
Biopython Tutorial and Cookbook

Je� Chang, Brad Chapman, Iddo Friedberg, Thomas Hamelryck, Michiel de Hoon, Peter Cock

Last Update{15 June 2008

Contents

4.4 Writing Sequence Files . 27
4.4.1 Converting between sequence �le formats . 28

9 Cookbook { Cool things to do with it 71.1 PubMedt

12 Appendix: Useful stu� about Python 112
12.1 What the heck is 8s495dle?ython

Chapter 1

Introduction

1.1 What is Biopython?

The Biopython Project is an international association of developers of freely available Python (http://www.
python.org) tools for computational molecular biology. The web site http://www.biopython.org provides

http://www.python.org
http://www.python.org
http://www.biopython.org

{ Standalone Blast from NCBI

{ Clustalw alignment program.

� A standard sequence class that deals with sequences, ids on sequences, and sequence features.

� Tools for performing common operations on sequences, such as translation, transcription and weight
calculations.

�

http://biopython.org/DIST/docs/install/Installation.pdf
http://biopython.org/DIST/docs/install/Installation.html

6. I looked in a directory for code, but I couldn’t seem to �nd the code that does something. Where’s it
hidden?
One thing to know is that we put code in __init__.py

Chapter 2

Quick Start { What can you do with
Biopython?

http://www.python.org/doc/

http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://images.google.com/images?q=lady%20slipper%20orchid

http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide
file:examples/ls_orchid.fasta
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta
file:examples/ls_orchid.gbk
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

2.4.2 Simple GenBank parsing example

Now let’s load the GenBank �le instead - notice that the code to do this is almost identical to the snippet

http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/AlignIO
http://www.expasy.org/
http://www.ncbi.nlm.nih.gov/Entrez/

� PubMed from NCBI { See Section 9.1 in the Cookbook for example code detailing how to use this.

� SCOP

The code is these modules basically makes it easy to write python code that interact with the CGI scripts
on these pages, so that you can get results in an easy to deal with format. In some cases, the results can be
tightly integrated with the Biopython parsers to make it even easier to extract information.

2.6 What to do next

Now that you’ve made it this far, you hopefully have a good understanding of the basics of Biopython and
are ready to start using it for doing useful work. The best thing to do now is to start snooping around in
the source code and looking at the automatically generated documentation.

Once you get a picture of what you want to do, and what libraries in Biopython will do it, you should
take a peak at the Cookbook, which may have example code to do something similar to what you want to
do.

If you know what you want to do, but can’t �gure out how to do it, please feel free to post questions to
the main biopython list (biopython@biopython.org). This will not only help us answer your question, it will
also allow us to improve the documentation so it can help the next person do what you want to do.

Enjoy the code!

12

http://www.ncbi.nlm.nih.gov/PubMed/
http://scop.mrc-lmb.cam.ac.uk/scop/

http://www.chem.qmw.ac.uk/iupac/

Seq(’AGTACACTGGT’, Alphabet())
>>> my_seq.alphabet
Alphabet()

Twothingsareinterestingtonote.First,thisfollowsthenormalconventionsforpythonstrings.Sothe

�rstelementofthesequenceis0(whichisnormalforcomputerscience,butnotsonormalforbiology).

Whenyoudoaslicethe�rstitemisincluded(i.e.4inthiscase)andthelastisexcluded(12inthiscase),

whichisthewaythingsworkinpython,butofcoursenotnecessarilythewayeveryoneintheworldwould

expect.Themaingoalistostayconsistentwithwhatpythondoes.

