Package mdp :: Package nodes :: Class ICANode
[hide private]
[frames] | no frames]

Class ICANode



ICANode is a general class to handle different batch-mode algorithm for
Independent Component Analysis. More information about ICA can be found
among others in
Hyvarinen A., Karhunen J., Oja E. (2001). Independent Component Analysis,
Wiley.

Instance Methods [hide private]
 
__init__(self, limit=0.001, telescope=False, verbose=False, whitened=False, white_comp=None, white_parm=None, input_dim=None, dtype=None)
Input arguments:
 
_execute(self, x)
 
_inverse(self, y)
 
_set_input_dim(self, n)
 
_stop_training(self)
Whiten data if needed and call the 'core' routine to perform ICA.
 
core(self, data)
This is the core routine of the ICANode.
 
execute(self, x)
Process the data contained in `x`.
 
inverse(self, y)
Invert `y`.
 
stop_training(self)
Whiten data if needed and call the 'core' routine to perform ICA.

Inherited from unreachable.ProjectMatrixMixin: get_projmatrix, get_recmatrix

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Cumulator
 
_train(self, *args)
Collect all input data in a list.
 
train(self, *args)
Collect all input data in a list.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of `Node` is equivalent to calling its `execute` method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of :numpy:`dtype` objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to `filename`.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
    Inherited from Node
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples::
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, limit=0.001, telescope=False, verbose=False, whitened=False, white_comp=None, white_parm=None, input_dim=None, dtype=None)
(Constructor)

 

Input arguments:

whitened -- Set whitened is True if input data are already whitened.
            Otherwise the node will whiten the data itself.

white_comp -- If whitened is False, you can set 'white_comp' to the
              number of whitened components to keep during the
              calculation (i.e., the input dimensions are reduced to
              white_comp by keeping the components of largest variance).

white_parm -- a dictionary with additional parameters for whitening.
              It is passed directly to the WhiteningNode constructor.
              Ex: white_parm = { 'svd' : True }

limit -- convergence threshold.

telescope -- If telescope == True, use Telescope mode: Instead of
  using all input data in a single batch try larger and larger chunks
  of the input data until convergence is achieved. This should lead to
  significantly faster convergence for stationary statistics. This mode
  has not been thoroughly tested and must be considered beta.

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_inverse(self, y)

 
Overrides: Node._inverse

_set_input_dim(self, n)

 
Overrides: Node._set_input_dim

_stop_training(self)

 
Whiten data if needed and call the 'core' routine to perform ICA.
Take care of telescope-mode if needed.

Overrides: Node._stop_training

core(self, data)

 
This is the core routine of the ICANode. Each subclass must
define this function to return the achieved convergence value.
This function is also responsible for setting the ICA filters
matrix self.filters.
Note that the matrix self.filters is applied to the right of the
matrix containing input data. This is the transposed of the matrix
defining the linear transformation.

execute(self, x)

 
Process the data contained in `x`.

If the object is still in the training phase, the function
`stop_training` will be called.
`x` is a matrix having different variables on different columns
and observations on the rows.

By default, subclasses should overwrite `_execute` to implement
their execution phase. The docstring of the `_execute` method
overwrites this docstring.

Overrides: Node.execute

inverse(self, y)

 
Invert `y`.

If the node is invertible, compute the input ``x`` such that
``y = execute(x)``.

By default, subclasses should overwrite `_inverse` to implement
their `inverse` function. The docstring of the `inverse` method
overwrites this docstring.

Overrides: Node.inverse

stop_training(self)

 
Whiten data if needed and call the 'core' routine to perform ICA.
Take care of telescope-mode if needed.

Overrides: Node.stop_training