenance tasks, such as notifying root of system activity.
The crond service can be enabled with the following command:
$ sudo systemctl enable crond.service
Rationale:Due to its usage for maintenance and security-supporting tasks,
enabling the cron daemon is essential.
Remediation script:#
# Enable crond.service for all systemd targets
#
systemctl enable crond.service
#
# Start crond.service if not currently running
#
systemctl start crond.service
|
Disable At Service (atd)ruleThe at and batch commands can be used to
schedule tasks that are meant to be executed only once. This allows delayed
execution in a manner similar to cron, except that it is not
recurring. The daemon atd keeps track of tasks scheduled via
at and batch , and executes them at the specified time.
The atd service can be disabled with the following command:
$ sudo systemctl disable atd.service
Rationale:
The atd service could be used by an unsophisticated insider to carry
out activities outside of a normal login session, which could complicate
accountability. Furthermore, the need to schedule tasks with at or
batch is not common.
identifiers:
CCE-80345-2 references:
CM-7, 381 Remediation script:#
# Disable atd.service for all systemd targets
#
systemctl disable atd.service
#
# Stop atd.service if currently running
#
systemctl stop atd.service
|
SSH ServergroupThe SSH protocol is recommended for remote login and
remote file transfer. SSH provides confidentiality and integrity
for data exchanged between two systems, as well as server
authentication, through the use of public key cryptography. The
implementation included with the system is called OpenSSH, and more
detailed documentation is available from its website,
http://www.openssh.org. Its server program is called sshd and
provided by the RPM package openssh-server . |
contains 3 rules |
Configure OpenSSH Server if NecessarygroupIf the system needs to act as an SSH server, then
certain changes should be made to the OpenSSH daemon configuration
file /etc/ssh/sshd_config . The following recommendations can be
applied to this file. See the sshd_config(5) man page for more
detailed information. |
contains 3 rules |
Allow Only SSH Protocol 2ruleOnly SSH protocol version 2 connections should be
permitted. The default setting in
/etc/ssh/sshd_config is correct, and can be
verified by ensuring that the following
line appears:
Protocol 2
Rationale:
SSH protocol version 1 is an insecure implementation of the SSH protocol and
has many well-known vulnerability exploits. Exploits of the SSH daemon could provide
immediate root access to the system.
Remediation script:grep -qi ^Protocol /etc/ssh/sshd_config && \
sed -i "s/Protocol.*/Protocol 2/gI" /etc/ssh/sshd_config
if ! [ $? -eq 0 ]; then
echo "Protocol 2" >> /etc/ssh/sshd_config
fi
|
Disable SSH Root LoginruleThe root user should never be allowed to login to a
system directly over a network.
To disable root login via SSH, add or correct the following line
in /etc/ssh/sshd_config :
PermitRootLogin no
Rationale:
Even though the communications channel may be encrypted, an additional layer of
security is gained by extending the policy of not logging directly on as root.
In addition, logging in with a user-specific account provides individual
accountability of actions performed on the system and also helps to minimize
direct attack attempts on root's password.