Thesecondthingtonoticeisthatthesliceisperformedonthesequencedatastring,butthenewobject

ftp://ftp.ncbi.nlm.nih.gov/entrez/misc/data/gc.prt

>>> my_seq = Seq("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA", IUPAC.unambiguous_dna)
>>> standard_translator.translate(my_seq)
Seq(’AIVMGR*KGAR’, IUPACProtein())
>>> mito_translator.translate(my_seq)
Seq(’AIVMGRWKGAR’, IUPACProtein())

Notice that the default translation will just go ahead and proceed blindly through a stop codon. If you

Chapter 4

http://biopython.org/wiki/SeqIO

The above example is repeated from the introduction in Section 2.4, and will load the orchid DNA
sequences in the FASTA format �le ls orchid.fasta

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk
http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/SeqIO

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

ID: Z78533.1
Name: Z78533
Desription: C.irapeanum 5.8S rRNA gene and ITS1 and ITS2 DNA.
/source=Cypripedium irapeanum
/taxonomy=[’Eukaryota’, ’Viridiplantae’, ’Streptophyta’, ..., ’Cypripedium’]
/keywords=[’5.8S ribosomal RNA’, ’5.8S rRNA gene’, ’internal transcribed spacer’, ’ITS1’, ’ITS2’]
/references=[...]

from Bio import Entrez
form Bio import SeqIO
handle = Entrez.efetch(db="protein", rettype="fasta", id="6273291")
seq_record = SeqIO.read(handle, "fasta")
handle.close()
print "%s with %i features" % (seq_record.id, len(seq_record.features))

Expected output:

gi|6273291|gb|AF191665.1|AF191665 with 0 features

Now let’s fetch several records. This time the handle contains multiple records, so we must use the

from Bio import SeqIO
from Bio.SeqUtils.CheckSum import seguid
seguid_dict = SeqIO.to_dict(SeqIO.parse(open("ls_orchid.gbk"), "genbank"),

lambda rec : seguid(rec.seq))
record = seguid_dict["MN/s0q9zDoCVEEc+k/IFwCNF2pY"]
print record.id
print record.description

That should have retrieved the record Z78532.1, the second entry in the �le.

4.4 Writing Sequence Files

We’ve talked about using Bio.SeqIO.parse() for sequence input (reading �les), and now we’ll eeio.0ence inpb6(w)inpb6(W)9AC831
Bio.w(W)O.parse()

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

from Bio import SeqIO

Chapter 5

Sequence Alignment Input/Output

http://biopython.org/wiki/AlignIO

#=GS Q9T0Q8_BPIKE/1-52 AC Q9T0Q8.1
#=GS COATB_BPI22/32-83 AC P15416.1
#=GS COATB_BPM13/24-72 AC P69541.1
#=GS COATB_BPM13/24-72 DR PDB; 2cpb ; 1-49;
#=GS COATB_BPM13/24-72 DR PDB; 2cps ; 1-49;
#=GS COATB_BPZJ2/1-49 AC P03618.1
#=GS Q9T0Q9_BPFD/1-49 AC Q9T0Q9.1
#=GS Q9T0Q9_BPFD/1-49 DR PDB; 1nh4 A; 1-49;
#=GS COATB_BPIF1/22-73 AC P03619.2
#=GS COATB_BPIF1/22-73 DR PDB; 1ifk ; 1-50;
COATB_BPIKE/30-81 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIRLFKKFSSKA
#=GR COATB_BPIKE/30-81 SS -HHHHHHHHHHHHHH--HHHHHHHH--HHHHHHHHHHHHHHHHHHHHH----
Q9T0Q8_BPIKE/1-52 AEPNAATNYATEAMDSLKTQAIDLISQTWPVVTTVVVAGLVIKLFKKFVSRA
COATB_BPI22/32-83 DGTSTATSYATEAMNSLKTQATDLIDQTWPVVTSVAVAGLAIRLFKKFSSKA
COATB_BPM13/24-72 AEGDDP...AKAAFNSLQASATEYIGYAWAMVVVIVGATIGIKLFKKFTSKA
#=GR COATB_BPM13/24-72 SS ---S-T...CHCHHHHCCCCTCCCTTCHHHHHHHHHHHHHHHHHHHHCTT--

http://pfam.sanger.ac.uk/family/alignment/download/gzipped?acc=PF05371&alnType=seed
http://pfam.sanger.ac.uk/family/alignment/download/gzipped?acc=PF05371&alnType=seed

http://pfam.sanger.ac.uk/family?acc=PF05371

All that has changed in this code is the �lename and the format string. You’ll get the same output as

http://biopython.org/wiki/AlignIO
http://biopython.org/wiki/AlignIO

If you wanted to read this in using Bio.AlignIO you could use:

from Bio import AlignIO
alignments = AlignIO.parse(open("resampled.phy"), "phylip")
for alignment in alignments :

print alignment
print

This would give the following output, again abbreviated for display:

SingleLetterAlphabet() alignment with 5 rows and 6 columns
AAACCA Alpha
AAACCC Beta
ACCCCA Gamma
CCCAA [(AAACAleta)]TJ 0 -11.965 Td [(CCCACA)-525Epsilona

SingleLetterAlphabet() alignment with 5 rows and 6 columns
AAAACA Alpha
AAACCC Beta
ACCACA Gamma
CCCCA [(AAACAleta)]TJ 0 -11.955 Td [(CCCACA)-525Epsilona

SingleLetterAlphabet() alignment with 5 rows and 6 columns

structure. The most common such situation is when alignments have been saved in the FASTA �le format.
For example consider the following:

>Alpha
ACTACGACTAGCTCAG--G
>Beta
ACTACCGCTAGCTCAGAAG
>Gamma
ACTACGGCTAGCACAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Beta
ACTACCGCTAGCTCAGAAG
>Gamma
ACTACGGCTAGCACAGAAG

This could be a single alignment containing six sequences (with repeated identi�ers). Or, judging from the
identi�ers, this is probably two di�erent alignments each with three sequences, which happen to all have the
same length.

What about this next example?

>Alpha
ACTACGACTAGCTCAG--G
>Beta
ACTACCGCTAGCTCAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Gamma
ACTACGGCTAGCACAGAAG
>Alpha
ACTACGACTAGCTCAGG--
>Delta
ACTACGGCTAGCACAGAAG

alphabet = Gapped(IUPAC.unambiguous_dna)

align1 = Alignment(alphabet)
align1.add_sequence("Alpha", "ACTGCTAGCTAG")
align1.add_sequence("Beta", "ACT-CTAGCTAG")
align1.add_sequence("Gamma", "ACTGCTAGDTAG")

align2 = Alignment(alphabet)
align2.add_sequence("Delta", "GTCAGC-AG")
align2.add_sequence("Epislon","GACAGCTAG")
align2.add_sequence("Zeta", "GTCAGCTAG")

align3 = Alignment(alphabet)
align3.add_sequence("Eta", "ACTAGTACAGCTG")
align3.add_sequence("Theta", "ACTAGTACAGCT-")
align3.add_sequence("Iota", "-CTACTACAGGTG")

my_alignments = [align1, align2, align3]

Now we have a list of Alignment objects, we’ll write them to a PHYLIP format �le:

from Bio import AlignIO
handle = open("my_example.phy", "w")
SeqIO.write(my_alignments, handle, "phylip")
handle.close()

And if you open this �le in your favourite text editor it should look like this:

3 12
Alpha ACTGCTAGCT AG
Td [28(12)]o0[28(12)] AG
Gamma ACTGCTAGD] AG
3 9

Delta GTCAGC-AG
Epislon GACAGCTAG
Zd [28(12)]GTCAGCTAG
3 13

from Bio import AlignIO

COATB_BPM1 AEGDDP---A KAAFNSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPZJ AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFAS
Q9T0Q9_BPF AEGDDP---A KAAFDSLQAS ATEYIGYAWA MVVVIVGATI GIKLFKKFTS
COATB_BPIF FAADDATSQA KAAFDSLTAQ ATEMSGYAWA LVVLVVGATV GIKLFKKFVS

KA
RA
KA
KA
KA
KA
RA

In general, because of the identi�er limitation, working with PHYLIP �le formats shouldn’t be your �rst
choice. Using the PFAM/Stockholm format on the other hand allows you to record a lot of additional
annotation too.

