Package mdp :: Package nodes :: Class RBMWithLabelsNode
[hide private]
[frames] | no frames]

Class RBMWithLabelsNode


Restricted Boltzmann Machine with softmax labels. An RBM is an
undirected probabilistic network with binary variables. In this
case, the node is partitioned into a set of observed (*visible*)
variables, a set of hidden (*latent*) variables, and a set of
label variables (also observed), only one of which is active at
any time. The node is able to learn associations between the
visible variables and the labels.

By default, the ``execute`` method returns the *probability* of
one of the hiden variables being equal to 1 given the input.

Use the ``sample_v`` method to sample from the observed variables
(visible and labels) given a setting of the hidden variables, and
``sample_h`` to do the opposite. The ``energy`` method can be used
to compute the energy of a given setting of all variables.

The network is trained by Contrastive Divergence, as described in
Hinton, G. E. (2002). Training products of experts by minimizing
contrastive divergence. Neural Computation, 14(8):1711-1800

Internal variables of interest:

  ``self.w``
      Generative weights between hidden and observed variables

  ``self.bv``
      bias vector of the observed variables

  ``self.bh``
      bias vector of the hidden variables

For more information on RBMs with labels, see

  * Geoffrey E. Hinton (2007) Boltzmann machine. Scholarpedia, 2(5):1668.
  * Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning
    algorithm for deep belief nets. Neural Computation, 18:1527-1554.

Instance Methods [hide private]
 
__init__(self, hidden_dim, labels_dim, visible_dim=None, dtype=None)
:Parameters:...
 
_sample_v(self, h, sample_l=False, concatenate=True)
 
_set_input_dim(self, n)
 
energy(self, v, h, l)
Compute the energy of the RBM given observed variables state `v` and `l`, and hidden variables state `h`.
 
execute(self, v, l, return_probs=True)
If `return_probs` is True, returns the probability of the hidden variables h[n,i] being 1 given the observations v[n,:] and l[n,:].
 
sample_h(self, v, l)
Sample the hidden variables given observations `v` and labels `l`.
 
sample_v(self, h)
Sample the observed variables given hidden variable state `h`.
 
train(self, v, l, n_updates=1, epsilon=0.1, decay=0.0, momentum=0.0, verbose=False)
Update the internal structures according to the visible data `v` and the labels `l`.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from RBMNode
 
_energy(self, v, h)
 
_execute(self, v, return_probs=True)
If `return_probs` is True, returns the probability of the hidden variables h[n,i] being 1 given the observations v[n,:].
 
_init_weights(self)
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_sample_h(self, v)
 
_stop_training(self)
 
_train(self, v, n_updates=1, epsilon=0.1, decay=0.0, momentum=0.0, update_with_ph=True, verbose=False)
Update the internal structures according to the input data `v`.
 
stop_training(self)
Stop the training phase.
    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of `Node` is equivalent to calling its `execute` method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_output_dim(self, n)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of :numpy:`dtype` objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert `y`.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to `filename`.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
    Inherited from Node
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples::
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, hidden_dim, labels_dim, visible_dim=None, dtype=None)
(Constructor)

 

:Parameters:
  hidden_dim
    number of hidden variables
  visible_dim
    number of observed variables

Overrides: object.__init__
(inherited documentation)

_sample_v(self, h, sample_l=False, concatenate=True)

 
Overrides: RBMNode._sample_v

_set_input_dim(self, n)

 
Overrides: Node._set_input_dim

energy(self, v, h, l)

 
Compute the energy of the RBM given observed variables state `v`
and `l`, and hidden variables state `h`.

Overrides: RBMNode.energy

execute(self, v, l, return_probs=True)

 
If `return_probs` is True, returns the probability of the
hidden variables h[n,i] being 1 given the observations v[n,:]
and l[n,:].  If `return_probs` is False, return a sample from
that probability.

Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.

Overrides: Node.is_invertible
(inherited documentation)

sample_h(self, v, l)

 
Sample the hidden variables given observations `v` and labels `l`.

:Returns: a tuple ``(prob_h, h)``, where ``prob_h[n,i]`` is the
  probability that variable ``i`` is one given the observations
  ``v[n,:]`` and the labels ``l[n,:]``, and ``h[n,i]`` is a sample
  from the posterior probability.

Overrides: RBMNode.sample_h

sample_v(self, h)

 
Sample the observed variables given hidden variable state `h`.

:Returns: a tuple ``(prob_v, probs_l, v, l)``, where ``prob_v[n,i]``
  is the probability that the visible variable ``i`` is one given
  the hidden variables ``h[n,:]``, and ``v[n,i]`` is a sample from
  that conditional probability. ``prob_l`` and ``l`` have similar
  interpretations for the label variables. Note that the labels are
  activated using a softmax function, so that only one label can be
  active at any time.

Overrides: RBMNode.sample_v

train(self, v, l, n_updates=1, epsilon=0.1, decay=0.0, momentum=0.0, verbose=False)

 
Update the internal structures according to the visible data `v`
and the labels `l`.
The training is performed using Contrastive Divergence (CD).

:Parameters:
  v
    a binary matrix having different variables on different columns
    and observations on the rows
  l
    a binary matrix having different variables on different columns
    and observations on the rows. Only one value per row should be 1.
  n_updates
    number of CD iterations. Default value: 1
  epsilon
    learning rate. Default value: 0.1
  decay
    weight decay term. Default value: 0.
  momentum
    momentum term. Default value: 0.

Overrides: Node.train