Remediation script:
SSHD_CONFIG='/etc/ssh/sshd_config'
# Obtain line number of first uncommented case-insensitive occurrence of Match
# block directive (possibly prefixed with whitespace) present in $SSHD_CONFIG
FIRST_MATCH_BLOCK=$(sed -n '/^[[:space:]]*Match[^\n]*/I{=;q}' $SSHD_CONFIG)
# Obtain line number of first uncommented case-insensitive occurence of
# PermitRootLogin directive (possibly prefixed with whitespace) present in
# $SSHD_CONFIG
FIRST_PERMIT_ROOT_LOGIN=$(sed -n '/^[[:space:]]*PermitRootLogin[^\n]*/I{=;q}' $SSHD_CONFIG)
# Case: Match block directive not present in $SSHD_CONFIG
if [ -z "$FIRST_MATCH_BLOCK" ]
then
# Case: PermitRootLogin directive not present in $SSHD_CONFIG yet
if [ -z "$FIRST_PERMIT_ROOT_LOGIN" ]
then
# Append 'PermitRootLogin no' at the end of $SSHD_CONFIG
echo -e "\nPermitRootLogin no" >> $SSHD_CONFIG
# Case: PermitRootLogin directive present in $SSHD_CONFIG already
else
# Replace first uncommented case-insensitive occurrence
# of PermitRootLogin directive
sed -i "$FIRST_PERMIT_ROOT_LOGIN s/^[[:space:]]*PermitRootLogin.*$/PermitRootLogin no/I" $SSHD_CONFIG
fi
# Case: Match block directive present in $SSHD_CONFIG
else
# Case: PermitRootLogin directive not present in $SSHD_CONFIG yet
if [ -z "$FIRST_PERMIT_ROOT_LOGIN" ]
then
# Prepend 'PermitRootLogin no' before first uncommented
# case-insensitive occurrence of Match block directive
sed -i "$FIRST_MATCH_BLOCK s/^\([[:space:]]*Match[^\n]*\)/PermitRootLogin no\n\1/I" $SSHD_CONFIG
# Case: PermitRootLogin directive present in $SSHD_CONFIG and placed
# before first Match block directive
elif [ "$FIRST_PERMIT_ROOT_LOGIN" -lt "$FIRST_MATCH_BLOCK" ]
then
# Replace first uncommented case-insensitive occurrence
# of PermitRootLogin directive
sed -i "$FIRST_PERMIT_ROOT_LOGIN s/^[[:space:]]*PermitRootLogin.*$/PermitRootLogin no/I" $SSHD_CONFIG
# Case: PermitRootLogin directive present in $SSHD_CONFIG and placed
# after first Match block directive
else
# Prepend 'PermitRootLogin no' before first uncommented
# case-insensitive occurrence of Match block directive
sed -i "$FIRST_MATCH_BLOCK s/^\([[:space:]]*Match[^\n]*\)/PermitRootLogin no\n\1/I" $SSHD_CONFIG
fi
fi
|
Use Only Approved CiphersruleLimit the ciphers to those algorithms which are FIPS-approved.
Counter (CTR) mode is also preferred over cipher-block chaining (CBC) mode.
The following line in /etc/ssh/sshd_config
demonstrates use of FIPS-approved ciphers:
Ciphers aes128-ctr,aes192-ctr,aes256-ctr
The man page sshd_config(5) contains a list of supported ciphers.
Rationale:
Unapproved mechanisms that are used for authentication to the cryptographic module are not verified and therefore
cannot be relied upon to provide confidentiality or integrity, and system data may be compromised.
Operating systems utilizing encryption are required to use FIPS-compliant mechanisms for authenticating to
cryptographic modules.
FIPS 140-2 is the current standard for validating that mechanisms used to access cryptographic modules
utilize authentication that meets industry and government requirements. For government systems, this allows
Security Levels 1, 2, 3, or 4 for use on Red Hat Enterprise Linux.
identifiers:
CCE-27295-5 references:
AC-3, AC-17(2), AU-10(5), CM-6(b), IA-5(1)(c), IA-7, 68, 366, 803, SRG-OS-000033-GPOS-00014, SRG-OS-000120-GPOS-00061, SRG-OS-000125-GPOS-00065, SRG-OS-000250-GPOS-00093, SRG-OS-000393-GPOS-00173, RHEL-07-040110, 6.2.11, Test attestation on 20121024 by DS Remediation script:
function replace_or_append {
local config_file=$1
local key=$2
local value=$3
local cce=$4
local format=$5
# Check sanity of the input
if [ $# -lt "3" ]
then
echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
echo
echo "If symlinks need to be taken into account, add yes/no to the last argument"
echo "to allow to 'follow_symlinks'."
echo "Aborting."