41

Chapter 6

BLAST

Hey, everybody loves BLAST right? I mean, geez, how can get it get any easier to do comparisons between
one of your sequences and every other sequence in the known world? But, of course, this section isn’t about

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/
ftp://ftp.ncbi.nlm.nih.gov/toolbox/
ftp://ftp.ncbi.nlm.nih.gov/blast/documents/formatdb.html
ftp://ftp.ncbi.nlm.nih.gov/blast/documents/formatdb.html

file:examples/m_cold.fasta
http://biopython.org/DIST/docs/tutorial/examples/m_cold.fasta
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/

The code to deal with the WWW version of BLAST is found in the

http://www.ncbi.nlm.nih.gov/BLAST/blast_program.html
http://www.ncbi.nlm.nih.gov/BLAST/blast_program.html
http://www.ncbi.nlm.nih.gov/BLAST/blast_databases.html

>>> blast_results = result_handle.read()

Next, we save this string in a �le:

>>> save_file = open("my_blast.xml", "w")
>>> save_file.write(blast_results)
>>> save_file.close()

The important point is that you do not have to use Biopython scripts to fetch the data in order to be able
to parse it.

Doing things in one of these ways, you then need to get a handle to the results. In Python, a handle is
just a nice general way of describing input to any info source so that the info can be retrieved using read()
and readline()

>>> blast_records = list(blast_records)

Now you can access each BLAST record in the list with an index as usual. If your BLAST �le is huge
though, you may run into problems trying to save them all in a list.

Figure 6.1: Class diagram for the Blast Record class representing all of the info in a BLAST report

48

The PSIBlast record object is similar, but has support for the rounds that are used in the iteration steps
of PSIBlast. The class diagram for PSIBlast is shown in Figure 6.2.

6.6 Deprecated BLAST parsers

Figure 6.2: Class diagram for the PSIBlast Record class.50

6.6.2 Parsing a �le full of BLAST runs

6.7 Dealing with PSIBlast

Chapter 7

http://www.ncbi.nlm.nih.gov/Entrez
http://www.ncbi.nlm.nih.gov/entrez/utils/
http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_help.html#UserSystemRequirements
http://eutils.ncbi.nlm.nih.gov

� Make no more than one request every 3 seconds. This is automatically enforced by Biopython.

�

<DbName>mesh</DbName>
<DbName>ncbisearch</DbName>
<DbName>nlmcatalog</DbName>
<DbName>omia</DbName>
<DbName>omim</DbName>
<DbName>pmc</DbName>

7.3 ESearch: Searching the Entrez databases

To search any of these databases, we use Bio.Entrez.esearch(). For example, let’s search in PubMed for
publications related to Biopython:

>>> from Bio import Entrez
>>> handle = Entrez.esearch(db="pubmed", term="biopythonublicatiocil="A.N.O(thr@(exampl.com"0))]TJ 0 -11.955 Td [(>>>)-525recorde)-525(=)-525(Entrezreadh�(handl0))]TJ 0 -11.965 Td [(>>>)-525record["IdList"]1)]TJ 0 -11.955 Td [[’16403221’ublicat’16377612’ublicat’14871861’ublicat’14630660’ublicat’12230038’]s

http://www.ncbi.nlm.nih.gov/entrez/query/static/esearch_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/epost_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/esummary_help.html

>>> from Bio import Entrez
>>> handle = Entrez.esummary(db="journals", id="30367", email="A.N.Other@example.com")
>>> record = Entrez.read(handle)
>>> record[0]["Id"]
’30367’

http://www.ncbi.nlm.nih.gov/entrez/query/static/efetchseq_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/elink_help.html

http://www.ncbi.nlm.nih.gov/entrez/query/static/egquery_help.html
http://www.ncbi.nlm.nih.gov/entrez/query/static/espell_help.html

Chapter 8

Swiss-Prot, Prosite, Prodoc, and
ExPASy

http://www.expasy.org/sprot

>>> from Bio import SwissProt
>>> record = SwissProt.read(handle)

8.1.2 Parsing the Swiss-Prot keyword and category list

Swiss-Prot also distributes a �le keywlist.txt, which lists the keywords and categories used in Swiss-Prot.
The �le contains entries in the following form:

ID 2Fe-2S.
AC KW-0001
DE Protein which contains at least one 2Fe-2S iron-sulfur cluster: 2 iron
DE atoms complexed to 2 inorganic sulfides and 4 sulfur atoms of
DE cysteines from the protein.
SY Fe2S2; [2Fe-2S] cluster; [Fe2S2] cluster; Fe2/S2 (inorganic) cluster;
SY Di-mu-sulfido-diiron; 2 iron, 2 sulfur cluster binding.
GO GO:0051537; 2 iron, 2 sulfur cluster binding
HI Ligand: Iron; Iron-sulfur; 2Fe-2S.
HI Ligand: Metal-binding; 2Fe-2S.
CA Ligand.
//
ID 3D-structure.
AC KW-0002
DE Protein, or part of a protein, whose three-dimensional structure has

Ingeneral,aProsite�lecancontainmorethanonePrositerecords.Forexample,thefullsetofProsite

records,whichcanbedownloadedasasingle�le(prosite.dat)fromExPASy,contains2073recordsin

>>>fromBioimportProsite

>>>handle=open("myprositefile.dat")

>>>records=Prosite.parse(handle)

8.3 Bio.Prosite.Prodoc: Parsing Prodoc records

In the Prosite example above, the record.pdoc accession numbers ’PDOC00001’, ’PDOC00004’, ’PDOC00005’
and so on refer to Prodoc records, which contain the Prosite Documentation. The Prodoc records are
available from ExPASy as individual �les, and as one �le (prosite.doc) containing all Prodoc records.

http://www.expasy.org
http://www.expasy.org

... handle = ExPASy.get_sprot_raw(accession)

... record = SwissProt.read(handle)

... records.append(record)

http://www.expasy.org/cgi-bin/sprot-search-de
http://www.expasy.org/cgi-bin/sprot-search-ful
http://www.expasy.org/cgi-bin/sprot-search-ful

>>> from Bio import ExPASy
>>> from Bio import Prosite
>>> handle = ExPASy.get_prosite_raw(’PS00001’)
>>> record = Prosite.read(handle)

Finally, to retrieve a Prodoc record and parse it into a Bio.Prosite.Prodoc.Record object, use

>>> from Bio import ExPASy
>>> from Bio.Prosite import Prodoc
>>> handle = ExPASy.get_prosite_raw(’PDOC00001’)
>>> record = Prodoc.read(handle)

For non-existing accession numbers, ExPASy.get_prosite_raw returns a handle to an emptry string.
When faced with an empty string, Prosite.read and Prodoc.read will raise a ValueError. You can catch

Chapter 9

Cookbook { Cool things to do with it

9.1 PubMed

The Bio.PubMed module uses Bio.Entrez internally to access the NCBI.

http://www.ncbi.nlm.nih.gov/PubMed/

http://www.ncbi.nlm.nih.gov/

9.2.2 Parsing GenBank records

ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/Bacteria/Nanoarchaeum_equitans/AE017199.gbk
http://biopython.org/SRC/biopython/Tests/GenBank/cor6_6.gb

Or, using Bio.SeqIO instead (see Chapter

http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/Top.html
file:examples/opuntia.fasta
http://biopython.org/DIST/docs/tutorial/examples/opuntia.fasta

G A T C
G 1 1 0 1
T 0 0 3 0
A 1 1 0 0
T 0 0 2 0
C 0 0 0 3

Let’s assume we’ve got an alignment object called c_align. To get a PSSM with the consensus sequence
along the side we �rst get a summary object and calculate the consensus sequence:

summary_align = AlignInfo.SummaryInfo(c_align)
consensus = summary_align.dumb_consensus()

Now, we want to make the PSSM, but ignore any N

9.3.5 Information Content

A potentially useful measure of evolutionary conservation is the information content of a sequence.

