Package mdp :: Class ClassifierCumulator
[hide private]
[frames] | no frames]

Class ClassifierCumulator


A ClassifierCumulator is a Node whose training phase simply collects
all input data and labels. In this way it is possible to easily implement
batch-mode learning.

The data is accessible in the attribute 'self.data' after
the beginning of the '_stop_training' phase. 'self.tlen' contains
the number of data points collected.
'self.labels' contains the assigned label to each data point.

Instance Methods [hide private]
 
__init__(self, input_dim=None, output_dim=None, dtype=None)
If the input dimension and the output dimension are unspecified, they will be set when the `train` or `execute` method is called for the first time.
 
_check_train_args(self, x, labels)
 
_stop_training(self, *args, **kwargs)
Transform the data and labels lists to array objects and reshape them.
 
_train(self, x, labels)
Cumulate all input data in a one dimensional list.
 
stop_training(self, *args, **kwargs)
Transform the data and labels lists to array objects and reshape them.
 
train(self, x, labels)
Cumulate all input data in a one dimensional list.

Inherited from PreserveDimNode (private): _set_input_dim, _set_output_dim

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from ClassifierNode
 
_execute(self, x)
 
_label(self, x, *args, **kargs)
 
_prob(self, x, *args, **kargs)
 
execute(self, x)
Process the data contained in `x`.
 
label(self, x, *args, **kwargs)
Returns an array with best class labels.
 
prob(self, x, *args, **kwargs)
Returns the probability for each datapoint and label (e.g., [{1:0.1, 2:0.0, 3:0.9}, {1:1.0, 2:0.0, 3:0.0}, ...])
 
rank(self, x, threshold=None)
Returns ordered list with all labels ordered according to prob(x) (e.g., [[3 1 2], [2 1 3], ...]).
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of `Node` is equivalent to calling its `execute` method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of :numpy:`dtype` objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert `y`.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to `filename`.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
    Inherited from Node
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples::
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, input_dim=None, output_dim=None, dtype=None)
(Constructor)

 
If the input dimension and the output dimension are
unspecified, they will be set when the `train` or `execute`
method is called for the first time.
If dtype is unspecified, it will be inherited from the data
it receives at the first call of `train` or `execute`.

Every subclass must take care of up- or down-casting the internal
structures to match this argument (use `_refcast` private
method when possible).

Overrides: object.__init__
(inherited documentation)

_check_train_args(self, x, labels)

 
Overrides: Node._check_train_args

_stop_training(self, *args, **kwargs)

 
Transform the data and labels lists to array objects and reshape them.

Overrides: Node._stop_training

_train(self, x, labels)

 
Cumulate all input data in a one dimensional list.

Overrides: Node._train

stop_training(self, *args, **kwargs)

 
Transform the data and labels lists to array objects and reshape them.

Overrides: Node.stop_training

train(self, x, labels)

 
Cumulate all input data in a one dimensional list.

Overrides: Node.train