exit 1
fi
# Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
# Otherwise, regular sed command will do.
if test -L $config_file; then
sed_command="sed -i --follow-symlinks"
else
sed_command="sed -i"
fi
# Test that the cce arg is not empty or does not equal CCENUM.
# If CCENUM exists, it means that there is no CCE assigned.
if ! [ "x$cce" = x ] && [ "$cce" != 'CCENUM' ]; then
cce="CCE-${cce}"
else
cce="CCE"
fi
# Strip any search characters in the key arg so that the key can be replaced without
# adding any search characters to the config file.
stripped_key=${key//[!a-zA-Z]/}
# If there is no print format specified in the last arg, use the default format.
if ! [ "x$format" = x ] ; then
printf -v formatted_output "$format" $stripped_key $value
else
formatted_output="$stripped_key = $value"
fi
# If the key exists, change it. Otherwise, add it to the config_file.
if `grep -qi $key $config_file` ; then
$sed_command "s/$key.*/$formatted_output/g" $config_file
else
echo -ne "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
echo -ne "\n$formatted_output" >> $config_file
fi
}
replace_or_append '/etc/ssh/sshd_config' '^Ciphers' 'aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,3des-cbc,aes192-cbc,aes256-cbc' 'CCENUM' '%s %s'
|
Avahi ServergroupThe Avahi daemon implements the DNS Service Discovery
and Multicast DNS protocols, which provide service and host
discovery on a network. It allows a system to automatically
identify resources on the network, such as printers or web servers.
This capability is also known as mDNSresponder and is a major part
of Zeroconf networking. |
contains 1 rule |
Disable Avahi Server if PossiblegroupBecause the Avahi daemon service keeps an open network
port, it is subject to network attacks.
Disabling it can reduce the system's vulnerability to such attacks.
|
contains 1 rule |
Disable Avahi Server Softwarerule
The avahi-daemon service can be disabled with the following command:
$ sudo systemctl disable avahi-daemon.service
Rationale:
Because the Avahi daemon service keeps an open network
port, it is subject to network attacks. Its functionality
is convenient but is only appropriate if the local network
can be trusted.
identifiers:
CCE-80338-7 references:
CM-7, 366, 3.3 Remediation script:#
# Disable avahi-daemon.service for all systemd targets
#
systemctl disable avahi-daemon.service
#
# Stop avahi-daemon.service if currently running
# and disable avahi-daemon.socket so the avahi-daemon.service
# can't be activated
#
systemctl stop avahi-daemon.service
systemctl disable avahi-daemon.socket
|
Print SupportgroupThe Common Unix Printing System (CUPS) service provides both local
and network printing support. A system running the CUPS service can accept
print jobs from other systems, process them, and send them to the appropriate
printer. It also provides an interface for remote administration through a web
browser. The CUPS service is installed and activated by default. The project
homepage and more detailed documentation are available at http://www.cups.org.
|
contains 3 rules |
Configure the CUPS Service if NecessarygroupCUPS provides the ability to easily share local printers with
other machines over the network. It does this by allowing machines to share
lists of available printers. Additionally, each machine that runs the CUPS
service can potentially act as a print server. Whenever possible, the printer
sharing and print server capabilities of CUPS should be limited or disabled.
The following recommendations should demonstrate how to do just that.
|
contains 2 rules |
Disable Printer Browsing Entirely if PossibleruleBy default, CUPS listens on the network for printer list
broadcasts on UDP port 631. This functionality is called printer browsing.
To disable printer browsing entirely, edit the CUPS configuration
file, located at /etc/cups/cupsd.conf , to include the following:
Browsing Off
Rationale:The CUPS print service can be configured to broadcast a list of
available printers to the network. Other machines on the network, also running
the CUPS print service, can be configured to listen to these broadcasts and add
and configure these printers for immediate use. By disabling this browsing
capability, the machine will no longer generate or receive such broadcasts.
identifiers:
CCE-80283-5 references:
CM-7 |
Disable Print Server CapabilitiesruleTo prevent remote users from potentially connecting to and using
locally configured printers, disable the CUPS print server sharing
capabilities. To do so, limit how the server will listen for print jobs by
removing the more generic port directive from /etc/cups/cupsd.conf:
Port 631
and replacing it with the Listen directive:
Listen localhost:631
This will prevent remote users from printing to locally configured printers
while still allowing local users on the machine to print normally.