http://www.lecb.ncifcrf.gov/~toms/paper/primer/
http://www.lecb.ncifcrf.gov/~toms/paper/primer/

from Bio.Alphabet impoy:UPAC

file:examples/protein.aln
http://biopython.org/DIST/docs/tutorial/examples/protein.aln

get an alignment object from a Clustalw alignment output
c_align = Clustalw.parse_file("protein.aln", IUPAC.protein)
summary_align = AlignInfo.SummaryInfo(c_align)

Sections 9.3.1 and 9.3.2 contain more information on doing this.
Now that we’ve got our summary_align object, we want to use it to �nd out the number of times di�erent

residues substitute for each other. To make the example more readable, we’ll focus on only amino acids with
polar charged side chains. Luckily, this can be done easily when generating a replacement dictionary, by

>>> my_lom.print_mat()
D 6
E -5 5
H -15 -13 10
K -31 -15 -13 6
R -13 -25 -14 -7 7

D E H K R

Very nice. Now we’ve got our very own substitution matrix to play with!

http://www.biosql.org/
http://open-bio.org/
http://biopython.org/wiki/BioSQL

Figure 9.1: UML diagram of the SMCRA data structure used to represent a macromolecular structure.

83

Disordered atoms and residues are represented by DisorderedAtom and DisorderedResidue classes, which

9.7.1.1 Structure

The Structure object is at the top of the hierarchy. Its id is a user given string. The Structure contains

a.get_sigatm() # std. dev. of atomic parameters
a.get_siguij() # std. dev. of anisotropic B factor
a.get_anisou() # anisotropic B factor
a.get_fullname() # atom name (with spaces, e.g. ".CA.")

To represent the atom coordinates, siguij, anisotropic B factor and sigatm Numpy arrays are used.

9.7.2 Disorder

for residue in chain.get_list():
residue_id=residue.get_id()
hetfield=residue_id[0]
if hetfield[0]=="H":
print residue_id

9.7.5.1.1 Duplicate residues One structure contains two amino acid residues in one chain with the
same sequence identi�er (resseq 3) and icode. Upon inspection it was found that this chain contains the
residues Thr A3, . . . , Gly A202, Leu A3, Glu A204. Clearly, Leu A3 should be Leu A203. A couple of

9.7.6 Other features

There are also some tools to analyze a crystal structure. Tools exist to superimpose two coordinate sets

http://genepop.curtin.edu.au/

(’Ind1’, [(1, 2), (3, 3), (200, 201)],
(’Ind2’, [(2, None), (3, 3), (None, None)],

],
[

(’Other1’, [(1, 1), (4, 3), (200, 200)],
]

]

9.8.2 Coalescent simulation

A coalescent simulation is a backward model of population genetics with relation to time. A simulation of

http://cmpg.unibe.ch/software/simcoal2/
http://cmpg.unibe.ch/software/simcoal2/

Figure 9.2: A bottleneck

from Bio.PopGen.SimCoal.Template import generate_simcoal_from_template

generate_simcoal_from_template(’simple’,
[(1, [(’SNP’, [24, 0.0005, 0.0])])],
[(’sample_size’, [30]),
(’pop_size’, [100])])

Executing this code snippet will generate a �le on the current directory called simple

how to implement chromosome structures using the Biopython interface, not the underlying SIMCOAL2
capabilities.

We will start by implementing a single chromosome, with 24 SNPs with a recombination rate immediately
on the right of each locus of 0.0005 and a minimum frequency of the minor allele of 0. This will be speci�ed
by the following list (to be passed as second parameter to the function generate simcoal from template):

[(1, [(’SNP’, [24, 0.0005, 0.0])])]

This is actually the chromosome structure used in the above examples.

2. Compute average Fst. This is done by datacal inside FDist.

3. Simulate \neutral" markers based on the average Fst and expected number of total populations. This
is the core operation, done by fdist inside FDist.

4. Calculate the con�dence interval, based on the desired con�dence boundaries (typically 95% or 99%).
This is done by cplot and is mainly used to plot the interval.

5. Assess each marker status against the simulation \neutral" con�dence interval. Done by pv. This is
used to detect the outlier status of each marker against the simulation.

We will now discuss each step with illustrating example code (for this example to work FDist binaries
have to be on the executable PATH).

