Modifier and Type | Field and Description |
---|---|
protected Range |
BestFirst.m_startRange
holds the start set for the search as a Range
|
protected Range |
GreedyStepwise.m_startRange
holds the start set for the search as a Range
|
protected Range |
LinearForwardSelection.m_startRange
holds the start set for the search as a Range
|
Modifier and Type | Method and Description |
---|---|
protected static String |
Evaluation.attributeValuesString(Instance instance,
Range attRange)
Builds a string listing the attribute values in a specified range of indices,
separated by commas and enclosed in brackets.
|
protected static String |
Evaluation.predictionText(Classifier classifier,
Instance inst,
int instNum,
Range attributesToOutput,
boolean printDistribution)
store the prediction made by the classifier as a string
|
static void |
Evaluation.printClassifications(Classifier classifier,
Instances train,
ConverterUtils.DataSource testSource,
int classIndex,
Range attributesToOutput,
boolean printDistribution,
StringBuffer text)
Prints the predictions for the given dataset into a supplied StringBuffer
|
static void |
Evaluation.printClassifications(Classifier classifier,
Instances train,
ConverterUtils.DataSource testSource,
int classIndex,
Range attributesToOutput,
StringBuffer predsText)
Prints the predictions for the given dataset into a String variable.
|
protected static void |
Evaluation.printClassificationsHeader(Instances test,
Range attributesToOutput,
boolean printDistribution,
StringBuffer text)
Prints the header for the predictions output into a supplied StringBuffer
|
Modifier and Type | Field and Description |
---|---|
protected Range |
ClassBalancedND.m_Range
The classes that are grouped together at the current node
|
protected Range |
DataNearBalancedND.m_Range
The classes that are grouped together at the current node
|
Modifier and Type | Field and Description |
---|---|
protected Range |
NormalizableDistance.m_AttributeIndices
The range of attributes to use for calculating the distance.
|
Range |
Debug.DBO.m_outputTypes
range of outputtyp
|
Modifier and Type | Field and Description |
---|---|
protected Range |
CSVLoader.m_dateAttributes
The range of attributes to force to type date
|
protected Range |
CSVLoader.m_NominalAttributes
The range of attributes to force to type nominal.
|
protected Range |
CSVLoader.m_StringAttributes
The range of attributes to force to type string.
|
Modifier and Type | Field and Description |
---|---|
protected Range |
ClusterGenerator.m_booleanCols
Stores which columns are boolean (default numeric)
|
protected Range |
ClusterGenerator.m_nominalCols
Stores which columns are nominal (default numeric)
|
Modifier and Type | Method and Description |
---|---|
Range |
ClusterGenerator.getBooleanCols()
returns the range of boolean attributes.
|
Range |
ClusterGenerator.getNominalCols()
returns the range of nominal attributes
|
Modifier and Type | Method and Description |
---|---|
void |
ClusterGenerator.setBooleanCols(Range value)
Sets which attributes are boolean.
|
void |
ClusterGenerator.setNominalCols(Range value)
Sets which attributes are nominal.
|
Modifier and Type | Field and Description |
---|---|
protected Range |
SubspaceClusterDefinition.m_AttrIndexRange
range of atttributes
|
Modifier and Type | Field and Description |
---|---|
protected Range |
PairedTTester.m_DatasetKeyColumnsRange
The range of columns that specify a unique "dataset"
(eg: scheme plus configuration)
|
protected Range |
PairedTTester.m_ResultsetKeyColumnsRange
The range of columns that specify a unique result set
(eg: scheme plus configuration)
|
Modifier and Type | Method and Description |
---|---|
Range |
Tester.getDatasetKeyColumns()
Get the value of DatasetKeyColumns.
|
Range |
PairedTTester.getDatasetKeyColumns()
Get the value of DatasetKeyColumns.
|
Range |
Tester.getResultsetKeyColumns()
Get the value of ResultsetKeyColumns.
|
Range |
PairedTTester.getResultsetKeyColumns()
Get the value of ResultsetKeyColumns.
|
Modifier and Type | Method and Description |
---|---|
void |
Tester.setDatasetKeyColumns(Range newDatasetKeyColumns)
Set the value of DatasetKeyColumns.
|
void |
PairedTTester.setDatasetKeyColumns(Range newDatasetKeyColumns)
Set the value of DatasetKeyColumns.
|
void |
Tester.setResultsetKeyColumns(Range newResultsetKeyColumns)
Set the value of ResultsetKeyColumns.
|
void |
PairedTTester.setResultsetKeyColumns(Range newResultsetKeyColumns)
Set the value of ResultsetKeyColumns.
|
Modifier and Type | Field and Description |
---|---|
protected Range |
Discretize.m_DiscretizeCols
Stores which columns to Discretize
|
Modifier and Type | Field and Description |
---|---|
protected Range |
InterquartileRange.m_Attributes
the attribute range to work on
|
protected Range |
NumericCleaner.m_Cols
Stores which columns to cleanse
|
protected Range |
NumericToNominal.m_Cols
Stores which columns to turn into nominals
|
protected Range |
NominalToBinary.m_Columns
Stores which columns to act on
|
protected Range |
Copy.m_CopyCols
Stores which columns to copy
|
protected Range |
FirstOrder.m_DeltaCols
Stores which columns to take differences between
|
protected Range |
Discretize.m_DiscretizeCols
Stores which columns to Discretize
|
protected Range |
ClusterMembership.m_ignoreAttributesRange
Range of attributes to ignore
|
protected Range |
AddCluster.m_IgnoreAttributesRange
Range of attributes to ignore
|
protected Range[] |
PartitionedMultiFilter.m_Ranges
The attribute ranges.
|
protected Range |
Remove.m_SelectCols
Stores which columns to select as a funky range
|
protected Range |
MathExpression.m_SelectCols
Stores which columns to select as a funky range
|
protected Range |
AbstractTimeSeries.m_SelectedCols
Stores which columns to copy
|
protected Range |
StringToWordVector.m_SelectedRange
Range of columns to convert to word vectors.
|
protected Range |
RELAGGS.m_SelectedRange
the range of attributes to process (only relational ones will be processed)
|
Modifier and Type | Method and Description |
---|---|
Range |
PartitionedMultiFilter.getRange(int index)
Gets a single Range from the set of available Ranges.
|
Range[] |
PartitionedMultiFilter.getRanges()
Gets the list of possible Ranges to choose from.
|
Range |
StringToWordVector.getSelectedRange()
Get the value of m_SelectedRange.
|
Range |
RELAGGS.getSelectedRange()
Gets the current range selection.
|
Range |
MakeIndicator.getValueRange()
Get the range containing the indicator values.
|
Modifier and Type | Method and Description |
---|---|
protected Instances |
PartitionedMultiFilter.generateSubset(Instances data,
Range range)
generates a subset of the dataset with only the attributes from the range
(class is always added if present).
|
void |
PartitionedMultiFilter.setRanges(Range[] Ranges)
Sets the list of possible Ranges to choose from.
|
Modifier and Type | Field and Description |
---|---|
protected Range |
RemoveWithValues.m_Values
Stores which values of nominal attribute are to be used for filtering.
|
Modifier and Type | Field and Description |
---|---|
protected Range |
ClassifierPanel.m_OutputAdditionalAttributesRange
the range of attributes to output
|
Copyright © 2015 University of Waikato, Hamilton, NZ. All rights reserved.