Rationale:By default, locally configured printers will not be shared over the
network, but if this functionality has somehow been enabled, these
recommendations will disable it again. Be sure to disable outgoing printer list
broadcasts, or remote users will still be able to see the locally configured
printers, even if they cannot actually print to them. To limit print serving to
a particular set of users, use the Policy directive.
identifiers:
CCE-80284-3 references:
CM-7 |
Disable the CUPS Servicerule
The cups service can be disabled with the following command:
$ sudo systemctl disable cups.service
Rationale:Turn off unneeded services to reduce attack surface.
identifiers:
CCE-80282-7 references:
CM-7, 3.4 Remediation script:#
# Disable cups.service for all systemd targets
#
systemctl disable cups.service
#
# Stop cups.service if currently running
# and disable cups.path and cups.socket so
# cups.service can't be activated
#
systemctl stop cups.service
systemctl disable cups.path
systemctl disable cups.socket
|
DHCPgroupThe Dynamic Host Configuration Protocol (DHCP) allows
systems to request and obtain an IP address and other configuration
parameters from a server.
This guide recommends configuring networking on clients by manually editing
the appropriate files under /etc/sysconfig . Use of DHCP can make client
systems vulnerable to compromise by rogue DHCP servers, and should be avoided
unless necessary. If using DHCP is necessary, however, there are best practices
that should be followed to minimize security risk.
|
contains 3 rules |
Disable DHCP Servergroup
The DHCP server dhcpd is not installed or activated by
default. If the software was installed and activated, but the
system does not need to act as a DHCP server, it should be disabled
and removed.
|
contains 2 rules |
Disable DHCP ServiceruleThe dhcpd service should be disabled on
any system that does not need to act as a DHCP server.
The dhcpd service can be disabled with the following command:
$ sudo systemctl disable dhcpd.service
Rationale:
Unmanaged or unintentionally activated DHCP servers may provide faulty information
to clients, interfering with the operation of a legitimate site
DHCP server if there is one.
Remediation script:#
# Disable dhcpd.service for all systemd targets
#
systemctl disable dhcpd.service
#
# Stop dhcpd.service if currently running
#
systemctl stop dhcpd.service
|
Uninstall DHCP Server PackageruleIf the system does not need to act as a DHCP server,
the dhcp package can be uninstalled.
The dhcp package can be removed with the following command:
$ sudo yum erase dhcp
Rationale:
Removing the DHCP server ensures that it cannot be easily or
accidentally reactivated and disrupt network operation.
Remediation script:
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command remove dhcp
|
Disable DHCP Clientgroup
DHCP is the default network configuration method provided by the system
installer, and common on many networks. Nevertheless, manual management
of IP addresses for systems implies a greater degree of management and
accountability for network activity.
|
contains 1 rule |
Disable DHCP Clientrule
For each interface on the system (e.g. eth0), edit
/etc/sysconfig/network-scripts/ifcfg-interface and make the
following changes:
Rationale:
DHCP relies on trusting the local network. If the local network is not trusted,
then it should not be used. However, the automatic configuration provided by
DHCP is commonly used and the alternative, manual configuration, presents an
unacceptable burden in many circumstances. |
Network Time ProtocolgroupThe Network Time Protocol is used to manage the system
clock over a network. Computer clocks are not very accurate, so
time will drift unpredictably on unmanaged systems. Central time
protocols can be used both to ensure that time is consistent among
a network of machines, and that their time is consistent with the
outside world.
If every system on a network reliably reports the same time, then it is much
easier to correlate log messages in case of an attack. In addition, a number of
cryptographic protocols (such as Kerberos) use timestamps to prevent certain
types of attacks. If your network does not have synchronized time, these
protocols may be unreliable or even unusable.
Depending on the specifics of the network, global time accuracy may be just as
important as local synchronization, or not very important at all. If your
network is connected to the Internet, using a public timeserver (or one
provided by your enterprise) provides globally accurate timestamps which may be
essential in investigating or responding to an attack which originated outside
of your network.
A typical network setup involves a small number of internal systems operating
as NTP servers, and the remainder obtaining time information from those
internal servers.
There is a choice between the daemons ntpd and chronyd , which
are available from the repositories in the ntp and chrony
packages respectively.