The FDist data format is application speci�c and is not used at all by other applications, as such you will
probably have to convert your data for use with FDist. Biopython can help you do this. Here is an example
converting from GenePop format to FDist format (along with imports that will be needed on examples
further below):

sample size Average number of individuals sampled on each population.

mut Mutation model: 0 - In�nite alleles; 1 - Stepwise mutations

num sims Number of simulations to perform. Typically a number around 40000 will be OK, but if you
get a con�dence interval that looks sharp (this can be detected when plotting the con�dence interval
computed below) the value can be increased (a suggestion would be steps of 10000 simulations).

The confusion in wording between number of samples and sample size stems from the original application.
A �le named out.dat will be created with the simulated heterozygosities and Fsts, it will have as many

lines as the number of simulations requested.
Note that fdist returns the average Fst that it was capable of simulating, for more details about this issue

please read below the paragraph on approximating the desired average Fst.
The next (optional) step is to calculate the con�dence interval:

cpl_interval = ctrl.run_cplot(ci=0.99)

sim_fst = ctrl.run_fdist_force_fst(npops = 15, nsamples = fd_rec.num_pops,
fst = fst, sample_size = samp_size, mut = 0, num_sims = 40000,
limit = 0.05)

The only new optional parameter, when comparing with run fdist, is limit which is the desired maximum
error. run

http://www.ebi.ac.uk/interpro/

Chapter 10

Advanced

10.1 The SeqRecord and SeqFeature classes

Additionally, you can also pass the id, name and description to the initialization function, but if not they
will be set as strings indicating they are unknown, and can be modi�ed subsequently:

>>> simple_seq_r.id
’<unknown id>’
>>> simple_seq_r.id = ’AC12345’
>>> simple_seq_r.description = ’My little made up sequence I wish I could
write a paper about and submit to GenBank’

� Try to avoid anything which might be platform speci�c, such as printing
oating point numbers
without using an explicit formatting string.

2.

The alphabet optional argument is a string of all characters in the alphabet. If supplied, the
order of letters along the axes is taken from the string, rather than by alphabetical order.

3. Usage

But you can supply your own exp_freq_table, if you wish

(d) Generating a substitution frequency matrix (SFM)
Use:

SFM = SubsMat._build_subs_mat(OFM,EFM)

Accepts an OFM, EFM. Provides the division product of the corresponding values.

(e) Generating a log-odds matrix (LOM)
Use:

LOM=SubsMat._build_log_odds_mat(SFM[,logbase=10,factor=10.0,round_digit=1])

i.
 -17.157 -15.675 Td675 pts alues.i.
 -178(wn)]TJ/F32 9.96.284f 73.225050SFM[,EFM)i.
 -178(wn)]TJ/F32 9.96.igif 73.225base=1,EFM)

And will be read using the FreqTable.read_count(file_handle)

Chapter 11

Where to go from here { contributing
to Biopython

http://www.rpm.org

Macintosh { We would love to �nd someone who wants to maintain a Macintosh distribution, and make

http://bugzilla.open-bio.org/
http://bugzilla.open-bio.org/
http://biopython.org/wiki/Contributing
http://biopython.org/wiki/Scriptcentral

Chapter 12

Appendix: Useful stu� about Python

If you haven’t spent a lot of time programming in python, many questions and problems that come up in
using Biopython are often related to python itself. This section tries to present some ideas and code that

file:examples/m_cold.fasta
http://biopython.org/DIST/docs/tutorial/examples/m_cold.fasta

>>> my_info = ’A string\n with multiple lines.’
>>> print my_info
A string
with multiple lines.

>>> import cStringIO
>>> my_info_handle = cStringIO.StringIO(my_info)
>>> first_line = my_info_handle.readline()
>>> print first_line
A string

>>> second_line = my_info_handle.readline()
>>> print second_line
with multiple lines.