The default chronyd daemon can work well when external time references
are only intermittently accesible, can perform well even when the network is
congested for longer periods of time, can usually synchronize the clock faster
and with better time accuracy, and quickly adapts to sudden changes in the rate
of the clock, for example, due to changes in the temperature of the crystal
oscillator. Chronyd should be considered for all systems which are
frequently suspended or otherwise intermittently disconnected and reconnected
to a network. Mobile and virtual systems for example.
The ntpd NTP daemon fully supports NTP protocol version 4 (RFC 5905),
including broadcast, multicast, manycast clients and servers, and the orphan
mode. It also supports extra authentication schemes based on public-key
cryptography (RFC 5906). The NTP daemon (ntpd ) should be considered
for systems which are normally kept permanently on. Systems which are required
to use broadcast or multicast IP, or to perform authentication of packets with
the Autokey protocol, should consider using ntpd .
Refer to https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_the_chrony_Suite.html for more detailed comparison of features of chronyd
and ntpd daemon features respectively, and for further guidance how to
choose between the two NTP daemons.
The upstream manual pages at http://chrony.tuxfamily.org/manual.html for
chronyd and http://www.ntp.org for ntpd provide additional
information on the capabilities and configuration of each of the NTP daemons.
|
contains 3 rules |
Enable the NTP Daemonrule
The chronyd service can be enabled with the following command:
$ sudo systemctl enable chronyd.service
Note: The chronyd daemon is enabled by default.
The ntpd service can be enabled with the following command:
$ sudo systemctl enable ntpd.service
Note: The ntpd daemon is not enabled by default. Though as mentioned
in the previous sections in certain environments the ntpd daemon might
be preferred to be used rather than the chronyd one. Refer to:
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_the_chrony_Suite.html
for guidance which NTP daemon to choose depending on the environment used.
Rationale:Enabling some of chronyd or ntpd services ensures
that the NTP daemon will be running and that the system will synchronize its
time to any servers specified. This is important whether the system is
configured to be a client (and synchronize only its own clock) or it is also
acting as an NTP server to other systems. Synchronizing time is essential for
authentication services such as Kerberos, but it is also important for
maintaining accurate logs and auditing possible security breaches.
The chronyd and ntpd NTP daemons offer all of the
functionality of ntpdate , which is now deprecated. Additional
information on this is available at
http://support.ntp.org/bin/view/Dev/DeprecatingNtpdate Remediation script:
if ! `rpm -q --quiet chrony` && ! `rpm -q --quiet ntp-`; then
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command install chrony
service_command enable chronyd
elif `rpm -q --quiet chrony`; then
if ! [ `/usr/sbin/pidof ntpd` ] ; then
function service_command {
# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)
# Check sanity of the input
if [ $# -lt "2" ]
then
echo "Usage: service_command 'enable/disable' 'service_name.service'"
echo
echo "To enable or disable xinetd services add \'xinetd=service_name\'"
echo "as the last argument"
echo "Aborting."
exit 1
fi
# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
service_util="/usr/bin/systemctl"
else
service_util="/sbin/service"
chkconfig_util="/sbin/chkconfig"
fi
# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
service_state="enable"
service_operation="start"
chkconfig_state="on"
else
service_state="disable"
service_operation="stop"
chkconfig_state="off"
fi
# If chkconfig_util is not empty, use chkconfig/service commands.
if ! [ "x$chkconfig_util" = x ] ; then
$service_util $service $service_operation
$chkconfig_util --level 0123456 $service $chkconfig_state
else
$service_util $service_operation $service
$service_util $service_state $service
fi
# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if ! [ "x$xinetd" = x ] ; then
grep -qi disable /etc/xinetd.d/$xinetd && \
if ! [ "$service_operation" != 'disable' ] ; then
sed -i "s/disable.*/disable = no/gI" /etc/xinetd.d/$xinetd
else
sed -i "s/disable.*/disable = yes/gI" /etc/xinetd.d/$xinetd
fi
fi
}
service_command enable chronyd
fi
else
function service_command {
# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)
# Check sanity of the input
if [ $# -lt "2" ]
then
echo "Usage: service_command 'enable/disable' 'service_name.service'"
echo
echo "To enable or disable xinetd services add \'xinetd=service_name\'"
echo "as the last argument"
echo "Aborting."
exit 1
fi
# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
service_util="/usr/bin/systemctl"
else
service_util="/sbin/service"
chkconfig_util="/sbin/chkconfig"
fi
# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
service_state="enable"
service_operation="start"
chkconfig_state="on"
else
service_state="disable"
service_operation="stop"
chkconfig_state="off"
fi
# If chkconfig_util is not empty, use chkconfig/service commands.
if ! [ "x$chkconfig_util" = x ] ; then
$service_util $service $service_operation
$chkconfig_util --level 0123456 $service $chkconfig_state
else
$service_util $service_operation $service
$service_util $service_state $service
fi
# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if ! [ "x$xinetd" = x ] ; then
grep -qi disable /etc/xinetd.d/$xinetd && \
if ! [ "$service_operation" != 'disable' ] ; then
sed -i "s/disable.*/disable = no/gI" /etc/xinetd.d/$xinetd
else
sed -i "s/disable.*/disable = yes/gI" /etc/xinetd.d/$xinetd
fi
fi
}
service_command enable ntpd
fi
|
Specify a Remote NTP ServerruleDepending on specific functional requirements of a concrete
production environment, the Red Hat Enterprise Linux 7 Server system can be
configured to utilize the services of the chronyd NTP daemon (the
default), or services of the ntpd NTP daemon. Refer to
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_the_chrony_Suite.html
for more detailed comparison of the features of both of the choices, and for
further guidance how to choose between the two NTP daemons.
To specify a remote NTP server for time synchronization, perform the following:
- if the system is configured to use the
chronyd as the NTP daemon (the
default), edit the file /etc/chrony.conf as follows, - if the system is configured to use the
ntpd as the NTP daemon,
edit the file /etc/ntp.conf as documented below.
Add or correct the following lines, substituting the IP or hostname of a remote
NTP server for ntpserver:
server ntpserver
This instructs the NTP software to contact that remote server to obtain time
data.
Rationale:Synchronizing with an NTP server makes it possible to collate system
logs from multiple sources or correlate computer events with real time events.
Remediation script:
var_multiple_time_servers="(N/A)"
if ! `/usr/sbin/pidof ntpd`; then
if ! `grep -q ^server /etc/chrony.conf` ; then
if ! `grep -q '#[[:space:]]*server' /etc/chrony.conf` ; then
for i in `echo "$var_multiple_time_servers" | tr ',' '\n'` ; do
echo -ne "\nserver $i iburst" >> /etc/chrony.conf
done
else
sed -i 's/#[ ]*server/server/g' /etc/chrony.conf
fi
fi
else
if ! `grep -q ^server /etc/ntp.conf` ; then
if ! `grep -q '#[[:space:]]*server' /etc/ntp.conf` ; then
for i in `echo "$var_multiple_time_servers" | tr ',' '\n'` ; do
echo -ne "\nserver $i iburst" >> /etc/ntp.conf
done
else
sed -i 's/#[ ]*server/server/g' /etc/ntp.conf
fi
fi
fi
|
Specify Additional Remote NTP ServersruleDepending on specific functional requirements of a concrete
production environment, the Red Hat Enterprise Linux 7 Server system can be
configured to utilize the services of the chronyd NTP daemon (the
default), or services of the ntpd NTP daemon. Refer to
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_the_chrony_Suite.html
for more detailed comparison of the features of both of the choices, and for
further guidance how to choose between the two NTP daemons.
Additional NTP servers can be specified for time synchronization. To do so,
perform the following:
- if the system is configured to use the
chronyd as the NTP daemon
(the default), edit the file /etc/chrony.conf as follows, - if the system is configured to use the
ntpd as the NTP daemon,
edit the file /etc/ntp.conf as documented below.