113

	Introduction
	What is Biopython?
	What can I find in the Biopython package

	Installing Biopython
	FAQ

	Quick Start -- What can you do with Biopython?
	General overview of what Biopython provides
	Working with sequences
	A usage example
	Parsing sequence file formats
	Simple FASTA parsing example
	Simple GenBank parsing example
	I love parsing -- please don't stop talking about it!

	Connecting with biological databases
	What to do next

	Sequence objects
	Sequences and Alphabets
	Sequences act like strings
	Slicing a sequence
	Turning Seq objects into strings
	Nucleotide sequences and (reverse) complements
	Concatenating or adding sequences
	MutableSeq objects
	Transcribing and Translation
	Working with directly strings

	Sequence Input/Output
	Parsing or Reading Sequences
	Reading Sequence Files
	Iterating over the records in a sequence file
	Getting a list of the records in a sequence file
	Extracting data

	Parsing sequences from the net
	Parsing GenBank records from the net
	Parsing SwissProt sequences from the net

	Sequence files as Dictionaries
	Specifying the dictionary keys
	Indexing a dictionary using the SEGUID checksum

	Writing Sequence Files
	Converting between sequence file formats
	Converting a file of sequences to their reverse complements

	Sequence Alignment Input/Output
	Parsing or Reading Sequence Alignments
	Single Alignments
	Multiple Alignments
	Ambiguous Alignments

	Writing Alignments
	Converting between sequence alignment file formats

	BLAST
	Running BLAST locally
	Running BLAST over the Internet
	Saving BLAST output
	Parsing BLAST output
	The BLAST record class
	Deprecated BLAST parsers
	Parsing plain-text BLAST output
	Parsing a file full of BLAST runs
	Finding a bad record somewhere in a huge file

	Dealing with PSIBlast

	Accessing NCBI's Entrez databases
	Entrez Guidelines
	EInfo: Obtaining information about the Entrez databases
	ESearch: Searching the Entrez databases
	EPost
	ESummary: Retrieving summaries from primary IDs
	EFetch: Downloading full records from Entrez
	ELink
	EGQuery: Obtaining counts for search terms
	ESpell: Obtaining spelling suggestions
	Examples
	Searching and downloading Entrez Nucleotide records
	Finding the lineage of an organism
	Using the history and WebEnv

	Swiss-Prot, Prosite, Prodoc, and ExPASy
	Bio.SwissProt: Parsing Swiss-Prot files
	Parsing Swiss-Prot records
	Parsing the Swiss-Prot keyword and category list

	Bio.Prosite: Parsing Prosite records
	Bio.Prosite.Prodoc: Parsing Prodoc records
	Bio.ExPASy: Accessing the ExPASy server
	Retrieving a Swiss-Prot record
	Searching Swiss-Prot
	Retrieving Prosite and Prodoc records

	Cookbook -- Cool things to do with it
	PubMed
	Sending a query to PubMed
	Retrieving a PubMed record

	GenBank
	Retrieving GenBank entries from NCBI
	Parsing GenBank records
	Iterating over GenBank records

	Dealing with alignments
	Clustalw
	Calculating summary information
	Calculating a quick consensus sequence
	Position Specific Score Matrices
	Information Content
	Translating between Alignment formats

	Substitution Matrices
	Using common substitution matrices
	Creating your own substitution matrix from an alignment

	BioSQL -- storing sequences in a relational database
	BioCorba
	Going 3D: The PDB module
	Structure representation
	Disorder
	Hetero residues
	Some random usage examples
	Common problems in PDB files
	Other features

	Bio.PopGen: Population genetics
	GenePop
	Coalescent simulation
	Other applications
	Future Developments

	InterPro

	Advanced
	The SeqRecord and SeqFeature classes
	Sequence ids and Descriptions -- dealing with SeqRecords
	Features and Annotations -- SeqFeatures

	Regression Testing Framework
	Writing a Regression Test

	Parser Design
	Substitution Matrices
	SubsMat
	FreqTable

	Where to go from here -- contributing to Biopython
	Maintaining a distribution for a platform
	Bug Reports + Feature Requests
	Contributing Code

	Appendix: Useful stuff about Python
	What the heck is a handle?
	Creating a handle from a string