Add additional lines of the following form, substituting the IP address or
hostname of a remote NTP server for ntpserver:
server ntpserver
Rationale:Specifying additional NTP servers increases the availability of
accurate time data, in the event that one of the specified servers becomes
unavailable. This is typical for a system acting as an NTP server for
other systems.
Remediation script:
var_multiple_time_servers="(N/A)"
if ! `/usr/sbin/pidof ntpd`; then
if [ `grep -c '^server' /etc/chrony.conf` -lt 2 ]; then
if ! `grep -q '#[[:space:]]*server' /etc/chrony.conf` ; then
for i in `echo "$var_multiple_time_servers" | tr ',' '\n'` ; do
echo -ne "\nserver $i iburst" >> /etc/chrony.conf
done
else
sed -i 's/#[ ]*server/server/g' /etc/chrony.conf
fi
fi
else
if [ `grep -c '^server' /etc/ntp.conf` -lt 2 ]; then
if ! `grep -q '#[[:space:]]*server' /etc/ntp.conf` ; then
for i in `echo "$var_multiple_time_servers" | tr ',' '\n'` ; do
echo -ne "\nserver $i iburst" >> /etc/ntp.conf
done
else
sed -i 's/#[ ]*server/server/g' /etc/ntp.conf
fi
fi
fi
|
Mail Server Softwaregroup
Mail servers are used to send and receive email over the network.
Mail is a very common service, and Mail Transfer Agents (MTAs) are obvious
targets of network attack.
Ensure that machines are not running MTAs unnecessarily,
and configure needed MTAs as defensively as possible.
Very few systems at any site should be configured to directly receive email over the
network. Users should instead use mail client programs to retrieve email
from a central server that supports protocols such as IMAP or POP3.
However, it is normal for most systems to be independently capable of sending email,
for instance so that cron jobs can report output to an administrator.
Most MTAs, including Postfix, support a submission-only mode in which mail can be sent from
the local system to a central site MTA (or directly delivered to a local account),
but the system still cannot receive mail directly over a network.
The alternatives program in Red Hat Enterprise Linux permits selection of other mail server software
(such as Sendmail), but Postfix is the default and is preferred.
Postfix was coded with security in mind and can also be more effectively contained by
SELinux as its modular design has resulted in separate processes performing specific actions.
More information is available on its website, http://www.postfix.org.
|
contains 1 rule |
Uninstall Sendmail PackageruleSendmail is not the default mail transfer agent and is
not installed by default.
The sendmail package can be removed with the following command:
$ sudo yum erase sendmail
Rationale:The sendmail software was not developed with security in mind and
its design prevents it from being effectively contained by SELinux. Postfix
should be used instead.
|
LDAPgroupLDAP is a popular directory service, that is, a
standardized way of looking up information from a central database.
Red Hat Enterprise Linux 7 includes software that enables a system to act as both
an LDAP client and server.
|
contains 1 rule |
Configure OpenLDAP ServergroupThis section details some security-relevant settings
for an OpenLDAP server. Installation and configuration of OpenLDAP on Red Hat Enterprise Linux 7 is available at:
https://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Directory_Servers.html.
|
contains 1 rule |
Uninstall openldap-servers PackageruleThe openldap-servers package should be removed if not in use.
Is this machine the OpenLDAP server? If not, remove the package.
$ sudo yum erase openldap-servers
The openldap-servers RPM is not installed by default on Red Hat Enterprise Linux 7
machines. It is needed only by the OpenLDAP server, not by the
clients which use LDAP for authentication. If the system is not
intended for use as an LDAP Server it should be removed.
Rationale:Unnecessary packages should not be installed to decrease the attack
surface of the system. While this software is clearly essential on an LDAP
server, it is not necessary on typical desktop or workstation systems.
|
DNS ServergroupMost organizations have an operational need to run at
least one nameserver. However, there are many common attacks
involving DNS server software, and this server software should
be disabled on any system
on which it is not needed. |
contains 2 rules |
Disable DNS Servergroup
DNS software should be disabled on any machine which does not
need to be a nameserver. Note that the BIND DNS server software is
not installed on Red Hat Enterprise Linux 7 by default. The remainder of this section
discusses secure configuration of machines which must be
nameservers.
|
contains 2 rules |
Disable DNS Serverrule
The named service can be disabled with the following command:
$ sudo systemctl disable named.service
Rationale:
All network services involve some risk of compromise due to
implementation flaws and should be disabled if possible.
identifiers:
CCE-80325-4 references:
CM-7, 366 Remediation script:#
# Disable named.service for all systemd targets
#
systemctl disable named.service
#
# Stop named.service if currently running
#
systemctl stop named.service
|
Uninstall bind PackageruleTo remove the bind package, which contains the
named service, run the following command:
$ sudo yum erase bind
Rationale:
If there is no need to make DNS server software available,
removing it provides a safeguard against its activation.
identifiers:
CCE-80326-2 references:
CM-7, 366, 3.9 Remediation script:
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command remove bind
|
FTP ServergroupFTP is a common method for allowing remote access to
files. Like telnet, the FTP protocol is unencrypted, which means
that passwords and other data transmitted during the session can be
captured and that the session is vulnerable to hijacking.
Therefore, running the FTP server software is not recommended.
However, there are some FTP server configurations which may
be appropriate for some environments, particularly those which
allow only read-only anonymous access as a means of downloading
data available to the public. |
contains 2 rules |
Disable vsftpd if PossiblegroupTo minimize attack surface, disable vsftpd if at all
possible. |
contains 2 rules |
Disable vsftpd Servicerule
The vsftpd service can be disabled with the following command:
$ sudo systemctl disable vsftpd.service
Rationale:
Running FTP server software provides a network-based avenue
of attack, and should be disabled if not needed.
Furthermore, the FTP protocol is unencrypted and creates
a risk of compromising sensitive information.
identifiers:
CCE-80244-7 references:
CM-7, 1436 Remediation script:#
# Disable vsftpd.service for all systemd targets
#
systemctl disable vsftpd.service
#
# Stop vsftpd.service if currently running
#
systemctl stop vsftpd.service
|
Uninstall vsftpd Packagerule
The vsftpd package can be removed with the following command:
$ sudo yum erase vsftpd
Rationale:
Removing the vsftpd package decreases the risk of its
accidental activation.
Remediation script:
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command remove vsftpd
|
Web ServergroupThe web server is responsible for providing access to
content via the HTTP protocol. Web servers represent a significant
security risk because:
- The HTTP port is commonly probed by malicious sources
- Web server software is very complex, and includes a long
history of vulnerabilities
- The HTTP protocol is unencrypted and vulnerable to passive
monitoring
The system's default web server software is Apache 2 and is
provided in the RPM package httpd . |
contains 2 rules |
Disable Apache if PossiblegroupIf Apache was installed and activated, but the system
does not need to act as a web server, then it should be disabled
and removed from the system.
|
contains 2 rules |
Disable httpd Servicerule
The httpd service can be disabled with the following command:
$ sudo systemctl disable httpd.service
Rationale:
Running web server software provides a network-based avenue
of attack, and should be disabled if not needed.
identifiers:
CCE-80300-7 references:
CM-7 Remediation script:#
# Disable httpd.service for all systemd targets
#
systemctl disable httpd.service
#
# Stop httpd.service if currently running
#
systemctl stop httpd.service
|
Uninstall httpd Packagerule
The httpd package can be removed with the following command:
$ sudo yum erase httpd
Rationale:
If there is no need to make the web server software available,
removing it provides a safeguard against its activation.
identifiers:
CCE-80301-5 references:
CM-7, 3.11 Remediation script:
function package_command {
# Load function arguments into local variables
local package_operation=$1
local package=$2
# Check sanity of the input
if [ $# -ne "2" ]
then
echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
echo "Aborting."
exit 1
fi
# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
install_util="/usr/bin/dnf"
else
install_util="/usr/bin/yum"
fi
if [ "$package_operation" != 'remove' ] ; then
# If the rpm is not installed, install the rpm
if ! /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
else
# If the rpm is installed, uninstall the rpm
if /bin/rpm -q --quiet $package; then
$install_util -y $package_operation $package
fi
fi
}
package_command remove httpd
|